2020高考物理复习编练习题5含解析新人教428
2020高考物理复习最新解析版题目

第Ⅰ卷一、单项选择题:(本题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一个是符合题目要求的)1、法拉第通过静心设计的一系列试验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流【答案】A【解析】对A选项,静止的导线上的稳恒电流附近产生稳定的磁场,通过旁边静止的线圈不会产生感应电流,A被否定;稳恒电流周围的稳定磁场是非匀强磁场,运动的线圈可能会产生感应电流,B符合事实;静止的磁铁周围存在稳定的磁场,旁边运动的导体棒会产生感应电动势,C符合;运动的导线上的稳恒电流周一小球.给小球一足够大的初速度,使小球在斜面上做圆周围产生运动的磁场,即周围磁场变化,在旁边的线圈中产生感应电流,D 符合。
2、如图,质量为 M 的楔形物块静置在水平地面上,其斜面的倾角为 θ.斜面上有一质量为 m 的小物块,小物块与斜面之间存在摩擦.用恒力 F 沿FmM θ斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为A .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ【答案】D【解析】本题可用整体法的牛顿第二定律解题,竖直方向由平衡条件:F sin θ+N =mg +Mg ,则 N = mg +Mg -F sin θ 。
【2019-2020】高考物理一轮复习编练习题(5)(含解析)新人教版

【2019-2020】高考物理一轮复习编练习题(5)(含解析)新人教版)李仕才一、选择题1、如图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B水平.设绳A、B对球的拉力大小分别为F1、F2,它们的合力大小为F.现将框架在竖直平面内绕左下端缓慢旋转90°,在此过程中( )图A.F1先增大后减小B.F2先增大后减小C.F先增大后减小D.F先减小后增大答案 B解析对小球受力分析如图所示:小球处于静止状态,受力平衡,两绳的拉力的合力与重力大小相等、方向相反,则F不变,根据平行四边形定则可知,将框架在竖直平面内绕左下端缓慢旋转90°的过程中,F1逐渐减小,F2先增大后减小,当绳A处于水平方向时,F2最大,故B正确.2、在两个足够长的固定的相同斜面体上(其斜面光滑),分别有如图所示的两套装置,斜面体B的上表面水平且光滑,长方体D的上表面与斜面平行且光滑,p是固定在B、D上的小柱,完全相同的两只弹簧一端固定在p上,另一端分别连在A和C上,在A与B、C与D分别保持相对静止状态沿斜面自由下滑的过程中,下列说法正确的是( )A.两弹簧都处于拉伸状态B.两弹簧都处于压缩状态C.弹簧L1处于压缩状态,弹簧L2处于原长D.弹簧L1处于拉伸状态,弹簧L2处于压缩状态解析:选C 由于斜面光滑,它们整体沿斜面下滑的加速度相同,为g sin α。
对于题图甲,以A为研究对象,重力与支持力的合力沿竖直方向,而A沿水平方向的加速度:a x=a cos α=g ·sin αcos α该加速度由水平方向弹簧的弹力提供,所以弹簧L 1处于压缩状态;对于题图乙,以C 为研究对象,重力与斜面支持力的合力大小:F 合=mg sin α,即C 不能受到弹簧的弹力,弹簧L 2处于原长状态。
故选项C 正确,A 、B 、D 错误。
3、如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力。
2020版高考物理一轮总复习电学综合训练(含解析)新人教版

电学综合训练一、选择题:(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,其中第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求,全部答对得6分,选对但不全得3分,错选得0分)1.如图所示,绝缘水平面上有两条平行光滑长直导轨,导轨左端接有电阻R ,电阻为r 的金属棒AB 垂直跨放在导轨上且与导轨接触良好,其他电阻不计.两导轨间存在竖直向下的匀强磁场.给AB 以水平向右的初速度v 0并开始计时,下面四幅反映AB 的速度v 随时间t 变化规律的图象中,可能正确的是( )解析:选D.AB 杆以水平向右的初速度v 0切割磁感线,在回路中充当电源,电路中产生的电流为I =Blv R +r ,AB 杆受到的安培力F 安=BIl =B 2l 2v R +r,对AB 杆受力分析可知,水平方向合外力等于安培力,充当阻力使其减速,所以其加速度随速度的减小而减小,直到速度减为零时,加速度减为零,故D 项正确.2.如图所示,在磁感应强度大小为B0的匀强磁场中,有一等腰直角三角形ACD .A 点有一根垂直于ACD 平面的直导线.当导线中通有图示方向的电流时,D 点的磁感应强度为零.则C 点的磁感应强度大小为( )A. 0 B .B 0 C.2B 0D .2B 0解析:选C.由D 点的磁感应强度为零可知,通电直导线在D 点产生的磁场与空间中存在的匀强磁场的磁感应强度等大反向,所以匀强磁场方向垂直于AD 向下,由于C 点与D 点与A 等距离,所以通电直导线在C 点产生的磁场磁感应强度大小为B 0,方向垂直于AC 向左,则C 点的磁感应强度大小为2B 0,故C 项正确.3.一个阻值为20 Ω的电阻,通有如图所示的电流,在一个周期内,前半个周期电流随时间按正弦规律变化,后半个周期电流为恒定电流,则在一个周期内,电阻产生的热量为( )A .0.2 JB .0.4 JC .0.6 JD .0.8 J解析:选C.求解电阻产生的热量时应该用电流的有效值,由有效值的定义可得⎝ ⎛⎭⎪⎫I m 22R T2+I 22R T2=I 2RT 得,I =32A ,则一个周期内电阻产生的热量为Q =I 2RT =0.6 J ,故C 项正确.4.如图甲所示,单匝导线框abcd 固定于匀强磁场中,规定垂直纸面向里为磁场的正方向.从t =0时刻开始磁感应强度B 随时间t 变化关系如图乙所示,若规定逆时针方向为感应电流i 的正方向,则在下面四个反映线框里感应电流i 随时间t 变化规律的图象中,正确的是( )解析:选A.由法拉第电磁感应定律可得:E =N ΔBS Δt ,又i =ER ,结合B t 图象可得,0~1 s 内线圈中产生的电流是恒定的,故C 、D 项错误;由B t 图象可知0~1 s 内垂直纸面向里的磁场磁通量在增大,由楞次定律可知线圈中产生的感应电流的方向为逆时针,与规定的正方向相同,所以为正值,故A 项正确,B 项错误.5.现有一组方向沿x 轴正方向的电场线,若从x 轴的坐标原点由静止释放一个带电粒子,仅在电场力的作用下,该粒子沿着x 轴的正方向从x 1=0处运动到x 2=1.2 cm 处,其电势φ随位置x 坐标变化的情况如图所示.下列有关说法正确的是( )A .该粒子一定带正电荷B .在x 轴上x =0.6 cm 的位置,电场强度大小为0C .该粒子从x 1=0处运动到x 2=1.2 cm 处的过程中,电势能一直减小D .在x 轴上0~0.6 cm 的范围内的电场强度大于0.6~1.2 cm 的范围内的电场强度 解析:选AC.由于带电粒子由坐标原点由静止开始,仅在电场力的作用下,沿x 轴正方向运动,所以所受电场力方向沿x 轴正方向,与电场线的方向一致,故该粒子一定带正电荷,故A 项正确;由φx 图象中斜率表示电场强度可知,x =0.6 cm 处电场强度大小为5 000 V/m ,故B 项错;由φ-x 图象可知,从x =0.6 cm 到x =1.2 cm 的过程中,电势一直降低,由E p =q φ可知,正电荷的电势能一直减小,故C 项正确;由φ-x 图象中斜率表示电场强度可知,0~1.2 cm 的范围内电场强度不变,故D 项错误.6.如图所示的电路中,理想变压器原、副线圈匝数比为3∶1,原线圈接在电压为U 0的正弦式电流电源上,定值电阻R 1=R 2,变压器原、副线圈两端的电压分别为U 1、U 2,通过原、副线圈中的电流分别为I 1、I 2,则( )A .I 1∶I 2=1∶3B . I 1∶I 2=3∶1 C. U 1∶U 0=1∶10D . U 2∶U 0=3∶10解析:选AD.由于理想变压器原、副线圈匝数比为3∶1,所有原副线圈的电流之比是1∶3,故A 项正确;原副线圈两端的电压之比为3∶1,两个定值电阻两端的电压之比U R 1U R 2=13,左边回路有U 0=U R 1+U 1,右边回路中有U 2=U R 2,所以U 1∶U 0=9∶10,故C 项错误;U 2∶U 0=3∶10,故D 项正确.7.如图所示,在匀强磁场中匀速转动的单匝矩形线圈的周期为T ,转轴O 1O 2垂直于磁场方向,线圈电阻为2 Ω.从线圈平面与磁场方向平行时开始计时,线圈转过60°时的感应电流为1 A ,那么( )A .从图示位置开始,线圈转过90°时穿过线圈的磁通量最大B .线圈中感应电流的有效值为 2 AC .任意时刻线圈中的感应电动势为e =4cos 2πTt (V)D .从图示位置开始到线圈转过90°时的过程中,线圈中磁通量变化了Tπ解析:选ABC.从图示位置开始,线圈转过90°时,恰好位于中性面的位置,磁通量最大,故A 项正确;线圈转动产生的是正弦式交变电流,所以电流的有效值为I =I m2,又E m =BS ω=BS 2πT ,转过60°时有i =E m r cos 2πT t =BS ωrcos 60°=1 A ,解得电流的有效值为I = 2 A ,故B 项正确;任意时刻线圈中的感应电动势e =BS ωcos 2πTt =4cos 2πTt ,故C 项正确;从图示位置开始到线圈转过90°的过程中,线圈中的磁通量变化了ΔΦ=BS =2Tπ,故D 项错误.8.如图所示,在光滑绝缘水平地面上相距为L 处有两个完全相同的带正电小球A 和B ,它们的质量都为m ,现由静止释放B 球,同时A 球以大小为v 0的速度沿两小球连线方向向B 球运动,运动过程中,两球最小距离为L3,下列说法中正确的是( )A .距离最小时与开始时B 球的加速度之比为9∶1 B .从开始到距离最小的过程中,电势能的增加量为12mv 2C .A 、B 组成的系统动能的最小值是14mv 2D .B 球速度的最大值为v 0解析:选AC.开始时,对B 球有:k q 2L 2=ma 1 ,相距最小时,对B 球有:k q 2⎝ ⎛⎭⎪⎫L 32=ma 2,则有:a 2a 1=91,故A 项正确;当两球相距最小时,两球速度相同,系统动能最小.对A 、B 两球自B 球由静止释放至两球相距最小,由动量守恒定律得mv 0=2mv ;由能量守恒得12mv 20=12×2mv 2+E p ,解得E p =14mv 20,故B 项错误;最小动能E k =12×2mv 2=14mv 20,故C 项正确;当A球速度减为零时,B 球速度增大到v 0 ,此时两球相距为L ,此后A 球反向加速,B 球继续加速,故D 项错误.二、非选择题(本题共3小题,共52分)9.(9分)在“描绘小灯泡的伏安特性曲线”的实验中,所采用的小灯泡的规格为“2.5 V 0.3 A”,实验时采用的电路图如图甲所示.(1)某同学从实验室取出A 、B 两个材质相同的滑动变阻器,铭牌不清,从进货单中查知其中一个滑动变阻器的最大阻值为10 Ω,另一个为1 000 Ω,观察发现A 绕的导线粗而少,而B 绕的导线细而多,本实验应该选用______填(“A ”或“B ”).(2)在实验测量中,某次电压表示数如图乙所示,则其示数为______V ;此时电流表的示数可能为图丙中的______(填写图丙中各表下方的代号).(3)若实验得到另一小灯泡的伏安特性曲线(I U 图象)如图丁所示.若将这个小灯泡接到电动势为1.5 V 、内阻为5 Ω的电源两端,则小灯泡的工作电阻为______Ω,小灯泡消耗的功率是________W.解析:(1)由电阻定律R =ρLS可知,细而长的电阻大,粗而短的电阻小,而本实验采用分压式接法,应选用电阻小的,故选A .(2)电压表量程选3 V ,所以每小格表示0.1 V ,所以读数为2.00 V ,有估读数位;由于电压表示数略小于额定电压,所以电流表的示数略小于额定电流,故B 项正确.(3)作出闭合电路欧姆定律的I U 图象,与小灯泡的I U 图象交于一点,其横纵坐标的比值即为小灯泡的工作电阻,为9.8 Ω ;横纵坐标的乘积即为小灯泡消耗的实际功率,为0.1 W.答案:(1)A (2)2.00 B(3)9.8(9.6~10均可) 0.110.(20分)如图所示,足够大的平行挡板A 1、A 2竖直放置,间距6L ,两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离为L 、质量为m 、电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区,P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.(1)若k =1,求匀强电场的电场强度E ;(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式.解析:(1)若k =1,则有MP =L ,粒子在Ⅰ区匀强磁场中做匀速圆周运动,根据几何关系,该情况粒子的轨迹半径为:R =L粒子在匀强磁场中做匀速圆周运动,则有:qvB 0=m v 2R粒子在匀强电场中加速,根据动能定理有:qEd =12mv 2综合上式解得:E =qB 02L 22dm.(2)因为2<k <3,且粒子沿水平方向从S 2射出,可知粒子在Ⅱ区只能发生一次偏转,该粒子运动轨迹如图所示由几何关系:R 2-(kL )2=(R -L )2,又有qvB 0=m v 2R则整理解得:v =qB 0L +k 2L2m.答案:(1)qB 20L 22dm (2)v =qB 0L +k 2L2m11.(23分)如图所示,质量m A =0.8 kg 、带电量q =-4×10-3C 的A球用长度l =0.8 m 的不可伸长的绝缘轻线悬吊在O 点,O 点右侧有竖直向下的匀强电场,场强E =5×103N/C.质量m B =0.2 kg 不带电的B 球静止在光滑水平轨道上,右侧紧贴着压缩并锁定的轻质弹簧,弹簧右端与固定挡板连接,弹性势能为3.6 J .现将A 球拉至左边与圆心等高处由静止释放,将弹簧解除锁定,B 球离开弹簧后,恰好与第一次运动到最低点的A 球相碰,并结合为一整体C ,同时撤去水平轨道.A 、B 、C 均可视为质点,线始终未被拉断,g =10 m/s 2.求:(1)碰撞过程中A 球对B 球做的功和冲量大小; (2)碰后C 第一次离开电场时的速度大小;(3)C 每次离开最高点时,电场立即消失,到达最低点时,电场又重新恢复,不考虑电场瞬间变化产生的影响,求C 每次离开电场前瞬间绳子受到的拉力.解析:(1)由机械能守恒定律12m A v 2A =m A gl得碰前A 的速度大小v A =4 m/s 方向向右 由E =12m B v 2B得碰前B 的速度大小v B =6 m/s 方向向左 由动量守恒守律m A v A -m B v B =(m A +m B )v C 得v C =2 m/s 方向向右A 对B 所做的功W =12m B v 2C -E =-3.2 J A 对B 的冲量I =m B v C -(-m B v B )=1.6 N·s(2)碰后,C 整体受到电场力F =qE因F -m C g >m C v 2Cl,可知C 先做类平抛运动则x =v C t ,y =12at 2,qE -m C g =m C a(y -l )2+x 2=l 2联立解得x =0.8 m ,y =0.8 m ,t =0.4 s即C 刚好在圆心等高处线被拉直,此时C 向上的速度为v y =at =4 m/s 设C 第一次运动到最高点速度为v 1,由动能定理(F -m C g )l =12m C v 21-12m C v 2y得v 1=42≈5.66 m/s(3)设C 从最高点运动到最低点时的速度为v . 由动能定律m C g ×2l =12m C v 2-12m C v 21得 v =8 m/s由于F T +F -m C g =m C v 2l,可知F T >0,故C 之后每一次通过最低点均能一直做圆周运动设C 第n 次经过最高点时的速度为v n .则(n -1)qE ×2l =12m C v 2n -12m C v 21,(n =1,2,3……)由牛顿第二定律得F T +m C g -F =m C v 2nl解得F T =10(8n -3)N ,(n =1,2,3……) 答案:(1)-3.2 J 1.6 N·s (2)5.66 m/s (3)10(8n -3)N ,(n =1,2,3……)。
2020届高考物理总复习 10 训练新人教版【共4套18页】

本套资源目录2020届高考物理总复习10.1电磁感应现象楞次定律针对训练含解析新人教版2020届高考物理总复习10.2法拉第电磁感应定律针对训练含解析新人教版2020届高考物理总复习10专题三电磁感应中的电路和图象问题针对训练含解析新人教版2020届高考物理总复习10专题四电磁感应中的动力学和能量综合问题针对训练含解析新人教版10.1 电磁感应现象 楞次定律1.(多选)如图10-1-21是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )图10-1-21解析:根据楞次定律可确定感应电流的方向:如对C 图分析,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S 极,磁铁与线圈相互排斥.综合以上分析知,C 、D 正确. 答案:CD2.如图10-1-22甲所示,长直导线与导线框abcd 固定在同一平面内.直导线中通以如图乙所示的大小和方向都随时间作周期性变化的交流电,并取图甲所示向上的电流方向为直导线中电流的正方向.关于0~T 时间内线框abcd 中感应电流的方向,下列说法正确的是( )图10-1-22A .由顺时针方向变为逆时针方向B .由逆时针方向变为顺时针方向C .由顺时针方向变为逆时针方向,再变为顺时针方向D .由逆时针方向变为顺时针方向,再变为逆时针方向解析:由题图乙,在0~T 4时间内电流正向增大,根据安培定则,矩形线圈所处的磁场垂直纸面向里,由于磁通量增大,由增反减同,矩形线圈中的感应磁场应垂直纸面向外,感应电流为逆时针,同理,T 4~T 2,T 2~3T 4,3T 4~T 内感应电流的方向依次为顺时针、顺时针、逆时针,故D 正确.答案:D3.如图10-1-23所示,一根条形磁铁自左向右穿过一个闭合螺线管,则电路中( )图10-1-23A .始终有感应电流自a 向b 流过电流表GB .始终有感应电流自b 向a 流过电流表GC .先有a →G →b 方向的感应电流,后有b →G →a 方向的感应电流D .将不会产生感应电流解析:条形磁铁从左边进入螺线管的过程中,在螺线管内产生的磁场方向向右,且穿过螺线管的磁通量不断增加,根据楞次定律,产生的感应电流的方向是a →G→b ,条形磁铁从螺线管中向右穿出的过程中,在螺线管中产生的磁场方向仍向右,穿过螺线管的磁通量不断减小,根据楞次定律,产生的感应电流的方向是b →G →a ,故C 正确.答案:C4.(2019年杭州模拟)如图10-1-24所示,匀强磁场垂直圆形线圈指向纸内,a 、b 、c 、d 为圆形线圈上等距离的四点,现用外力在上述四点将线圈拉成正方形,且线圈仍处在原先所在平面内,则在线圈发生形变的过程中( )图10-1-24A .线圈中将产生abcda 方向的感应电流B .线圈中将产生adcba 方向的感应电流C .线圈中感应电流方向无法判断D .线圈中无感应电流解析:周长一定时,圆形的面积最大.本题线圈面积变小,磁通量变小,有感应电流产生,由楞次定律可知线圈中将产生顺时针方向的感应电流,故A 正确.答案:A5.(2019年唐山模拟)(多选)如图10-1-25所示,在匀强磁场中,放有一与线圈D 相连接的平行导轨,要使放在线圈D 中的线圈A (A 、D 两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是( )图10-1-25A.匀速向右 B.加速向左C.加速向右 D.减速向左解析:若金属棒MN匀速向右运动,则线圈D与MN组成回路,产生恒定电流,穿过线圈A的磁通量不变,线圈A不受安培力作用,选项A错误;若金属棒MN加速向左运动,则线圈D与MN组成回路中的电流不断增强,故穿过线圈A的磁通量不断增强,根据楞次定律,为阻碍磁通量的增强,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项B 正确;同理可得,当金属棒MN加速向右运动时,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项C正确;当金属棒MN减速向左运动时,线圈A有扩张的趋势,受到沿半径方向背离圆心的安培力,选项D错误.答案:BC6.(2019年上海虹口区一模)(多选)如图10-1-26所示,水平放置的光滑绝缘直杆上套有A、B、C三个金属铝环,B环连接在图示的电路中.闭合开关S的瞬间( )图10-1-26A.A环向左滑动B.C环向左滑动C.A环有向外扩展的趋势D.C环有向内收缩的趋势解析:闭合开关S的瞬间,通过A、C环的磁通量增大,根据楞次定律和左手定则可知:A环向左运动,且有收缩的趋势;C环向右运动,且有收缩的趋势,故A、D正确,B、C错误.答案:AD7.(2017年高考·课标全国卷Ⅲ)如图10-1-27,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )图10-1-27A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向解析:金属杆PQ向右切割磁感线,根据右手定则可知PQRS中感应电流沿逆时针方向;原来T中的磁场方向垂直于纸面向里,金属杆PQ中的感应电流产生的磁场方向垂直于纸面向外,使得穿过T的磁通量减小,根据楞次定律可知T中产生顺时针方向的感应电流,综上所述,可知A、B、C项错误,D项正确.答案:D10.2 法拉第电磁感应定律1.(2019年湖北质检)如图10-2-18所示,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )图10-2-18A .电容器所带电荷量为2nSkC 5B .电容器所带电荷量为3nSkC 5C .电容器下极板带正电D .电容器上极板带正电解析:闭合线圈与阻值为r 的电阻形成闭合回路,线圈相当于电源,电容器两极板间的电压等于路端电压;线圈产生的感应电动势为E =nSΔB Δt =nSk ,路端电压U =E 2=nSk 2,电容器所带电荷量为Q =CU =nSkC2,A 、B 错误;根据楞次定律,感应电流从线圈的右端流到左端,左端电势高,电容器上极板带正电,C 错误,D 正确.答案:D2.(2019年江西南昌摸底)(多选)如图10-2-19甲所示,圆形闭合线圈内存在方向垂直纸面向外的磁场,磁感应强度随时间变化如图10-2-19乙所示,则下列说法正确的是( )图10-2-19A .0~1 s 内线圈的磁通量不断增大B .第4 s 末的感应电动势为0C .0~1 s 内与2~4 s 内的感应电流大小相等D .0~1 s 内感应电流方向为顺时针方向解析:由法拉第电磁感应定律E =ΔΦΔt =ΔB ·S Δt,得出各段时间内的感应电动势的大小由图象的斜率决定.根据Φ=BS 可知,在0~1 s 内线圈的磁通量不断增大,故A 正确;第4 s 末的感应电动势等于2~4 s 内的感应电动势,故B 错误;根据公式E =ΔΦΔt =ΔB ·S Δt,在0~1 s 内与2~4 s 内的磁通量的变化率不同,所以感应电动势大小不同,则感应电流大小也不相等,故C 错误;0~1 s 内,磁场垂直纸面向外,大小在增加,根据楞次定律,感应电流方向为顺时针方向,故D 正确.答案:AD3.(2019年信阳模拟)如图10-2-20所示,甲、乙、丙中除导体棒ab 可动外,其余部分均固定不动.图甲中的电容器C 原来不带电,设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计.图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长,若给导体棒ab 一个向右的初速度v 0,ab 的最终运动状态是( )图10-2-20A .三种情况下,ab 最终都是做匀速运动B .图甲、丙中ab 最终将以某一速度做匀速运动;图乙中ab 最终静止C .图甲、丙中ab 最终将以相同的速度做匀速运动D .三种情况下,ab 最终均静止解析:图甲中,当电容器C 两端电压等于ab 切割磁感线产生的感应电动势时,回路电流为零,ab 做匀速运动;图乙中,ab 在F 安作用下做减速运动直至静止;图丙中,若BLv 0<E ,ab 先做加速运动至BLv =E 时,回路中电流为零,ab 再做匀速运动,故B 对,A 、C 、D 均错.答案:B4.(多选)如图10-2-21所示是圆盘发电机的示意图;铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘接触.若铜盘半径为L ,匀强磁场的磁感应强度为B ,回路的总电阻为R ,从左往右看,铜盘以角速度ω沿顺时针方向匀速转动.则( )图10-2-21A .由于穿过铜盘的磁通量不变,故回路中无感应电流B .回路中感应电流大小不变,为BL 2ω2RC .回路中感应电流方向不变,为C →D →R →CD .回路中有周期性变化的感应电流解析:把铜盘看作闭合回路的一部分,在铜盘以角速度ω沿顺时针方向匀速转动时,铜盘切割磁感线产生感应电动势,回路中有感应电流,选项A 错误;铜盘切割磁感线产生的感应电动势为E =12BL 2ω,根据闭合电路欧姆定律,回路中感应电流I =E R =BL 2ω2R,由右手定则可判断出感应电流方向为C →D →R →C ,选项B 、C 正确,D 错误.答案:BC5.(多选)如图10-2-22所示,两个相同灯泡L 1、L 2,分别与自感线圈L 和电阻R 串联,接到内阻不可忽略的电源的两端,当闭合开关S 到电路稳定后,两灯泡均正常发光,已知自感线圈的自感系数很大.则下列说法正确的是( )图10-2-22A .闭合开关S 到电路稳定前,灯泡L 1逐渐变亮B .闭合开关S 到电路稳定前,灯泡L 2由亮变暗C .断开开关S 的一段时间内,A 点电势比B 点电势高D .断开开关S 的一段时间内,灯泡L 2亮一下逐渐熄灭解析:闭合开关的瞬间,L 2灯立即正常发光,L 1灯所在电路上线圈产生自感电动势,阻碍电流的增大,电流只能逐渐增大,L 1灯逐渐变亮,故A 正确;闭合开关S 到电路稳定前,L 1灯所在电路上线圈产生自感电动势,电流只能逐渐增大,则总电路中的电流逐渐增大,电源的内电阻消耗的电压逐渐增大,所以路端电压逐渐减小,则灯泡L 2逐渐变暗,故B 正确;闭合开关,待电路稳定后断开开关,L 中产生自感电动势,相当于电源,电流的方向与L 1的方向相同,从右向左流过L 2灯,所以A 点电势比B 点电势低,故C 错误;断开开关S 的一段时间内,L 中产生自感电动势,相当于电源,电流从原来的电流开始减小,所以两个灯泡都是逐渐熄灭,不会闪亮一下,故D 错误.答案:AB6.(2019年苏北三市模拟)(多选)如图10-2-23所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二极管,则下列说法正确的有( )图10-2-23A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L2立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭解析:当S闭合时,因二极管加上了反向电压,故二极管截止,L1一直不亮,通过线圈的电流增加,感应电动势阻碍电流增加,故使得L2逐渐变亮,选项B正确,A错误;当S断开时,由于线圈自感电动势阻碍电流的减小,故通过L1的电流要在L2-L1-D-L之中形成新的回路,故L1突然变亮,然后逐渐变暗至熄灭,选项C错误,D正确.答案:BD10 专题三电磁感应中的电路和图象问题1. (多选)如图3-12甲所示,螺线管匝数n =1 000匝,横截面积S =10 cm 2,螺线管导线电阻r =1Ω,电阻R =4Ω,磁感应强度B 的B -t 图象如图3-12乙所示(以向右为正方向),下列说法正确的是( )图3-12A .通过电阻R 的电流是交变电流B .感应电流的大小保持不变C .电阻R 两端的电压为6 VD .C 点的电势为4.8 V解析:由E =n ΔB ·S Δt=6 V ,一个周期的时间内,前半个周期与后半个周期的电动势(电流)大小相等、方向相反,所以通过R 的电流是交变电流,选项A 、B 正确;电阻R 上的电压U R =E R +rR =4.8 V ,选项C 错误;0~1 s 内C 点比A 点电势高,C 点的电势为4.8 V ,1~2 s 内,C 点比A 点电势低,C 点的电势为-4.8 V ,选项D 错误.答案:AB2.(2019年云南统一检测)(多选)如图3-13所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( )图3-13A .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2解析:由法拉第电磁感应定律E =n ΔΦΔt =n ΔB Δt s有E =k πr 2,D 错误;因k >0,由楞次定律知线框内感应电流沿逆时针方向,故电容器b 极板带正电,B 错误;由题图知外电路结构为R 2与R 的右半部并联,再与R 的左半部、R 1相串联,故R 2两端电压U 2=R 02×12R 0+R 02+R 02×12U=U7,A 正确;设R 2消耗的功率为P =IU 2,则R 消耗的功率P ′=P 左+P 右=2I ×2U 2+IU 2=5P ,故C 正确.答案:AC3.(2019年江苏南京二模)(多选)如图3-14所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成θ角,M 、P 两端接一阻值为R 的定值电阻,阻值为r 的金属棒ab 垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.t =0时对金属棒施加一平行于导轨的外力F ,金属棒由静止开始沿导轨向上做匀加速直线运动.下列关于穿过回路abPMa 的磁通量变化量ΔΦ、磁通量的瞬时变化率ΔΦΔt 、通过金属棒的电荷量q 随时间t 变化以及a 、b 两端的电势差U 随时间t 变化的图象中,正确的是( )图3-14解析:设加速度为a ,运动的位移x =12at 2,磁通量变化量ΔΦ=BLx =12BLat 2,ΔΦ∝t 2,选项A 错误;感应电动势E =ΔΦΔt =12BLat ,故ΔΦΔt ∝t ,选项B 正确;U =RE R +r =RBLa 2(R +r )t ,U ∝t ,选项D 正确;电荷量q =ΔΦR,因为ΔΦ∝t 2,所以q ∝t 2,选项C 错误.答案:BD4.(2019年山东德州期末)(多选)如图3-15所示为三个有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向外、向里和向外,磁场宽度均为L .在磁场区域的左侧边界处有一边长为L 的正方形导体线框,总电阻为R ,且线框平面与磁场方向垂直.现用外力F 使线框以速度v 匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E 为正,磁感线垂直纸面向里时的磁通量Φ为正值,外力F 向右为正.则以下能反映线框中的磁通量Φ、感应电动势E 、外力F 和电功率P 随时间变化规律的图象是( )图3-15解析:在0~L v 时间内,磁通量Φ=BLvt ,为负值,逐渐增大;在t =3L2v时磁通量为零;当t =2L v 时,磁通量Φ=BL 2为最大正值;在2L v ~5L 2v 时间内,磁通量为正,逐渐减小;t =5L 2v 时,磁通量为零;5L 2v ~3L v 时间内,磁通量为负,逐渐增大;t =3Lv时,磁通量为负的最大值;3L v ~4L v 时间内,磁通量为负,逐渐减小,由此可知选项A 正确.在0~Lv时间内,E =BLv ,为负值;在L v ~2L v 时间内,两个边切割磁感线,感应电动势E =2BLv ,为正值;在2L v ~3Lv时间内,两个边切割磁感线,感应电动势E =2BLv ,为负值;在3L v~4Lv时间内,一个边切割磁感线,E =BLv ,为正值,B 正确.0~L v时间内,安培力向左,外力向右,F 0=F 安=BI 0L ,电功率P 0=I 2R =B 2L 2v 2R ;L v ~2L v 时间内,外力向右,F 1=2B ·2I 0L =4F 0,电功率P 1=I 21R =4B 2L 2v 2R=4P 0;2L v ~3L v 时间内,外力向右,F 2=2B ·2I 0L =4F 0,电功率P 2=I 22R =4B 2L 2v 2R =4P 0;在3L v ~4L v时间内,外力向右,F 3=BI 0L =F 0,电功率P 3=I 20R =B 2L 2v 2R=P 0,选项C 错误,D 正确.答案:ABD5.面积S =0.2 m 2、n =100匝的圆形线圈,处在如图3-16所示的匀强磁场中,磁场方向垂直于线圈所在平面,磁感应强度B 随时间t 变化的规律是B =0.02t (T).电阻R 与电容器C 并联后接在线圈两端,电阻R =3Ω,电容C =30 μF ,线圈电阻r =1Ω,求:图3-16(1)通过R 的电流的大小和方向; (2)电容器所带的电荷量.解析:(1)通过圆形线圈的磁通量Φ变大,由楞次定律和安培定则知,线圈中感应电流的方向为逆时针,所以通过R 的电流方向为由b 到a .由法拉第电磁感应定律,线圈产生的感应电动势为E =n ΔΦΔt =nS ΔB Δt=100×0.2×0.02 V =0.4 V由闭合电路欧姆定律,通过R 的电流为I =E R +r =0.43+1A =0.1 A. (2)电容器两端的电压等于电阻R 两端的电压, 即U C =U R =IR =0.1×3 V =0.3 V 电容器所带的电荷量为Q =CU C =30×10-6×0.3 C =9×10-6 C.答案:(1)0.1 A ,方向b →R →a (2)9×10-6C10 专题四电磁感应中的动力学和能量综合问题1.如图4-10所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ、Ⅱ分别用同种导线绕制而成,其中Ⅰ为边长为L 的正方形,Ⅱ是长为2L 、宽为L 的矩形,将两个线圈同时从图示位置由静止释放.线圈下边进入磁场时,Ⅰ立即做了一段时间的匀速运动,已知两线圈在整个下落过程中,下边始终平行于磁场上边界,不计空气阻力,则( )图4-10A .下边进入磁场时,Ⅱ也立即做匀速运动B .从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的加速运动C .从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的减速运动D .线圈Ⅱ先到达地面解析:线圈Ⅱ的电阻是Ⅰ的32倍,线圈Ⅱ进入磁场时产生的感应电动势是Ⅰ的2倍,即R Ⅱ=32R Ⅰ,E Ⅱ=2E Ⅰ,由I =E R 得,I Ⅱ=43I Ⅰ;由F 安=BIL ,F Ⅱ=BI Ⅱ·2L ,F Ⅰ=BI Ⅰ·L ,则F Ⅱ=83F Ⅰ,但G Ⅱ=32G Ⅰ,由于Ⅰ进入磁场做匀速运动,即F Ⅰ=G Ⅰ,则F Ⅱ>G Ⅱ,所以Ⅱ进入磁场立即做加速度不断减小的减速运动,A 、B 错误,C 正确;因线圈Ⅰ、Ⅱ进入磁场时速度相同,但此后Ⅰ匀速,Ⅱ减速,故Ⅱ后到达地面,D 错误.答案:C2.(2019年湖北重点中学联考)如图4-11所示,足够长的光滑金属导轨MN 、PQ 平行放置,两导轨的平面与水平方向的夹角为θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 棒上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 棒上升的最大高度为h .在两次运动过程中ab 棒都与导轨保持垂直,且初速度都相等.则下列说法正确的是( )图4-11A .两次上升的最大高度有H <hB .有磁场时ab 棒所受合力的功大于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 2D .有磁场时,ab 棒上升过程的最小加速度为g sin θ解析:没加磁场时,机械能守恒,动能全部转化为重力势能.加有磁场时,动能的一部分转化为重力势能,还有一部分转化为整个回路的内能,则加有磁场时的重力势能小于没加磁场时的重力势能,即h <H ,故A 错误;由动能定理知,合力的功等于导体棒动能的变化量,有、无磁场时,棒的初速度相等,末速度都为零,则知ab 棒所受合力的功相等,故B 错误;设电阻R 产生的焦耳热为Q ,根据能量守恒知有12mv 20=Q +mgh ,则Q <12mv 20,故C 错误;有磁场时,导体棒上升时受重力、支持力、沿斜面向下的安培力,当上升到最高点时,安培力为零,所以ab 上升过程的最小加速度为g sin θ,故D 正确.答案:D3.(多选)水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时,ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程 ( )图4-12A .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等解析:导轨光滑时,只有安培力做功,安培力做功等于动能变化量,导轨粗糙时,安培力与摩擦力做功之和等于动能的变化量,所以两种情况中动能变化量相等,故A 正确、B 错误.两种情况中金属棒的动能最终全部转化为内能,C 正确.通过ab 棒的电荷量Q =ΔΦR=B ΔSR,光滑时比粗糙时ab 棒运动的路程长,故ΔS 大,通过的电荷量Q 多,故D 错误. 答案:AC4.(2019年济南针对训练)(多选)如图4-13所示的竖直平面内,水平条形区域Ⅰ和Ⅱ内有大小相等,方向垂直竖直面向里的匀强磁场,其宽度均为d ,Ⅰ和Ⅱ之间有一宽度为h 的无磁场区域,h >d .一质量为m 、边长为d 的正方形线框由距区域Ⅰ上边界某一高度处静止释放,在穿过两磁场区域的过程中,通过线框的电流及其变化情况相同.重力加速度为g ,空气阻力忽略不计.则下列说法正确的是 ( )图4-13A.线框进入区域Ⅰ时与离开区域Ⅰ时的电流方向相同B.线框进入区域Ⅱ时与离开区域Ⅱ时所受安培力的方向相同C.线框有可能匀速通过磁场区域ⅠD.线框通过区域Ⅰ和区域Ⅱ产生的总热量为Q=2mg(d+h)解析:由楞次定律可知,线框进入区域Ⅰ时感应电流为逆时针方向,而离开区域Ⅰ时的电流方向为顺时针方向,故选项A错误;由楞次定律可知,线框进入区域Ⅱ时与离开区域Ⅱ时所受安培力的方向相同,均向上,选项B正确;因穿过两磁场区域的过程中,通过线框的电流及其变化情况相同,则可知线框进入区域Ⅰ时一定是做减速运动,选项C错误;线框离开磁场区域Ⅰ的速度应等于离开磁场区域Ⅱ的速度,则在此过程中,线圈的机械能的减小量等于线框通过区域Ⅱ产生的电能,即Q2=mg(d+h),则线框通过区域Ⅰ和区域Ⅱ产生的总热量为Q=2Q2=2mg(d+h),选项D正确.答案:BD5.(多选)如图4-14所示,质量为3m的重物与一质量为m的线框用一根绝缘细线连接起来,挂在两个高度相同的定滑轮上,已知线框的横边边长为L,水平方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均为h.初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦阻力均不计.则下列说法中正确的是( )图4-14A.线框进入磁场时的速度为2ghB .线框的电阻为B 2L 22mg2ghC .线框通过磁场的过程中产生的热量Q =2mghD .线框通过磁场的过程中产生的热量Q =4mgh解析:从初始时刻到线框上边缘刚进入磁场,由机械能守恒定律得3mg ×2h =mg ×2h +4m v 22,解得线框刚进入磁场时的速度v =2gh ,故A 对;线框上边缘刚进磁场时,恰好做匀速直线运动,故受合力为零,3mg =BIL +mg ,I =BLv R ,解得线框的电阻R =B 2L 22mg2gh ,故B对;线框匀速通过磁场的距离为2h ,产生的热量等于系统重力势能的减少量,即Q =3mg ×2h-mg ×2h =4mgh ,故C 错,D 对.答案:ABD6.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L .导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图4-15所示.两根导体棒的质量皆为m ,电阻均为R ,回路中其余部分的电阻可不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,则:图4-15(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度是多少?解析:(1)两棒速度相同时产生的焦耳热最多.从开始到两棒达到相同速度v 的过程中,两棒的总动量守恒,有mv 0=2mv根据能量守恒定律,整个过程中产生的焦耳热Q =12mv 20-12(2m )v 2=14mv 20.(2)设ab 棒的速度变为34v 0时,cd 棒的速度为v ′,则由动量守恒定律可知mv 0=34mv 0+mv ′解得v ′=14v 0,回路中的电动势E =34BLv 0-14BLv 0=12BLv 0此时cd 棒所受的安培力F =BIL =B 2L 2v 04R.由牛顿第二定律可得,cd 棒的加速度a =F m =B 2L 2v 04mR.1 4mv20(2)B2L2v04mR答案:(1)。
(人教版)2020届高考物理选择题精练习五含解析参考答案

(人教版)2020届高考物理选择题精练习五含解析参考答案1、如图所示,一圆环套在竖直光滑的杆上,杆的直径比环的内径略小,圆环通过轻弹簧与放在地面上的物块相连,开始时弹簧处于原长,由静止释放圆环,到圆环向下的速度达到最大的过程中(此过程物块一直保持静止) ( )A.圆环受到的合力在减小B.杆对圆环的作用力在减小C.地面对物块的摩擦力在减小D.地面对物块的支持力在增大【解析】选A、D。
圆环从静止到速度最大的过程中,对圆环分析可知,其速度不断增大,加速度不断减小,所受的合力不断减小,A项正确;由于环在向下运动的过程中,弹簧的长度不断减小,弹力不断增大,弹力沿水平方向的分力不断增大,对环水平方向研究知,杆对圆环的作用力不断增大,B项错误;对环、弹簧和物块整体研究,地面对物块的摩擦力与杆对环的作用力等大反向,因此地面对物块的摩擦力不断增大,C项错误;对环、弹簧和物块整体研究知,由于环沿竖直方向向下的加速度不断减小,因此整体所受合力向上且不断增大,又因杆光滑,则知地面对物块的支持力不断增大,D项正确。
2、如图所示,A、B为两个挨得很近的小球,并列放于光滑斜面上,斜面足够长,水平抛出,当A球落于斜面上的P点在释放B球的同时,将A球以某一速度v时,B球的位置位于( )A.P点以下B.P点以上未知,故无法确定C.P点D.由于v,AP的竖直位移为y;B球滑到P点【解析】选B。
设A球落到P点的时间为tA的时间为tB ,BP的竖直位移也为y,则:tA=,tB==>tA(θ为斜面倾角),故B项正确。
3、如图所示,小明在演示惯性现象时,将一杯水放在桌边,杯下压一张纸条。
若缓慢拉动纸条,发现杯子会出现滑落;当他快速拉动纸条时,发现杯子并没有滑落。
对于这个实验,下列说法正确的是( )A.缓慢拉动纸条时,摩擦力对杯子的冲量较小B.快速拉动纸条时,摩擦力对杯子的冲量较大C.为使杯子不滑落,杯子与纸条的动摩擦因数尽量大一些D.为使杯子不滑落,杯子与桌面的动摩擦因数尽量大一些【解析】选D。
2020届高考物理一轮复习 新人教版【共24套168页】

本套资源目录2020届高考物理一轮复习稳中培优计算实验练习五新人教版2020届高考物理一轮复习稳中培优计算实验练习四新人教版2020届高考物理一轮复习稳中培优非选择练习一新人教版2020届高考物理一轮复习稳中培优非选择练习三新人教版2020届高考物理一轮复习稳中培优非选择练习二新人教版2020届高考物理一轮复习稳中培优非选择练习四新人教版2020届高考物理一轮复习计算题夯基练习一新人教版2020届高考物理一轮复习计算题夯基练习三新人教版2020届高考物理一轮复习计算题夯基练习二新人教版2020届高考物理一轮复习计算题夯基练习五新人教版2020届高考物理一轮复习计算题夯基练习四新人教版2020届高考物理一轮复习计算题夯基练习新人教版2020届高考物理一轮复习选择题固基优练一新人教版2020届高考物理一轮复习选择题固基优练三新人教版2020届高考物理一轮复习选择题固基优练二新人教版2020届高考物理一轮复习选择题固基优练六新人教版2020届高考物理一轮复习选择题固基优练四新人教版2020届高考物理一轮复习选择题固基优练新人教版2020届高考物理一轮复习选择题稳优提优优练一新人教版_ 2020届高考物理一轮复习选择题稳优提优优练三新人教版2020届高考物理一轮复习选择题稳优提优优练三新人教版12020届高考物理一轮复习选择题稳优提优优练二新人教版2020届高考物理一轮复习选择题稳优提优优练五新人教版2020届高考物理一轮复习选择题稳优提优优练四新人教版稳中培优计算、实验练习(五)1、合肥开往上海的动车组D3028是由动车和拖车编组而成只有动车提供动力.假定该列动车组由8节车厢组成,第1节和第5节车厢为动车,每节动车的额定功率均为P 0,每节车厢的总质量为m ,动车组运行过程中所受阻力为车重的k 倍.若动车组以额定功率从合肥南站启动,沿水平方向做直线运动,经时间t 0速度达到最大,重力加速度为g.求:(1)当动车组速度达到最大速度一半时的加速度和此时第6节车厢对第7节的拉力;(2)动车组从启动至速度刚达到最大的过程中所通过的路程.【参考答案】(1)kg 4kmg (2)8k 2mg 2P 0t 0-P 2032k 3m 2g 3 解析:(1)设动车组匀速运动的速度为v m ,动车组速度为最大速度一半时动车的牵引力为F ,有2P 0=8kmgv m2P 0=2F v m 2对动车组,由牛顿第二定律2F -8kmg =8maa =2F -8kmg 8m=kg 对第7、8节车厢的整体有:F 67-2kmg =2ma解得:F 67=4kmg(2)由动能定理得:2P 0t 0-8kmgx =12(8m)v 2m -0 x =P 0t 04kmg -P 2032k 3m 2g 3=8k 2mg 2P 0t 0-P 2032k 3m 2g 3 2、如图所示,在xOy 坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m 、带电荷量为q 的粒子在第二象限内的P(-L ,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x 轴上的Q(L,0)点进入第一象限,重力加速度为g ,求:(1)粒子从P 点运动到坐标原点的时间;(2)匀强磁场的磁感应强度的大小和方向.【参考答案】(1) 2L g (2)垂直于纸面向里,2m 2gL qL解析:(1)粒子在第二象限内沿角平分线做直线运动,则电场力和重力的合力方向沿PO 方向,则粒子带正电.mg =qE ,2mg =ma.根据运动学公式可知,2L =12at 2. 联立解得t =2L g. (2)粒子在第二象限中做加速直线运动,根据动能定理可知,mgL +qEL =12mv 2-0. 解得,v =2gL ,方向与x 轴正方向成45°角.电场力与重力等大反向,洛伦兹力提供向心力,Bqv =m v 2R ,粒子在第四象限内做匀速圆周运动,轨迹如图所示:根据左手定则可知,磁场方向垂直于纸面向里.根据几何关系可知,粒子做匀速圆周运动的半径R =22L. 解得,B =2m 2gL qL. 3、(实验)利用图1的装置探究“恒力做功与物体动能变化”的关系.小车的质量为M ,钩码的质量为m ,且不满足m <M.打点计时器的电源是频率为f 的交流电.(1)实验中,把长木板右端垫高,在不挂钩码且________的情况下,轻推一下小车,若小车拖着纸带做匀速运动,表明已经消除了摩擦力和其他阻力的影响.(填选项前的字母)A .计时器不打点B .计时器打点(2)图2是正确操作后得到的一条纸带.纸带上各点是打出的计时点,其中O 点为打出的第一个点.小车发生的位移从纸带上计时点间的距离可以直接测出,利用下列测量值和题中已知条件能简单、准确完成实验的一项是________________________________________________________________________.(填选项前的字母)A .OA 、AD 和EG 的长度B .BD 、CF 和EG 的长度C .OE 、DE 和EF 的长度D .AC 、EG 和BF 的长度(3)若测得图2中OF =x 1,EG =x 2,则实验需要验证的关系式为________.(用已知和测得物理量的符号表示)【参考答案】(1)B (2)C (3)mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222 解析:(1)打点计时器工作时,纸带受到摩擦力作用,平衡摩擦力时,需要通过打点计时器判断是否匀速,B 选项正确.(2)简单、准确地完成实验,需要选取的两点尽可能远,且方便测量,故测量OE 段的长度,计算合力做功,测量DE 和EF 的长度,计算E 点的瞬时速度,C 选项正确.(3)EG =x 2,根据匀变速直线运动的规律可知,中间时刻F 点的瞬时速度v F =EG 2T =fx 22. 系统增加的动能ΔE K =12(M +m)v 2F ,系统减少的重力势能ΔE P =mgx 1.实验验证系统机械能守恒的表达式为mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222. 4、如图,是游乐场的一项娱乐设备.一环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下,落到一定位置时,制动系统启动.到地面时刚好停下.已知座舱开始下落的高度为H =75 m ,当落到离地面h =30 m 的位置时开始制动,座舱均匀减速.在一次娱乐中,某同学把质量m =6 kg 的书包放在自己的腿上.(g 取10 m/s 2),不计座舱与柱子间的摩擦力及空气阻力.(1)当座舱落到离地面h 1=60 m 和h 2=20 m 的位置时,求书包对该同学腿部的压力各是多大;(2)若环形座舱的质量M =4×103 kg ,求制动过程中机器输出的平均功率.【参考答案】(1)零 150 N (2)1.5×106W解析:(1)分析题意可知,座舱在离地面h =30 m 的位置时开始制动,说明座舱离地面60 m 时,座舱做自由落体运动,处于完全失重状态,书包对该同学腿部的压力为零.座舱落到离地面20 m 高时,做匀减速直线运动,根据牛顿第二定律可知,F 2-mg =ma.座舱下落45 m 时开始制动,此时速度为v.v 2=2g(H -h).座舱到地面时刚好停下,v 2=2ah.联立解得,F =150 N.根据牛顿第三定律可知,该同学腿部受到的压力为150 N.(2)制动过程中,座舱所受的制动力为F 0,经历的时间为t ,根据运动学公式可知,t =v a. 根据牛顿第二定律,对座舱有,F 0-Mg =Ma.座舱克服制动力做功W =F 0h.机器输出的平均功率P =W t .联立解得,P =1.5×106W.5、如图所示,矩形区域abcdef 分为两个矩形区域,左侧区域充满匀强电场,方向竖直向上,右侧区域充满匀强磁场,方向垂直纸面向外,be 为其分界线,af =L ,ab =0.75L ,bc =L.一质量为m 、电荷量为e 的电子(重力不计)从a 点沿ab 方向以初速度v 0射入电场,从be 边的中点g 进入磁场.(已知sin37°=0.6,cos37°=0.8)(1)求匀强电场的电场强度E 的大小;(2)若要求电子从cd 边射出,求所加匀强磁场磁感应强度的最大值B m ;(3)调节磁感应强度的大小.求cd 边上有电子射出部分的长度.【参考答案】(1)16mv 209eL (2)3mv 0eL解析:(1)电子在电场中做类平抛运动,根据运动的合成与分解法则可知, 竖直方向上,L 2=12×eE mt 2. 水平方向上,0.75L =v 0t.联立解得,E =16mv 209eL. (2)电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,evB =m v 2r. 运动轨迹刚好与cd 边相切时,半径最小,此时磁感应强度最大,轨迹如图所示:速度方向与水平方向夹角的正切值tanθ=0.5L 0.75L ×2=43,则速度与be 边的夹角为37°. 电子进入磁场时的速度为v =v 0sin37°=53v 0.根据几何关系可知,r 1+r 1cos37°=L.解得最大磁感应强度B m =3mv 0eL.稳中培优计算、实验练习(四)1、骏驰汽车赛车场有一段赛道可简化为这样:平直的赛道中间有一段拱形路面,其最高点P 与水平路面的高度差为1.25 m ,拱形路面前后赛道位于同一水平面上.以54 km/h 的初速进入直道的赛车,以90 kW 的恒定功率运动10 s 到达P 点,并恰好从P 点水平飞出后落到水平赛道上,其飞出的水平距离为10 m .将赛车视为质点,不考虑赛车受到的空气阻力.已知赛车的质量为1.6×103 kg ,取g =10 m/s 2,求:(1)赛车到达P 点时速度的大小.(2)拱形路面顶点P 的曲率半径.(3)从进入直道到P 点的过程中汽车克服阻力做的功.【参考答案】(1)20 m/s (2)40 m (3)7.4×105 J解析:(1)赛车到达P 点后做平抛运动.水平方向上,x =v p t.竖直方向上,h =12gt 2. 联立解得,v p =20 m/s.(2)赛车运动到拱形路面顶点P 时,重力提供向心力.mg =m v P R. 解得曲率半径R =40 m.(3)从进入直道到P 点的过程中,汽车牵引力做功,重力做功,克服阻力做功.根据动能定理可知,Pt -mgh -W f =12mv 2P -0. 解得,W f =7.4×105 J.2、如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场.A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1.平行金属板右侧有一挡板M ,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2.CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,O′C=a ,现有大量质量均为m ,含有各种不同电荷量、不同速度的带电粒子(不计重力),自O 点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B 2中,求:(1)进入匀强磁场B 2的带电粒子的速度;(2)能击中绝缘板CD 的粒子中,所带电荷量的最大值;(3)绝缘板CD 上被带电粒子击中区域的长度.【参考答案】(1)EB 1(2)2+1mEB 1B 2a(3)2a解析:(1)平行金属板间存在相互垂直的匀强电场和匀强磁场,沿直线OO′运动的带电粒子,处于受力平衡状态,qvB 1=qE.解得,v =EB 1.(2)带电粒子进入匀强磁场B 2后做匀速圆周运动,洛伦兹力提供向心力. qvB 2=m v2r.电荷量最大的带电粒子,运动的轨迹半径最小,带正电,轨迹向下偏转,与CD 板相切,如图所示:根据几何关系可知,r 1+2r 1=a. 依题意解得,r 1=a 1+2,q =2+1mEB 1B 2a.(3)带负电的粒子在磁场B 2中向上偏转,击中绝缘板CD 的临界情况是轨迹与CD 相切. 根据几何关系可知,r 2+a =2r 2. 解得,r 2=a2-1.CD 板上被带电粒子击中区域的长度为x =r 2-r 1=2a.3、(实验)一个喷漆桶能够向外喷射不同速度的油漆雾滴,某同学决定测量雾滴的喷射速度,他采用如图1所示的装置,一个直径为d =40 cm 的纸带环,安放在一个可以按照不同转速转动的固定转台上,纸带环上刻有一条狭缝A ,在狭缝A 的正对面画一条标志线,如图1所示.在转台开始转动达到稳定转速时,向侧面同样开有狭缝B 的固定纸盒中喷射油漆雾滴,当狭缝A 转至与狭缝B 正对平行时,雾滴便通过狭缝A 匀速运动打在纸带的内侧面留下痕迹(若此过程转台转过不到一圈).将纸带从转台上取下来,展开平放,并与毫米刻度尺对齐,如图2所示.(1)设喷射到纸带上的油漆雾滴痕迹到标志线的距离为s ,则从图2可知,其中速度最大的雾滴到标志线的距离s =________cm.(2)如果转台转动的周期为T ,则这些雾滴喷射速度的计算表达式为v 0=________________________________________________________________________(用字母表示).(3)如果以纵坐标表示雾滴的速度v 0,横坐标表示雾滴距标志线距离的倒数1s ,画出v 0-1s图线,如图3所示,则可知转台转动的周期为T =________s. 【参考答案】(1)2.10 (2)πd2Ts(3)1.6解析:(1)雾滴运动一直径的长度,速度越大,运行的时间越短,转台转过的弧度越小,打在纸带上的点距离标志线的距离越小.速度最大的雾滴到标志线的距离s =2.10 cm.(2)如果转台转动的周期为T ,则雾滴运动的时间为t =s v =sTπd ,喷枪喷出雾滴的速度v 0=d t =πd 2Ts.(3)由上式变形为,v 0=πd 2Ts =πd 2T ·1s ,v 0-1s 图象中斜率k =πd 2T =0.7π7,解得,T =1.6 s.4、两小木块A 、B ,通过轻质弹簧连接,小木块B 处在固定于地面的光滑斜面底端的挡板上,小木块A 压缩弹簧处于平衡状态.现对木块A 施加一平行于斜面向上的恒力F 作用,小木块A 从静止开始沿斜面向上运动,如图所示.已知m A =m B =2 kg ,F =30 N ,斜面倾角θ=37°,弹簧劲度系数k =4 N/cm.设斜面足够长,整个过程弹簧处于弹性限度内,重力加速度取g=10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)从小木块A开始运动到小木块B刚开始运动的过程中,恒力F对小木块A做的功;(2)当小木块B的加速度a B=1 m/s2时,小木块A的加速度的大小.【参考答案】(1)1.8 J (2)2 m/s2解析:(1)初态时,小木块A压缩弹簧,根据平衡条件可知,kx1=m A gsinθ.末态时,小木块B拉伸弹簧,kx2=m B gsinθ.弹簧的形变量x=x1+x2.恒力F对小木块A做功W=F·x.联立解得,W=1.8 J.(2)当小木块B的加速度a B=1 m/s2时,弹簧的拉力大小为F1,小木块A的加速度的大小a A,根据牛顿第二定律可知,F-F1-m A gsinθ=m A a A.F1-m B gsinθ=m B a B.联立解得,a A=2 m/s2.5、磁流体发电是一种新型发电方式,图甲和图乙是其工作原理示意图.图甲中的A、B 是电阻可忽略的导体电极,两个电极间的间距为d,这两个电极与负载电阻相连.假设等离子体(高温下电离的气体,含有大量的正负带电粒子)垂直于磁场进入两极板间的速度均为v0.整个发电装置处于匀强磁场中,磁感应强度大小为B,方向如图乙所示.(1)开关断开时,请推导该磁流体发电机的电动势E的大小;(2)开关闭合后,如果电阻R的两端被短接,此时回路电流为I,求磁流体发电机的等效内阻r.【参考答案】(1)Bdv 0 (2)Bdv 0I解析:(1)等离子体垂直于磁场射入两板之间,正、负离子受到洛伦兹力作用,正离子偏向A 极板,负离子偏向B 极板,两板之间形成从A 到B 的匀强电场.当粒子受的电场力与洛伦兹力相等时,q Ed =qv 0B ,粒子不再偏转,两极板间形成稳定的电势差即发电机的电动势,E =Bdv 0.(2)如果电阻R 的两端被短接,此时回路电流为I. 根据闭合电路欧姆定律,磁流体发电机的等效内阻 r =E I =Bdv 0I .稳中培优非选择练习(一)1、如图,两条长直相交汇成直角的摩托车水平赛道,宽均为6 m ,圆弧PQ 、MN 与赛道外边缘的两条直线相切,圆弧PQ 经过赛道内边缘两条直线的交点O 2,雨后路面比较湿滑,摩托车与赛道间的动摩擦因数为0.6,设最大静摩擦力等于滑动摩擦力,赛车手(可视为质点)在直道上做直线运动,弯道上做匀速圆周运动,重力加速度g =10 m/s 2,2=1.4,7=2.6.(1)若以最短时间从P 点运动到Q 点,应选A 路线还是B 路线?(不用说明理由) (2)沿着A 路线通过弯道MN 的最大速率不能超过多少?(3)以30 m/s 的速度在直线赛道上沿箭头方向匀速行驶,若要沿B 路线安全行驶,则进入P 点前至少多远开始刹车?【参考答案】(1)B 路线合理 (2)6 m/s (3)64.5 m解析:(1)赛车手沿A 、B 路线运动时,线速度大小相等,故路径短的用时较短,选B 路线合理.(2)赛车手以速度v 1沿着A 路线通过弯道MN 时,最大静摩擦力提供向心力. μmg=m v 21r 1,解得,v 1=6 m/s.(3)赛车手以速度v 2沿着B 路线通过弯道时,最大静摩擦力提供向心力,μmg=m v 22r 2.根据几何关系可知,2(r 2-6)=r 2.赛车手以初速度v 0=30 m/s ,加速度μg,做匀减速直线运动到P 点,位移为x. 根据运动学公式可知,v 20-v 22=2ax. 联立解得,x =64.5 m.2、如图所示,水平面AB 光滑,粗糙半圆轨道BC 竖直放置.圆弧半径为R ,AB 长度为4R.在AB 上方、直径BC 左侧存在水平向右、场强大小为E 的匀强电场.一带电量为+q 、质量为m 的小球自A 点由静止释放,经过B 点后,沿半圆轨道运动到C 点.在C 点,小球对轨道的压力大小为mg ,已知E =mgq,水平面和半圆轨道均绝缘.求:(1)小球运动到B 点时的速度大小; (2)小球运动到C 点时的速度大小;(3)小球从B 点运动到C 点过程中克服阻力做的功. 【参考答案】(1)8gR (2)2gR (3)mgR 解析:(1)小球运动到B 点的过程中,电场力做功. 根据动能定理,qE·4R=12mv 2B -0.其中E =mgq.联立解得,vB =8gR.(2)小球运动到C 点时,根据牛顿第二定律, 2mg =m vC 2R .解得,vC =2gR.(3)小球从B 运动到C 点的过程,根据动能定理, -W f -2mgR =12mvC 2-12mvB 2解得,W f =mgR.3、如图所示,让摆球从图中的C 位置由静止开始摆下,摆到最低点D 处,摆线刚好拉断,小球在粗糙的水平面上由D 点向右做匀减速运动滑向A 点,到达A 孔进入半径R =0.3 m 的竖直放置的光滑圆弧轨道,当摆球进入圆轨道立即关闭A 孔,已知摆线长为L =2.5 m ,θ=60°,小球质量为m =1 kg ,小球可视为质点,D 点与小孔A 的水平距离s =2 m ,g 取10 m/s 2,试求:(1)摆线能承受的最大拉力为多大?(2)要使摆球能进入圆轨道并能通过圆轨道的最高点,求粗糙水平面摩擦因数μ的范围.【参考答案】 (1)20 N (2)μ≤0.25解析:(1)摆球由C 到D 运动过程做圆周运动,摆球的机械能守恒, mgL(1-cosθ)=12mv 2D .摆球在D 点时,由牛顿第二定律可得, F m -mg =m v 2DL联立两式解得,F m =2mg =20 N.(2)小球刚好能通过圆轨道的最高点时,在最高点由牛顿第二定律可得, mg =m v 2R.小球从D 到圆轨道的最高点过程中,由动能定理得, -μmgs-2mgR =12mv 2-12mv 2D .解得,μ=0.25.即要使摆球能进入圆轨道并能通过圆轨道的最高点,μ≤0.25.4、如图所示,空间内有场强大小为E 的匀强电场,竖直平行直线为匀强电场的电场线(方向未知),现有一电荷量为q ,质量为m 的带负电的粒子,从O 点以某一初速度垂直电场方向进入电场,A 、B 为运动轨迹上的两点,不计粒子的重力及空气的阻力.(1)若OA 连线与电场线夹角为60°,OA =L ,求带电粒子从O 点到A 点的运动时间及进电场的初速度;(2)若粒子过B 点时速度方向与水平方向夹角为60°,求带电粒子从O 点到B 点过程中电场力所做的功.【参考答案】(1)mLqEv 0= 3qEL m (2)9qEL8解析:(1)带电粒子做曲线运动,受力指向轨迹的内侧,电场力方向向上,带电粒子带负电,电场强度方向竖直向下.水平方向的位移Lsin60°=v 0t. 竖直方向的位移Lcos60°=12·qE m t 2.联立解得,t =mLqE,v 0= 3qELm. (2)根据运动的合成与分解知识可知,粒子到达B 点的速度v =v 0cos60°=2v 0.带电粒子从O 点到B 点过程中,根据动能定理可知, W =12mv 2-12mv 20. 联立解得电场力做功W =32mv 20=9qEL8.5、为了测量某种材料制成的电阻丝的电阻R x ,提供的器材有: A .电流表G ,内阻Rg =120 Ω,满偏电流Ig =6 mA B .电压表V ,量程为6 V C .螺旋测微器,毫米刻度尺 D .电阻箱R 0(0~99.99 Ω) E .滑动变阻器R(最大阻值为5 Ω)F .电池组E(电动势为6 V ,内阻约为0.05 Ω)G .一个开关S 和导线若干(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,应该换用________挡(选填“×1”或“×100”),进行一系列正确操作后,指针静止时位置如图甲所示;(2)电流表G 与电阻箱并联改装成量程为0.6 A 的电流表,则电阻箱的阻值应调为R 0=________Ω;(结果保留3位有效数字)(3)为了用改装好的电流表测量电阻丝R x 的阻值,请根据提供的器材和实验需要,将图乙中电路图补画完整.(要求在较大范围内测量多组数据)(4)电路闭合后,调节滑动变阻器的滑片到合适位置,电压表V 的示数为U ,电流表G 的示数为I.请用已知量和测量的字母符号,写出计算电阻的表达式R x =________.【参考答案】(1)“×1” (2)1.21 Ω (3)见解析 (4)UR 0R 0+R gI解析:(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,说明被测电阻阻值较小,说明选择的倍率较大,应选择“×1”倍率.(2)将电流表G 与电阻箱并联改装成量程为0.6 A 的电压表,根据电表改装原理可知,电阻箱的阻值应调为R 0=I g R gI -I g≈1.21 Ω.(3)待测电阻阻值为15 Ω,电压表内阻很大,远大于被测电阻的阻值,电流表应采用外接法,滑动变阻器最大阻值为5 Ω,为测多组实验数据,采用分压接法,电路图如图所示:(4)根据欧姆定律, R x =U R I R =U R 0+R g R 0I =UR 0R 0+R gI.稳中培优非选择练习(三)1、为了方便研究物体与地球间的万有引力问题,通常将地球视为质量分布均匀的球体.已知地球质量M =6.0×1024kg ,地球半径R =6 400 km ,其自转周期T =24 h ,引力常量G =6.67×10-11N·m 2/kg 2.在赤道处地面有一质量为m 的物体A ,用W 0表示物体A 在赤道处地面上所受的重力,F 0表示其在赤道处地面上所受的万有引力.请求出F 0-W 0F 0的值(结果保留1位有效数字),并以此为依据说明在处理万有引力和重力的关系时,为什么经常可以忽略地球自转的影响.【参考答案】见解析解析:物体A 在赤道处地面上所受的万有引力 F 0=G Mm R2.物体A 在赤道处,随地球自转,根据牛顿第二定律可知,F 0-W 0=m 4π2T 2R.解得物体A 此时所受重力W 0=G Mm R 2-m 4π2T2R.联立解得,F 0-W 0F 0=m 4π2T 2R G Mm R2,代入数据解得,F 0-W 0F 0=3×10-3.由于地球自转对地球赤道面上静止的物体所受重力与所受地球引力大小差别的影响很小,所以通常情况下可以忽略地球自转造成的地球引力与重力大小的区别.2、如图所示,空间中存在一个矩形区域MNPQ ,PQ 的长度为MQ 长度的两倍,有一个带正电的带电粒子从M 点以某一初速度沿MN 射入,若矩形区域MNPQ 中加上竖直方向且场强大小为E 的匀强电场,则带电粒子将从P 点射出,若在矩形区域MNPQ 中加上垂直于纸面且磁感应强度大小为B 的匀强磁场,则带电粒子仍从P 点射出,不计带电粒子的重力,求:带电粒子的初速度的大小.【参考答案】4E5B解析:带电粒子在电场中做类平抛运动,设MQ 长度为L ,根据运动的合成与分解法则可知,竖直方向上,L =12×qE m t 2.水平方向上,2L =v 0t.带电粒子在磁场中做匀速圆周运动,画出轨迹如图所示:洛伦兹力提供向心力,qvB =m v 20r ,根据几何关系可知,(r -L)2+(2L)2=r 2.联立上述各式可知,v =4E5B.3、【实验】某同学用如图1所示的装置做“探究弹力与弹簧伸长的关系”的实验. (1)实验中,他在弹簧两端各系一细绳套,利用一个绳套将弹簧悬挂在铁架台上,另一端的绳套用来挂钩码.先测出不挂钩码时弹簧的长度,再将钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度L ,再算出弹簧伸长量x ,并将数据填在下面的表格中.实验过程中,弹簧始终在弹性限度内.1 2 3 4 5 6 钩码的重力G/N 0 0.5 1.0 1.5 2.0 2.5 弹簧弹力F/N 0 0.5 1.0 1.5 2.0 2.5 弹簧总长度L/cm 13.00 15.05 17.10 19.00 21.00 23.00 弹簧伸长量x/cm2.054.106.008.0010.00数据点,请把第4次测量的数据对应点用“+”描绘出来,并作出F -x 图象.(2)①根据上述的实验过程,对实验数据进行分析可知,下列说法正确的是________(选填选项前的字母).A.弹簧弹力大小与弹簧的总长度成正比B.弹簧弹力大小与弹簧伸长的长度成正比C.该弹簧的劲度系数约为25 N/mD.该弹簧的劲度系数约为2500 N/m②在匀变速直线运动的速度v随时间t变化关系图象中,图线与坐标轴围成的面积的物理意义表示位移.请类比思考,(1)问的F-x图象中图线与坐标轴围成的面积的物理意义.【参考答案】(1)见解析(2)①BC ②弹力做的功解析:(1)描点连线,如图所示:(2)①分析图象结合表格数据可知,弹簧弹力大小与弹簧伸长量成正比,A选项错误,B 选项正确;根据胡克定律可知,图象中斜率代表弹簧的劲度系数,劲度系数为25 N/m,C选项正确,D选项错误.②力与位移的乘积为功,利用微元法,在很短时间里弹力是恒定不变的,则F-x图象中图线与坐标轴围成的面积的物理意义是弹力做的功.4、某赤道平面内的卫星自西向东飞行绕地球做圆周运动,该卫星离地高度为h(h的高度小于地球同步卫星的高度),赤道上某人通过观测,前后两次出现在人的正上方最小时间间隔为t,已知地球的自转周期为T0,地球的质量为M,引力常量为G,求:地球的半径.【参考答案】3GMt2T24π2t+T02-h解析:卫星绕地球做匀速圆周运动,万有引力提供向心力,GMmR+h2=m⎝⎛⎭⎪⎫2πT2(R+h).分析题意可知,t时间内,卫星多转一圈运动到观察者的正上方.t T -tT0=1.联立解得,R=3GMt2T24π2t+T02-h.5、一同学用电子秤、水壶、细线、墙钉和贴在墙上的白纸等物品,在家中做验证力的平行四边形定则的实验.(1)如图甲,在电子秤的下端悬挂一装满水的水壶,记下水壶静止时电子秤的示数F;(2)如图乙,将三根细线L1、L2、L3的一端打结,另一端分别拴在电子秤的挂钩、墙钉A 和水壶杯带上.水平拉开细线L1,在白纸上记下结点O的位置、________和电子秤的示数F1;(3)如图丙,将另一颗墙钉B钉在与O同一水平位置上,并将L1拴在其上.手握电子秤沿着(2)中L2的方向拉开细线L,使三根细线的方向与(2)中________重合,记录电子秤的示数F2;(4)在白纸上按一定标度作出电子秤拉力F、F1、F2的图示,根据平行四边形定则作出F1、F2的合力F′的图示,若________,则力的平行四边形定则得到验证.【参考答案】(2)三细线的方向(3)结点的位置(4)F′大小与F相等、方向相同解析:(2)研究合力与分力的关系需要记录分力的大小和方向,即在白纸上记下结点O 的位置的同时也要记录三细线的方向以及电子秤的示数F1.(3)应使结点O的位置和三根细线的方向与②中重合,记录电子秤的示数F2.(4)根据平行四边形定则作出合力,若F′大小与F相等、方向相同,则力的平行四边形定则得到验证.。
2020高考物理一轮复习 编练习题(6)(含解析)新人教版-精装版

教学资料范本2020高考物理一轮复习编练习题(6)(含解析)新人教版-精装版编辑:__________________时间:__________________【精选】20xx最新高考物理一轮复习编练习题(6)(含解析)新人教版李仕才一、选择题1、如图所示,物块A放在木板B上,A、B的质量均为m,A、B 之间的动摩擦因数为μ,B与地面之间的动摩擦因数为.若将水平力作用在A上,使A刚好要相对B滑动,此时A的加速度为a1;若将水平力作用在B上,使B刚好要相对A滑动,此时B的加速度为a2,则a1与a2的比为( )A.1∶1 B.2∶3C.1∶3 D.3∶2解析:选C 当水平力作用在A上,使A刚好要相对B滑动,临界情况是A、B的加速度相等,隔离对B分析,B的加速度为:aB=a1==μg,当水平力作用在B上,使B刚好要相对A滑动,此时A、B间的摩擦力刚好达到最大,A、B的加速度相等,有:aA=a2==μg,可得a1∶a2=1∶3,C正确.2、如图9所示,两个带有同种电荷的小球m1、m2,用绝缘细线悬挂于O点,若q1>q2,L1>L2,平衡时两球到过O点的竖直线的距离相等,则( )图9A.m1>m2B.m1=m2C.m1<m2D.无法确定答案B3、一位同学做飞镖游戏,已知圆盘直径为d,飞镖距圆盘的距离为L,且对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘绕垂直圆盘且过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系中正确的是( )A .dv02=L2gB .ωL=(1+2n)πv0(n=0,1,2,…)ωd2=v0.C D .dω2=(1+2n)2gπ2(n=0,1,2,…)解析:选B 飞镖做平抛运动,若恰好击中A 点,则只能是在A 点恰好转到最低点的时候.当A 点转动到最低点时飞镖恰好击中A 点,则L =v0t ,d =gt2,ωt =(1+2n)π(n =0,1,2,…),联立解得ωL =(1+2n)πv0(n =0,1,2,…),2dv02=L2g,2d ω2=(1+2n)2g π2(n =0,1,2,…).故B 正确.4、如图所示,A 、B 是绕地球做匀速圆周运动的两颗卫星,A 、B 两卫星与地心的连线在相等时间内扫过的面积之比为k ,不计A 、B 两卫星之间的引力,则A 、B 两卫星的周期之比为( )A .k3B .k2C .kD .k 23解析:选A 设卫星绕地球做圆周运动的半径为r ,周期为T ,则在t 时间内与地心连线扫过的面积为S =πr2,即==k ,根据开普勒第三定律可知=,联立解得=k3,A 正确.5、如图5所示,倾角为θ的光滑斜面固定在水平面上,水平虚线L 下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方形闭合金属线框边长为h ,质量为m ,电阻为R ,放置于L 上方一定距离处,保持线框底边ab 与L 平行并由静止释放,当ab 边到达L 时,线框速度为v0,ab 边到达L 下方距离为d(d >h)处时,线框速度也为v0.以下说法正确的是( )图5A .ab 边刚进入磁场时,电流方向为a→b x.k+wB.ab边刚进入磁场时,线框加速度沿斜面向下C.线框进入磁场过程中的最小速度小于mgRsin θB2h2D.线框进入磁场过程中产生的热量为mgdsin θ解析由右手定则可判断ab刚进入磁场过程电流方向由a→b,选项A正确;线框全部在磁场中运动时为匀加速运动,ab边由L处到L下方距离为d处速度增量为零,所以ab边刚进入磁场时做减速运动,线框加速度沿斜面向上,选项B错误;线框恰好完全进入磁场时的速度最小,此时由牛顿第二定律得F安-mgsin θ=ma≥0,而安培力F安=BhI=Bh·=,联立解得vmin≥,选项C错误;根据动能定理,ab边由L处到L下方距离为d处过程中,mgdsin θ-Q=ΔEk=0,线框进入磁场过程中产生的热量Q=mgdsin θ,选项D正确.答案AD6、质量为m的带电小球,在充满匀强电场的空间中水平抛出,小球运动时的加速度方向竖直向下,大小为.当小球下降高度为h时,不计空气阻力,重力加速度为g,下列说法正确的是( ) A.小球的动能减少了mgh3B.小球的动能增加了2mgh3C.小球的电势能减少了2mgh3D.小球的电势能增加了mgh7、如图所示,等边三角形ABC处在匀强电场中,电场线与三角形所在平面平行,其中φA=φB=0,φC=φ.保持该电场的电场强度大小和方向不变,让等边三角形绕A点在三角形所在平面内顺时针转过30°,则此时B点电势为( )A.φB.φC.-φ D.-φ解析:根据题述φA=φB=0,A、B连线是一等势线,电场方向垂直于AB指向左侧.设等边三角形边长为L,根据φC=φ可知电场强度E=.等边三角形绕A点在三角形所在平面内顺时针转过30°,此时的B点到原来AB的距离d=Lsin30°,此时B点电势为-Ed=-φtan30°=-φ,选项C正确.答案:C8、(多选)如图所示,带等量异种电荷的平行金属板a、b处于匀强磁场中,磁场方向垂直纸面向里.不计重力的带电粒子沿OO′方向从左侧垂直于电磁场入射,从右侧射出a、b板间区域时动能比入射时小;要使粒子射出a、b板间区域时的动能比入射时大,可采用的措施是( )A.适当减小两金属板的正对面积B.适当增大两金属板间的距离C.适当减小匀强磁场的磁感应强度D.使带电粒子的电性相反解析:选AC.在这个复合场中,动能逐渐减小,说明电场力做负功,因洛伦兹力不做功,则电场力小于洛伦兹力.当减小正对面积,场强E=,S↓,Q不变,E↑,电场力变大,当电场力大于洛伦兹力时,粒子向电场力方向偏转,电场力做正功,射出时动能变大,A项正确.当增大两板间距离时,场强不变,所以B项错误.当减小磁感应强度时洛伦兹力减小,可能小于电场力,所以C项正确.当改变粒子电性时,其所受电场力、洛伦兹力大小不变,方向均反向,所以射出时动能仍然减小,故D项错误.二、非选择题1、如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速v0从木板右端滑上B,并以v0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)滑块A与木板B上表面间的动摩擦因数μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度大小.[解析] (1)当A在B上滑动时,A与BC整体发生作用,由于水平面光滑,A与BC组成的系统动量守恒:(2)当A滑上C,B与C分离,A与C发生作用,设到达最高点时速度相等为v2,由于水平面光滑,A与C组成的系统在水平方向动量守恒:m+mv1=2mv2⑥A与C组成的系统机械能守恒:1m2+mv12=(2m)v22+mgR⑦2由①⑥⑦式解得:R=.⑧(3)当A滑下C时,设A的速度为vA,C的速度为vC,A与C组成的系统动量守恒:m+mv1=mvA+mvC⑨A与C组成的系统动能守恒:1m2+mv12=mvA2+mvC2⑩2联立①⑨⑩式解得:vC=.[答案] (1) (2) (3)v02。
2020高考物理一轮复习 编练习题(8)(含解析)新人教版-精装版

教学资料范本2020高考物理一轮复习编练习题(8)(含解析)新人教版-精装版编辑:__________________时间:__________________【精选】20xx最新高考物理一轮复习编练习题(8)(含解析)新人教版李仕才一、选择题1、如图所示,a、b、c三个物体在同一条直线上运动,其位移与时间的关系图象中,图线c是一条x=0.4t2的抛物线.有关这三个物体在0~5s内的运动,下列说法正确的是( )图A.a物体做匀加速直线运动B.c物体做匀加速直线运动C.t=5s时,a物体速度比c物体速度大D.a、b两物体都做匀速直线运动,且速度相同答案B2、如图12所示,在两固定的竖直挡板间有一表面光滑的重球,球的直径略小于挡板间的距离,用一横截面为直角三角形的楔子抵住.楔子的底角为60°,重力不计.设最大静摩擦力等于滑动摩擦力.为使球不下滑,楔子与挡板间的动摩擦因数至少应为( )图123A.B.C.D.2答案A3、在江苏省××市进行的全国田径锦标赛上高兴龙获得男子跳远冠军,在一次试跳中,他(可看做质点)水平距离达8m,高达1m.设他离开地面时的速度方向与水平面的夹角为θ,若不计空气阻力,g=10m/s2,则tanθ等于( )A.B.C.D.1答案C解析设水平速度为vx,竖直速度为vy.由运动的合成与分解知:yv 2=y,=t,x=vx·2t,由以上各式得:tanθ==,C对.2g4、我国首颗量子科学实验卫星于20xx年8月16日1点40分成功发射.量子卫星成功运行后,我国将在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.假设量子卫星轨道在赤道平面,如图所示.已知量子卫星的轨道半径是地球半径的m倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,由此可知( )A.同步卫星与量子卫星的运行周期之比为n3m3B.同步卫星与P点的速度之比为1nC.量子卫星与同步卫星的速度之比为nmD.量子卫星与P点的速度之比为n3m解析:选D 根据G=mr,得T=,由题意知r量子=mR,r同步=nR,所以===,故A错误;P为地球赤道上一点,P点角速度等于同步卫星的角速度,根据v=ωr,所以有===,故B错误;根据G=m,得v=,所以===,故C错误;综合B、C,有v同=nvP,=,得=,故D正确.5、如图所示,某质点运动的v t图像为正弦曲线.从图像可以判断( )A.质点做曲线运动B.在t1时刻,合外力的功率最大C.在t2~t3时间内,合外力做负功D.在0~t1和t2~t3时间内,合外力的平均功率相等6、(多选)一物体静止在水平地面上,在竖直向上的拉力F的作用下开始向上运动,如图甲所示.在物体运动过程中,空气阻力不计,其机械能E与位移x的关系图象如图乙所示,其中曲线上点A处的切线的斜率最大.则( )A.在x1处物体所受拉力最大B.在x2处物体的速度最大C.在x1~x3过程中,物体的动能先增大后减小D.在0~x2过程中,物体的加速度先增大后减小7、真空中有一半径为r0的带电金属球壳,通过其球心的一直线上各点的电势φ分布如图所示,r表示该直线上某点到球心的距离,r1、r2分别是该直线上A、B两点离球心的距离.下列说法中正确的是( )A.A点的电势低于B点的电势B.A点的电场强度方向由A指向BC.A点的电场强度大于B点的电场强度D.正电荷沿直线从A移到B的过程中,电场力做负功解析:A点的电势高于B点的电势,选项A错误;A点的电场强度方向由A指向B,A点的电场强度大于B点的电场强度,选项B、C 正确;正电荷沿直线从A移到B的过程中,电场力做正功,选项D错误.答案:BC8、(多选)如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB上分别从不同高度由静止释放,都恰好通过圆形轨道的最高点,则( )A.经过最高点时,三个小球的速度相等B.经过最高点时,甲球的速度最小C.甲球的释放位置比乙球的高D.运动过程中三个小球的机械能均保持不变解析:选CD.三个小球在运动过程中机械能守恒,有mgh=mv2,在圆形轨道的最高点时对甲有qv1B+mg=,对乙有mg-qv2B=,对丙有mg=,可判断v1>v3>v2,选项A、B错误,选项C、D正确.二、非选择题1、如图所示,光滑悬空轨道上静止一质量为2m的小车A,用一段不可伸长的轻质细绳悬挂一质量为m的木块B.一质量为m的子弹以水平速度v0射入木块B并留在其中(子弹射入木块时间极短),在以后的运动过程中,摆线离开竖直方向的最大角度小于90°,试求:(1)木块能摆起的最大高度;(2)小车A运动过程的最大速度.解析:(1)因为子弹与木块作用时间极短,子弹与木块间的相互作用力远大于它们的重力,所以子弹与根据能量守恒得:1·2mv12=·2mv1′2+·2mv2′22解得v2′=.答案:(1) (2)v02。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考物理(人教)一轮编练习题(5)
李仕才
一、选择题
1、如图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B 水平.设绳A、B对球的拉力大小分别为F1、F2,它们的合力大小为F.现将框架在竖直平面内绕左下端缓慢旋转90°,在此过程中( )
图
A.F1先增大后减小
B.F2先增大后减小
C.F先增大后减小
D.F先减小后增大
答案 B
解析对小球受力分析如图所示:
小球处于静止状态,受力平衡,两绳的拉力的合力与重力大小相等、方向相反,则F不变,根据平行四边形定则可知,将框架在竖直平面内绕左下端缓慢旋转90°的过程中,F1逐渐减小,F2先增大后减小,当绳A处于水平方向时,F2最大,故B正确.
2、在两个足够长的固定的相同斜面体上(其斜面光滑),分别有如图所示的两套装置,斜面体B的上表面水平且光滑,长方体D的上表面与斜面平行且光
滑,p是固定在B、D上的小柱,完全相同的两只弹簧一端固定在p上,另一端分别连在A和C上,在A与B、C与D分别保持相对静止状态沿斜面自由下滑的过程中,下列说法正确的是( )
A.两弹簧都处于拉伸状态
B.两弹簧都处于压缩状态
C.弹簧L1处于压缩状态,弹簧L2处于原长
D.弹簧L1处于拉伸状态,弹簧L2处于压缩状态
解析:选C 由于斜面光滑,它们整体沿斜面下滑的加速度相同,为gsin α。
对于题图甲,以A为研究对象,重力与支持力的合力沿竖直方向,而A沿水平方向的加速度:a x=acos α=g·sin αcos α该加速度由水平方向弹簧的弹力提供,所以弹簧L1处于压缩状态;对于题图乙,以C为研究对象,重力与斜面支持力的合力大小:F合=mgsin α,即C不能受到弹簧的弹力,弹簧L2处于原长状态。
故选项C正确,A、B、D错误。
3、如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力。
忽略空气阻力。
则球B在最高点时( )
A .球
B 的速度为零
B .球A 的速度大小为2gL
C .水平转轴对杆的作用力为1.5mg x.k./w
D .水平转轴对杆的作用力为2.5mg
解析:选C 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供
向心力,有mg =m v B 22L
,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹
力,此时A 球受重力和拉力的合力提供向心力,有F -mg =m v A 2
L
,解得:F =1.5mg ,故C 正确,D 错误。
4、据美国宇航局消息,在距离地球40光年的地方发现了三颗可能适合人类居住的类地行星,假设某天我们可以穿越空间到达某一类地行星,测得以初速度10 m/s 竖直上抛一个小球可到达的最大高度只有1 m ,而其球体半径只有地球的一半,则其平均密度和地球的平均密度之比为(取g =10 m/s 2)( )
A .5∶2
B .2∶5
C .1∶10
D .10∶1
5、如图4所示,光滑绝缘的水平面上M 、N 两点各放有一带电荷量分别为+q 和+2q 的完全相同的金属球A 和B ,给A 和B 以大小相等的初动能E 0(此时初动量的大小均为p 0),使其相向运动刚好能发生碰撞(碰撞过程中无机械能损。