高一年级期中试卷

合集下载

5963高一年级数学科下学期期中试卷

5963高一年级数学科下学期期中试卷

高一年级数学科下学期期中试卷(A )1(试卷Ⅰ)一、选择题(每小题给出答案中,正确答案唯一,每小题3分,本题共36分) 1.若α为第二象限角,则απ-是………………………………………………( ) (A )第一象限角(B )第二象限角(C )第三象限角(D )第四象限角 2.65tanπ的值是…………………………………………………………………( ) (A )33(B )3(C )33-(D )3- 3.下列各式中正确的是 …………………………………………………………( ) (A )144sin 148sin >(B )16tan 87tanππ> (C )75cot 79cot >(D ))35cos(40cos -<4.函数x x x y 2cos cos sin =的最大值是………………………………………( )(A ) 1(B )21(C )2(D )415.在ABC ∆中,81cos sin -=⋅A A ,则A A sin cos -的值是………………( )(A )23-(B )23±(C )25(D )25- 6.函数)2332sin()(π+=x x f 是…………………………………………………( )(A )周期为π3的偶函数(B )周期π3为的奇函数 (C )周期为π2的偶函数(D )周期为π2的奇函数7. 使函数x y sin =与x y cos =都是增函数的一个区间是……………………( )(A )]2,0[π(B )],2[ππ(C )]23,[ππ(D )]2,23[ππ8. 等腰三角形的底角余弦值为53,则顶角的正弦值……………………………( )(A )2524±(B )2524(C )2524-(D )25129. 若)0)(2sin(>+=ϕϕx y 的图象如下图所示,则ϕ的最小值为……………( )(A )32π(B )3π (C )6π(D )3π-10. 要得到函数)42sin(π-=x y 的图象,只要把函数x y 2sin =的图象……( )(A )向右平移4π个单位(B )向左平移4π个单位 (C )向右平移8π个单位(D )向左平移8π个单位11.如果mn=-+)cos()cos(βαβα,那么=βαcot cot ……………………………………( ) (A )n m n m +-(B )n m n m -+(C )m n m n +-(D )mn mn -+ 12.=-+++-)21arccos(3arctan 1arccos )23arcsin(……………………( )(A )0(B )32π(C )3π(D )6π二.填空题(每小题4分,共16分)13.若παα<<-=0,2tan ,则=αcos 14.函数)23sin(3x y -=π的单调递增区间为15.若)2,0[π∈x 则x y tan log 21=的定义域为16.若)(x f 的定义域为R ,周期23π=T ,且⎩⎨⎧<≤<≤-=)0(sin )0(cos )(2ππx x x x x f则)(415π-f 的值为答题卷(试卷Ⅱ)一. 选择题二. 填空题13. 14. 15. 16.三.解答题(本题共48 分)17.(8分)已知m cos sin =+x x (1)求实数m 的取值范围(2)当m 取最大值时,求x 的值(3)并求2cos sin 2cos sin +++=x x x x y 的最值18.(8分)求81cos 75cos 6cos 181cos 75sin 42cos 22--+的值19.(8分)求函数1sin 2cos ++=x x y ,]3,6[ππ-∈x 的值域20.(8分)已知55cos ,1010sin -==βα(其中πβππα<<<<2,20) 求βα+21.(8分)设)4sin()(απ+=n n f 求)7()3()5()1(f f f f +的值22.(8分)已知函数)232sin(2sin x x y --=π(1) 将其化为)sin(ϕω+=x A y 的形式其中2||,0,0πϕω<>>A(2) 指出该函数图象可由x y sin =的图象通过怎样的变换而到。

高一年级下期期中考试数学试卷(理科)

高一年级下期期中考试数学试卷(理科)

高一年级下期期中考试数学试卷(理科)全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量a r =(-1 ,2),且向量,b a ⊥r r 则b r等于( )A. (2,1)B. (-1,2)C. (-2,1)D.(-2,-2)2.设ABC ∆的内角A,B,C所对的边分别为a, b, c ;且三内角A,B,C依次成等差数列, 三边a, b, c 依次成等比数列,则ABC ∆ 的形状为( )A.正三角形B.直角三角形C.钝角三角形D.等腰直角三角形3. 已知数列{a n }和{n b }均为等差数列,其前n 项和分别为Sn 和Tn ,并且37n n S n T n+=,则55a b 等于( ) A. 17B.421C.835D. 324.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且a=2033,c=102 ,A=45O .则角B等于( )A.600B. 600或1200C.150D.150或7505.设12345,,,,A A A A A 是平面中给定的5个不同的点,则同一平面内使123450MA MA MA MA MA ++++=u u u u r u u u u r u u u u r u u u u r u u u u r r成立的点M 的个数为( )A.0B.1C.5D.106.小王从甲地到乙地往返的时速分别为a 和b (0<a<b ),其全程的平均时速为v ,则( )ababab <v<2a b+ D. v=2a b+ 7. 设点O在ABC ∆的内部,且有230OA OB OC ++=u u ru u ru u r r,则ABC ∆的面积与ABC ∆的面积之比为( )A.32B.53C.2 D .38.已知数列{a n }为等差数列,若13121a a <- 且它的前n 项和n S 有最大值,那么n S 取最小正数时n 的值是( )A.22B.23C.24D.259.已知的平面向量r a 和r b ,且≠0r r a ,r a ≠ r b ,1b =r ,r a 和r b -r a 夹角为135o,则a r 的取值范围为( )A.0,1⎡⎤⎣⎦B.()1,2C.(0,2D.2,1⎤⎥⎢⎥⎣⎦10.已知函数(x)x f e x =+,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形其中,正确的判断是( ) A.①④ B.②③ C.①③ D.②④11.设a + b = 2, b >0,则1||2||a a b+的最小值为( ) A.12B.34C.1D.5412.设r a 是已知的平面向量且≠0r r a ,关于向量ra 的分解,有如下四个命题:①给定向量r b ,总存在向量r c ,使=+r r ra b c ;②给定向量r b 和r c ,总存在实数λ和μ,使λμ=+r r ra b c ;③给定单位向量r b 和正数μ,总存在单位向量r c 和实数λ,使λμ=+r r ra b c ;④给定正数λ和μ,总存在单位向量r b 和单位向量r c ,使λμ=+r r ra b c ;上述命题中的向量r b ,r c 和ra 在同一平面内且两两不共线,则真命题的个数是A.4B.3 C .2 D.1第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中横线上) 13.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,3=AP ,则=14.已知O为坐标原点,向量(sin ,1)OA θ=u u r, (cos ,0)OB θ=u u r ,(sin ,2)OC θ=-u u r ,()02cos sin ,1P αα=--u u r.若O,P,C三点共线,求得OA OB +u u r u u r 的值为 . 15.已知数列{n b }的通项公式为12,n n b -= 数列{a n }(n N *∈)满足222,,n a n b b b + 成等比数列,若12340m a a a a a ++++≤L ,则m 的最大值是 .16.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;则下列命题正确的序号是 ①若cos 2Acos 2B≤ ,则b a ≤; ②若sinA cosB,=,则=2πC ;③若sin sin 2A2B=;则AB= ; ④若2ab c >,则3C π< ;⑤若(3n)+=≤n n n a b c ,则ABC ∆为锐角三角形. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知()f x 是定义域为R 的偶函数,()00,f = 当0≤x 时,2()0+b =+≤f x x x c 的解集为4,0x ⎡⎤∈-⎣⎦(Ⅰ)求()f x 的解析式;(Ⅱ) 求不等式(x 1)5+≤f 的解集. 18.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。

2022-2023 师大附中高一期中物理试卷

2022-2023 师大附中高一期中物理试卷

秘密★启用前云南师大附中2025届高一年级上学期教学测评期中卷物理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页。

考试结束后,将本试卷和答题卡一并交回。

满分100分,考试用时90分钟。

第Ⅰ卷(选择题,共40分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

一、选择题(本大题共12小题,共40分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,每小题3分;第9~12题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于物体、质点和参考系,以下说法正确的是A.质点是一个理想化模型,这个模型的建立突出问题的主要因素,忽略次要因素,只有体积小的物体可视为质点B.选不同的物体做为参考系,对同一研究对象运动情况的描述没有影响C.选不同的物体做为参考系,对同一研究对象运动情况的描述一定不同D.物质由原子、分子等组成,我们所看到的物体是物质的集聚状态2.下列叙述正确的是A.“您这么早就来了,抱歉!让您等这么久”,这句话中“早就来了”表示时间间隔B.百米赛跑选用标准运动场跑道的直道部分,不同跑道上的运动员跑完全程的路程相同,位移不同C.标准运动场内800米比赛中,不同跑道上的运动员跑完全程的位移不同D.某物体做直线运动时,其路程与位移的大小相等3.关于速度的理解,下列说法正确的是A.根据速度定义式可知v与Δx成正比,与Δt成反比B.实际测量瞬时速度时,选择的位移越短,测量的平均速度越接近瞬时速度C.速度是用来描述物体位置变化快慢的物理量,所以速度表示物体位置的变化率D.物体做加速直线运动,一段时间内的平均速度等于初末速度和的一半4.如图1所示是在平直公路上行驶的汽车a和b的位置坐标x随时间t变化的图像,图形a为直线,b为曲线。

2023-2024学年湖北省孝感市高一年级11月期中联考数学试题

2023-2024学年湖北省孝感市高一年级11月期中联考数学试题

B {x | x 5n 3, n N}, C {x | x 7n 2, n N} ,若 x A B C ,则下列选项中符合题意的整数 x
为( )
A. 23
B. 44
C. 68
D. 128
期中试卷
x2 2ax 6, x 1
11.已知函数
f
(x)
a x
,
x
1
是 R 上的增函数,则实数 a 的取值可以是( )
A. 1
B. 3或 1
C. 3
D. 3
期中试卷
3.已知函数 f (x) 的定义域为 (3, 4) ,则函数 g(x) f (x 1) 的定义域为( ) 3x 1
A. (1 ,3) 3
B. (1 , 4) 3
C. (1 ,5) 3
D. (1 ,6) 3
期中试卷
4.设函数 f (x) x 2 , g(x) x2. 用 M (x) 表示 f (x) , g(x) 中的较大者,记为
A. a 0 B. a b c 0 C. c 0 D. cx2 2bx a 0 的解集为{x | 1 x 1}
3
期中试卷
10.中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数,三三数之,剩二;五五数之,
剩三;七七数之,剩二,问:物几何?”现有如下表示:已知 A {x | x 3n 2, n N} ,
式为 f (x) __________.
期中试卷
15.写出同时满足以下条件的一个函数 f (x) __________. ①定义域为 R,值域为 [1, );
② x , y [2,) ,且 x y 时, f (x) f (y); ③ x , f (2 x) f (2 x).

河北省唐山市十县一中2022-2023学年高一下学期期中生物试卷

河北省唐山市十县一中2022-2023学年高一下学期期中生物试卷

唐山市十县一中2022- 2023学年度高一年级第二学期期中考试生物学本试题分为选择题和非选择题两部分,共100分,考试时间75分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡一并交回。

一、选择题:共30题,1~10题每题1分,11~30题每题2分,共50分。

在下列各题的四个选项中,只有一个选项是符合题目要求的。

1.下列各基因型中,属于纯合子的是A. AaBbB. aaBbC. aaBBCcD. AAbbdd2.一只基因型为Aa的白毛公羊与多只基因型为aa的黑毛母羊测交,子代中白毛羊与黑毛羊的比例接近于A.1:1B.1:2C.2:1D.3:13.在豌豆杂交实验中,为防止自花传粉应A.将花粉涂在雄蕊柱头.上B.除去未成熟花的雄蕊C.采集另一植株的花粉D.人工传粉后套上纸袋4.下列各项叙述中属于性状分离的是A.高茎豌豆自交后代全是高茎B.高茎豌豆与矮茎豌豆杂交后代有高茎和矮茎C.紫花豌豆自交后代有紫花和白花D.白花豌豆自交后代全是白花5.某同学利用红色彩球(代表含基因D的雌雄配子)和绿色彩球(代表含基因d的雌雄配子)进行“性状分离比的模拟实验”,从两桶(每桶中两种彩球的大小相同、数量相等)中各抓取1个小球,组合后dd的概率是A.1/2B.1/3C. 1/4D.3146.在下列遗传系谱图中,遗传病( 黑色表示患者)只能由常染色体上隐性基因决定的是7.下列关于性别决定的叙述,正确的是A. X、Y染色体是非同源染色体B.性染色体上的基因传递总是和性别相关联C.性染色体只存在于生殖细胞中D.位于性染色体上的基因,在遗传中不遵循孟德尔遗传定律8.下列关于基因的叙述中,正确的是A.基因是DNAB.新冠病毒的基因在染色体上呈线性排列C.基因的基本单位是脱氧核糖D.一个DNA分子上有多个基因9.下列关于DNA复制的叙述,下列说法错误的是A.复制时DNA的两条长链完全解开,然后复制B. DNA通过复制将遗传信息从亲代细胞传递给子代细胞C.细胞内的DNA复制时需要原料、模板、酶、能量等条件D.新合成的DNA分子中总是有一条长链来源于亲代DNA分子10.下列关于研究材料、方法及结论的叙述,错误的是A.富兰克林和威尔金斯对DNA双螺旋结构模型的建立作出了巨大的贡献B.摩尔根等人以果蝇为研究材料,通过统计后代雌雄个体眼色性状分离比,证明了基因位于染色体上C.沃森和克里克以DNA大分子为研究材料,采用X射线衍射的方法提出了DNA半保留复制方式D.赫尔希与蔡斯以噬菌体和大肠细菌为研究材料,利用放射性同位素标记技术区分蛋白质与DNA,证明了DNA是遗传物质11.若利用噬菌体和大肠杆菌为实验材料,进行了如下实验:①用32p标记的噬菌体侵染未标记的大肠杆菌;②用未标记的噬菌体侵染35S标记的大肠杆菌:③用3H标记的噬菌体侵染未标记的大肠杆菌。

浙江省9+1高中联盟2024-2025学年高一上学期期中考试数学试卷含答案

浙江省9+1高中联盟2024-2025学年高一上学期期中考试数学试卷含答案

2024学年第一学期浙江省9+1高中联盟高一年级期中考试数学(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;一、选择题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合{1,0,1,2,3},{2,3},{0,1}U A B =-==,则()U B A ⋂=ð()A.{1,0,1}-B.{0,1}C.{0}D.{1}【答案】B 【解析】【分析】先计算补集{}1,0,1U A =-ð,再计算交集()U A B ⋂ð;【详解】{}(){}1,0,1,0,1U UA AB =-∴⋂= 痧,故选:B.2.命题“[)1,x ∃∈+∞,21x ≤”的否定形式为()A.[)1,x ∀∈+∞,21x >B.(),1x ∀∈-∞,21x >C.[)1,x ∀∈+∞,21x ≤D.(),1x ∀∈-∞,21x ≤【答案】A 【解析】【分析】特称命题的否定:①∃⇒∀,②否定结论.【详解】命题“[)1,x ∃∈+∞,21x ≤”的否定形式为:“[)1,x ∀∈+∞,21x >”,故选:A.3.函数()f x =)A.[]1,3 B.1,12⎛⎫⎪⎝⎭C.1,32⎡⎤⎢⎥⎣⎦D.1,12⎡⎤⎢⎥⎣⎦【答案】D 【解析】【分析】由根式有意义可以列出不等式求解.【详解】依题意得10210x ⎧≥⎪⎨-≥⎪⎩,解得112x ≤≤,所以()f x 的定义域为1,12⎡⎤⎢⎥⎣⎦,故选:D.4.已知()f x 在R 上的奇函数,当0x >时,2()21f x x x =--,则((1))f f -=()A.2B.2- C.1D.1-【答案】D 【解析】【分析】利用函数奇偶性,由内向外求值即可.【详解】由题意()()112f f -=-=,所以((1))(2)1f f f -==-.故选:D5.已知R a b c ∈,,,则a b c ==是222a b c ab bc ac ++=++成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义分析判断即可.【详解】当a b c ==时,222223,3a b c a ab bc ac a ++=++=,所以222a b c ab bc ac ++=++,当222a b c ab bc ac ++=++时,2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=,所以()()()2222222220a ab baac c b bc c -++-++-+=,所以()()()2220a b a c b c -+-+-=,因为()()()2220,0,0a b a c b c -≥-≥-≥,所以()()()2220a b a c b c -=-=-=,所以a b c ==,所以a b c ==是222a b c ab bc ac ++=++成立的充要条件,故选:C6.若函数()()2222422xx x x f x m --=+-++有且只有一个零点,则实数m 的值为()A.3B.4C.5D.6【答案】D 【解析】【分析】根据偶函数的性质结合题意得()00f =即可求解.【详解】由题函数定义域为R ,关于原点对称,又由于()()()2222422,x x x x f x m f x ---=+-++=故()f x 为R 上的偶函数,由于()f x 只有一个零点,因此()00f =,故2420m -⨯+=,解得6m =,故选:D.7.当01a <<时,关于x 的不等式()()()3130x a x a ⎡⎤--+->⎣⎦的解集为()A.33, 1a x x x a -⎧⎫><⎨⎬-⎩⎭∣或 B.331a x x a ⎧⎫-<<⎨⎬-⎩⎭C.33, 1a xx x a -⎧⎫<>⎨⎬-⎩⎭∣或 D.331a xx a ⎧⎫-<<⎨⎬-⎩⎭【答案】B 【解析】【分析】确定二次项的系数符号和两根的大小关系,直接写出解集即可.【详解】因为333323=111a a a aa a a ---+--=---,又因为01a <<,所以201a a ->-,所以3>31a a --,又因为10a -<,于是()()()3130x a x a ⎡⎤--+->⎣⎦等价于()3301a x x a -⎡⎤--<⎢⎥-⎣⎦,可得331a x a -<<-,所以()()()3130x a x a ⎡⎤--+->⎣⎦的解集为331a x x a ⎧⎫-<<⎨⎬-⎩⎭.故选:B8.已知()()2,12,1xa x x f x x a xb x ⎧+≤⎪=⎨--+>⎪⎩,存在实数(0a >且)1a ≠,对于R 上任意不相同的12,x x ,都有()()21211f x f x x x ->-,则实数b 的取值范围是()A.()0,∞+ B.[)4,+∞ C.(]0,4 D.[]0,4【答案】A 【解析】【分析】先将问题转化为分段函数()()g x f x x =-的单调性问题,然后根据各段函数的单调性以及分段点处函数值大小关系得到,a b 的不等关系,再由题意可分析出b 的取值范围.【详解】对于R 上任意不相同的12,x x ,都有()()21211f x f x x x ->-,即对于R 上任意不相同的12,x x ,都有()()2211210f x x f x x x x ---⎡⎤⎡⎤⎣⎦⎣⎦>-,所以()()g x f x x =-是R 上的增函数,且()()2,11,1xa x g x x a xb x ⎧≤⎪=⎨--+>⎪⎩,所以()1111211a a a a b>⎧⎪-⎪≤⎨⎪≤--+⎪⎩,所以1322a b a <≤⎧⎨≥-⎩,故由题意可知,存在(]1,3a ∈使得22b a ≥-,所以()min 22b a ≥-,且22a -最小值无限逼近0,所以0b >,故选:A.二、选择题(本题共3小题,每小题6分,共18分.每小题列出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知0a b c >>>,则()A.2a c b c +>+ B.ac bc >C.a ba cb c>++ D.cc a b <【答案】BC 【解析】【分析】对于A ,利用特殊值可以排除;对于B 、C ,根据给定条件,利用不等式的性质可以判断;对于D ,结合幂函数性质判断即可.【详解】对于A ,因为0a b c >>>,不妨取3,2,1a b c ===,则42a c b c +=+=,5,此时2a c b c +<+,故A 错误;对于B ,因为0a b c >>>,由不等式的可乘性得ac bc >,故B 正确;对于C ,由B 知ac bc >,所以()()0a b ac bca cbc a c b c --=>++++,即a b a c b c>++,故C 正确;对于D ,函数c y x =在()0,∞+上单调递增,则c c a b >,故D 错误.故选:BC10.已知函数()f x 的定义域为R ,满足:①对于任意的x ,y ∈R ,都有()()()f xy f x f y =,②存在1x ,2x ∈R ,使得()()12f x f x ≠,则()A.()00f = B.()22f =C.当()11f -=-时,()f x 为奇函数 D.当()11f -=时,()f x 为偶函数【答案】ACD 【解析】【分析】通过赋值,函数奇偶性的概念逐个判断即可.【详解】对于A :令0x y ==,可得:()()200f f=,解得:()00f =或()01f =,当()01f =时,令0y =,可得:()()()00f f x f =,得()1f x =,不满足存在1x ,2x ∈R ,使得()()12f x f x ≠,舍去,故()00f =;正确;对于B :令()2f x x =,满足()()()()222f xy xy f x f y x y ===,且存在1x ,2x ∈R ,使得()()12f x f x ≠,此时()24f =,故错误;对于C :令1y =-,可得:()()f x f x -=-,奇函数,正确;对于D :令1y =-,可得:()()f x f x -=,偶函数,正确;故选:ACD11.给定数集A =R ,(],0B ∞=-,方程2210s t ++=①,则()A.任给s A ∈,对应关系f 使方程①的解s 与t 对应,则()t f s =为函数B.任给t B ∈,对应关系g 使方程①的解t 与s 对应,则()s g t =为函数C.任给方程①的两组不同解()11,s t ,()22,s t ,其中1s ,2s B ∈,则11221221t s t s t s t s +>+D.存在方程①的两组不同解()11,s t ,()22,s t ,其中1s ,2s B ∈,使得1212(,)22s s t t ++也是方程①的解【答案】AC 【解析】【分析】根据函数的定义判断A,B 易得;对于C ,由题意得到211210s t ++=,222210s t ++=,化简整理得121212()()2()0s s s s t t +-+-=,根据12,(,0]s s ∈-∞推得1212()()0t t s s -->,展开即可判断;对于D ,运用反证法,假设1212(,22s s t t ++也是方程①的解,通过22121211,22s s t t ++=-=-,替代化简推出12s s =,得出矛盾即可.【详解】对于A ,由①可得,21122t s =--,对于任意的s A ∈,都有唯一确定的t 值与之对应,故()t f s =为函数,故A 正确;对于B ,由①可得221s t =--,因t B ∈,若取0t =,则21s =-,此时不存在实数s 与之对应,若考虑虚数解,会出现i s =±两个虚数与之对应,不符合函数的定义,故B 错误;对于C ,依题意,211210s t ++=,222210s t ++=,两式相减,整理得121212()()2()0s s s s t t +-+-=,因12s s ≠且12,(,0]s s ∈-∞,则有1212122()0t t s s s s -+=-<-,即得1212()()0t t s s -->,展开整理,即得11221221t s t s t s t s +>+,故C 正确;对于D ,由题意,12s s ≠,12,(,0]s s ∈-∞,假设1212(,22s s t t ++也是方程①的解,则有21212(2()1022s s t t++++=(*),因22121211,22s s t t ++=-=-,则22121212s s t t ++=--,代入(*)式,整理得:22121220s s s s +-=,即得12s s =,这与题意不符,故D 错误.故选:AC.【点睛】思路点睛:本题主要考查函数的定义、方程的解的应用,属于难题.对于判断两个变量是否构成函数,主要根据函数的定义,检测对于每一个自变量的取值,是否一定存在唯一的另一个值与之对应;对于方程的解,一般应从字母范围,解析式特点等方面考虑.三、填空题(本题共3小题,每小题5分,共15分)12.函数()11f x x =+,()1,x ∈+∞的值域是__________.【答案】10,2⎛⎫ ⎪⎝⎭【解析】【分析】由函数在()1,+∞的单调性得到函数值域.【详解】由反比例函数的图像可知:函数()f x 区间()1,-+∞上单调递减,∵()()1,1,+∞⊆-+∞,∴()f x 区间()1,+∞上单调递减,∴()()112f x f <=,又∵10x +>,∴()0f x >,∴()10,2f x ⎛⎫∈ ⎪⎝⎭,故答案为:10,2⎛⎫ ⎪⎝⎭.13.已知实数x ,y 满足0x >,0y >,231xy x y =++,则xy 的最小值是__________.【答案】42+【解析】【分析】利用基本不等式将题设方程转化成不等式210-≥,求出即得xy 的最小值.【详解】由231xy x y =++,可得213xy x y -=+≥,当且仅当3x y =时取等号,即210-≥,设t =2210t t --≥,解得352t ≤或352t ≥,因0t =>,故得235(2xy ≥,即4152xy +≥,由3231x y xy x y =⎧⎨=++⎩解得3632x y ⎧+=⎪⎪⎨+⎪=⎪⎩,即当36x =,32y +=时,xy取得最小值为42+.故答案为:42+.14.已知=,R x ∈,且()03f =,()()()0.520.51f n f n =+,*n ∈N ,请写出()f x 的一个解析式__________.【答案】134xy ⎛⎫=⋅ ⎪⎝⎭(答案不唯一)【解析】【分析】根据()()()0.520.51f n f n =+可考虑指数型函数,再设()x f x a b =⋅分析求解即可.【详解】设()xf x a b =⋅,由()()()0.520.51f n f n =+可得()0.50.512n n a b a b+⋅=⋅,即0.512b=,故4b =,又()03f =,故043a ⋅=,则3a =,134xy ⎛⎫=⋅ ⎪⎝⎭.故答案为:134xy ⎛⎫=⋅ ⎪⎝⎭四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(1)求值:)1112141431620.75624--⎛⎫⎛⎫+-+⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)设22xm=,且0m >,求33x xxxm m m m--++的值.【答案】(1)2-;(2)32【解析】【分析】(1)根据指数幂及其运算性质化简求值即可;(2)运用三次方公式化简,再根据分数指数幂的运算性质求解即可.【详解】(1))11121414331620.75624--⎛⎫⎛⎫++⨯⨯ ⎪⎪ ⎪⎝⎭⎝⎭()111124443272424-⎛⎫⎛⎫⎛⎫=+⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)1144432722344⎛⎫⎛⎫=-+⨯⨯ ⎪ ⎪⎝⎭⎝⎭14432743234432⨯⎛⎫=+⨯=⨯= ⎪⨯⎝⎭.(2)因为22x m =,且0m >,所以()()3333xxxxx x x xm m mm m m m m ----++=++()()22xxxx x xx xm m mm m m m m ----+-⋅+=+.2222113112122x x x xm m m m -=-+=-+=-+=.16.已知集合{}2560A xx x =--≥∣,403x B x x ⎧⎫-=<⎨⎬+⎩⎭,{3}C x x a =-<.(1)求A B ;(2)若x B ∈是x C ∈的充分条件,求实数a 的取值范围.【答案】(1){4xx <∣或6}x ≥(2){}6a a ≥【解析】【分析】(1)解二次不等式和分式不等式分别得到集合,A B ,再求并集;(2)解绝对值不等式得到集合C ,由充分条件得到包含关系,建立不等式,求得a 的取值范围.【小问1详解】因为{}2560{6A xx x x x =--≥=≥∣∣或1}x ≤-,40{34}3x B x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭∣,所以{4A B xx =< ∣或6}x ≥.【小问2详解】{3}{33}C x x a x a x a =-<=-+<<+∣若x B ∈是x C ∈的充分条件,则B C ⊆,所以3334a a -≤-⎧⎨+≥⎩,解得6a ≥,故a 的取值范围为{}6a a ≥.17.已知幂函数=经过点2,4().(1)求12f ⎛⎫⎪⎝⎭的值;(2)记()()g x f x x =-,若()g x 在[]1,a -上是不单调的,求实数a 的取值范围;(3)记()()h x f x x b =++,若ℎ与()()h h x 值域相同,求实数b 的最大值.【答案】(1)14(2)1,2⎛⎫+∞⎪⎝⎭(3)14-【解析】【分析】(1)待定系数法求函数解析式后计算求值;(2)根据二次函数的对称轴与定义域的关系列出不等式即可得解;(3)根据二次函数的性质,值域相同转化为1142b -≤-求解即可.【小问1详解】设幂函数为a y x =,42a ∴=,2a ∴=,2y x ∴=,∴当12x =时,21124y ⎛⎫== ⎪⎝⎭.【小问2详解】()()221124g x f x x x x x ⎛⎫=-=-=-- ⎪⎝⎭,因为()g x 在[]1,a -上是不单调的,所以12a >,所以a 的取值范围是1,2∞⎛⎫+⎪⎝⎭.【小问3详解】函数()22111,244h x x x b x b b ∞⎛⎫⎡⎫=++=++-∈-+ ⎪⎪⎢⎝⎭⎣⎭,令()t h x =,则()()()221124h h x h t t t b t b ⎛⎫==++=++- ⎪⎝⎭,1,4t b ∞⎡⎫∈-+⎪⎢⎣⎭,因为函数ℎ的值域和函数()()h h x 相同,可得1142b -≤-,解得14b ≤-,所以实数b 的最大值为14-.18.设矩形ABCD 的周长为20,其中AB AD >.如图所示,E 为CD 边上一动点,把四边形ABCE 沿AE 折叠,使得AB 与DC 交于点P .设DP x =,PE y =.(1)若3AD =,将y 表示成x 的函数=,并求定义域;(2)在(1)条件下,判断并证明=的单调性;(3)求ADP △面积的最大值.【答案】(1)29y x =+,200,7⎛⎤ ⎥⎝⎦(2)29y x =+200,7x ⎛⎤∈ ⎥⎝⎦上单调递增,证明见解析(3)752-.【解析】【分析】(1)通过几何关系确定AP EP =,利用R Rt ADP 的三边关系建立x ,y 的关系,再利用7x y +≤,进而确定x 的范围即可.(2)应用函数单调性的定义证明即可;(3)设AD m =,将面积表示为()5510m m S m ⨯⨯-=-,适当变形应用基本不等式求解最值即可.【小问1详解】解:根据题意,由3AD =,得7AB =,由已知PAE PEA ∠=∠,故AP EP y ==,又因为DP x=故在Rt ADP 中,则222AP AD DP =+,即229y x =+,整理得29y x =+又7x y +≤,则297x x ++≤297x x +≤-,2294914x x x+≤+-207x ≤,所以,定义域为200,7⎛⎤ ⎥⎝⎦.【小问2详解】解:因为y =200,7x ⎛⎤∈ ⎥⎝⎦,任取1x ,2200,7x ⎛⎤∈ ⎥⎝⎦且12x x >,则12y y -+-=因为212007x x <<≤,所以120x x ->,120x x +>0>所以120y y ->,即y =200,7x ⎛⎤∈ ⎥⎝⎦上单调递增.【小问3详解】解:易知,当E 点位于C 点时,ADP △面积最大.此时再设AD m =,DP n =,那么10AP n m =--,由222AP AD DP =+得501010m n m-=-,()0,5m ∈,所以,ADP △的面积()55115010221010m m m S nm m m m⨯⨯--==⋅=--,令10m t -=,则()10510m t t =-<<,10m t -=-,故()5510m m S m⨯⨯-=-()()510510t tt⨯-⨯+-=5051551575t t ⎛⎫⎛⎫=-⨯+-≤-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当50t t=,即t =10m =-故当10AD =-ADP △的面积S 的最大值为75-.19.设A ,B 是非空实数集,如果对于集合A 中的任意两个实数x ,y ,按照某种确定的关系f ,在B 中都有唯一确定的数z 和它对应,那么就称:f A B →为从集合A 到集合B 的一个二元函数,记作(),z f x y =,x ,y A Î,其中A 称为二元函数f 的定义域.(1)已知(),f x y =若()11,1f x y =,()22,2f x y =,12122x x y y +=,求()1212,f x x y y ++;(2)设二元函数f 的定义域为I ,如果存在实数M 满足:①x ∀,y I ∈,都有(),f x y M ≥,②0x ∃,0y I ∈,使得()00,f x y M =.那么,我们称M 是二元函数(),f x y 的下确界.若x ,()0,y ∈+∞,且111x y+=,判断函数()22,8f x y x y xy =+-是否存在下确界,若存在,求出此函数的下确界,若不存在,说明理由.(3)(),f x y 的定义域为R ,若0h ∃>,对于x ∀,y D ∈⊆R ,都有()(),,f x y f x h y h ≤++,则称f 在D 上是关于h 单调递增.已知()2,4ay f x y kx y =-+在[]1,2上是关于a 单调递增,求实数k 的取值范围.【答案】(1)()1212,3f x x y y ++=(2)答案见解析(3)1,5∞⎡⎫-+⎪⎢⎣⎭.【解析】【分析】(1)由二元函数的定义求解即可;(2)根据基本不等式即二次函数的性质判断即可;(3)根据二元函数在定义域上单调递增的定义求解即可;【小问1详解】由()11,1f x y =可得,22111x y +=,由()22,2f x y =可得,22224x y +=,由()1212,f x x y y ++==又12122x x y y +=,所以()1212,3f x x y y ++=;【小问2详解】由111x y+=可得,x y xy +=,由xy xy +=可得,x y xy +=≥,所以4xy ≥,()()()()22222,8101052525f x y x y xy x y xy xy xy xy =+-=+-=-=--≥-,当且仅当5xy =,即52x +=,552y =或52x =,52y +=时取等号.【小问3详解】因为()2,4ay f x y kx y =-+在[]1,2上是关于a 单调递增,所以()(),,f x y f x a y a ≤++,即存在0a >,对于任意的x ,[]1,2y ∈,都有()()()2244a y a ay kx k x a y y a +-≤+-+++,化简可得()()22044y a y k y y a ++-≥+++,即()()2224044a y ay k y a y +-+≥⎡⎤⎡⎤+++⎣⎦⎣⎦,下面求函数()()()222444a y ay g y y a y +-=⎡⎤⎡⎤+++⎣⎦⎣⎦的最小值,设24y ay t +-=,[]3,2t a a ∈-,()()2222224464164644416a y ay at a a t t a y a y t t +-==++++⎡⎤⎡⎤+++++⎣⎦⎣⎦,所以函数()246416ah t a t t=+++在[]3,2a a -递增,()()()2min 233525a a h t h a a a -=-=++,即存在0a >,使得()2230525a a k a a -+≥++,设()22325a a a a a ϕ-=++,0a >,①当03a <≤时,()223025a a a a a ϕ-=≤++,②当3a >时,()()22251312525a a a a a a a a ϕ+-==-++++,设14u a =+>,221110,42545a u a a u u u+⎛⎫==∈ ⎪+++⎝⎭+,所以()()2230,125a a a a a ϕ-=∈++,综上,105k +≥,所以k 的取值范围是1,5⎡⎫-+∞⎪⎢⎣⎭.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。

人教版高一年级下学期期中考试数学试卷与答案解析(共三套)

人教版高一年级下学期期中考试数学试卷与答案解析(共三套)

人教版高一年级下学期期中考试数学试卷(一)(本卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A 版第二册:第六章 平面向量及其应用、第七章 复数、第八章 立体几何初步一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知平面向量)4(-=,m a ,)31(+-=m b ,,若存在实数0<λ,使得b a λ=,则实数m 的值为( )。

A 、4-B 、512- C 、1-D 、12.下列说法中错误的是( )。

A 、两条平行线段在直观图中对应的两条线段仍然平行B 、平行于坐标轴的线段长度在直观图中仍然保持不变C 、平行于坐标轴的线段在直观图中仍然平行于坐标轴D 、斜二测坐标系取的角可能是 1353.在下列命题中,正确命题的个数为( )。

①两个复数不能比较大小;②若i x x x )23()1(22+++-是纯虚数,则实数1±=x ;③z 是虚数的一个充要条件是R z z ∈+;④若a 、b 是两个相等的实数,则i b a b a )()(++-是纯虚数;⑤R z ∈的一个充要条件是z z =;⑥1||=z 的充要条件是z z 1=。

A 、1B 、2C 、3D 、4 4.设α、β是两个不同的平面,则β⊥α的充要条件是( )。

A 、平面α内任意一条直线与平面β垂直B 、平面α、β都垂直于同一条直线C 、平面α、β都垂直于同一平面D 、平面α内存在一条直线与平面β垂直5.如图,在长方体D C B A ABCD ''''-中,用截面截下一个棱锥D D A C ''-,则棱锥D D A C ''-的体积与剩余部分的体积之比为( )。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
yxOyxOyxOy
x
O

2010—2011学年(上)高一年级数学学科期中试卷
班级______ 姓名________ 学号____ 得分________
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要
求的,请将正确的选项写在答题卡上。
1.设集合{},{,}AaBab,则A与B的关系是 ( )
A、AB B、BA C、AB D、BA

2.已知函数1()23fxxx,则函数()fx的定义域是 ( )

A、3[,)2 B、3[,0)2 C、(0,) D、3[,0)(0,)2
3.下列函数是奇函数的是( )
A、1()fxxx B、()1fxx C、2()1fxx D、32()fxxx
4.设函数2()12fxxx,则使函数()fx为增函数的区间是 ( )
A、(,1) B、(5,2) C、(2,0) D、(1,)
5.设集合{(,)|1},{(,)|3}AxyyxBxyxy,则AB ( )
A、1 B、(1,2) C、{1,2} D、{(1,2)}
6.表示函数()yfx的图象的是 ( )

A B C D
7.下列式子正确的个数为 ( )

①lg(52)lg5lg2;②lg55lglg22;③lg(52)lg5lg2;④lg(5·2)lg5·lg2
A、0 B、1 C、2 D、3
8.已知5.10.90.90.9,5.1,log5.1mnp,则这三个数的大小关系是 ( )
A、mnp B、mpn C、pmn D、pnm
9.函数2()32xfxx的零点个数有( )
A、0个 B、1个 C、2个 D、3个

10.右图是对数函数()logafxx(01)aa且,已知a的值取4312,,,3105,则
相应于曲线1C,2C,3C,4C,的a依次为( )
A、4312,,,3105 B、4132,,,3510

C、431,2,,3105 D、413,2,,3510
11.已知2()2(2)5fxxax在区间[4,)上是增函数,则a的取值范围为( )
A、2a B、2a C、6a D、6a
12.若函数()fx是定义在R上的奇函数,当0x时,2()42fxxx,则函数()fx在区间[4,1]的最大
值与最小值是 ( )
A、maxmin1,2yy B、maxmin2,2yy C、maxmin2,1yy D、maxmin34,7yy
2

选择题答题卡
题号
1 2 3 4 5 6 7 8 9 10 11 12
答案

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上。
13.已知集合{1,3,},{3,4}AmB,若集合BA,则实数m

14.用二分法求方程32210xxx在区间[1,2]内有实根,取区间中点01.5x,那么下一个有根区间是 __

15.已知函数212,0()2,0xxfxxxx,则[(2)]ff
16.在下列命题中:
①函数2yx在(0,)上是增函数;

②函数1yx的定义域为(,0)(0,),在其上是减函数;
③函数()ln(1)ln(1)fxxx的图象关于y对称;
④若()fx是奇函数,在(0,)上是减函数,那么在区间(,0)上是增函数。
正确的命题序号为: (填命题的序号)
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)
设集合{|24},{|3782}AxxBxxx,求,ABAB.

18.(本小题满分12分)
已知幂函数()yfx的图象过点2(2,)2,
(1)求函数()yfx的解析式;
(2)用定义法证明函数()yfx在区间(0,)上的单调性。
3

19.(本小题满分12分)
20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量
越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为0lglgMAA,
其中,A是被测地震的最大振幅,0A是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中
的距离造成的偏差).
(1)假设在一次地震中,一个距离震中1000千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是
0.002,计算这次地震的震级。
(2)5级地震给人的震感已比较明显,最近我国发生在汶川的8级地震的最大震幅是5级地震的最大震幅的多
少倍?

20.(本小题满分12分)
已知全集,{|25},{121}URAxxBmxm,

(1)求UAð;
(2)若BA,求实数m的取值范围。
4

21.(本小题满分12分)
已知函数2()31fxaxx,
(1)若1a时,写出函数()fx的单调区间;
(2)若函数()fx在[0,)上单调递增,求实数a的取值范围。

22.(本小题满分12分)
光线每通过一块玻璃板,其强度要损失10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a,通过x块
玻璃以后的强度为y.
(1)试写出y关于x的函数关系式;

(2)通过多少块玻璃以后,光线强度减弱到原来强度的13以下?

相关文档
最新文档