高中数学选择填空破题(椭圆的基本性质):构造齐次方程求椭圆的离心率-Word版含答案

合集下载

椭圆的试题及答案高中

椭圆的试题及答案高中

椭圆的试题及答案高中一、选择题1. 椭圆的焦点在x轴上,且离心率为\(\frac{1}{2}\),若椭圆的长轴长为6,则椭圆的短轴长为()。

A. 3B. 4C. 5D. 6答案:B解析:已知椭圆的离心率e=\(\frac{c}{a}\)=\(\frac{1}{2}\),长轴长2a=6,所以a=3。

根据离心率公式,可以得出c=\(\frac{3}{2}\)。

再根据椭圆的性质,b²=a²-c²,代入a和c的值,可得b²=\(\frac{9}{4}\),所以b=2,短轴长为2b=4。

2. 已知椭圆C的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a>b>0,若椭圆C上存在一点P,使得\(\overrightarrow{OP}\cdot \overrightarrow{F_1F_2} = 0\),则a的取值范围是()。

A. \(a>1\)B. \(a>2\)C. \(a>3\)D. \(a>4\)答案:B解析:已知\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),说明OP垂直于F1F2,即点P在椭圆的短轴端点上。

根据椭圆的性质,短轴端点到焦点的距离为b,而焦点到原点的距离为c。

由于\(\overrightarrow{F_1F_2} = 2c\),所以\(\overrightarrow{OP} = b\)。

根据勾股定理,有\(a^2 = b^2 + c^2\)。

由于\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),所以\(b = 2c\)。

代入勾股定理,得到\(a^2 = 5c^2\)。

又因为椭圆的离心率e=\(\frac{c}{a}\),所以\(a = \frac{5}{4}c\)。

高考数学专题《椭圆》习题含答案解析

高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。

高中数学选择填空破题(椭圆的进阶性质):椭圆的焦半径-Word版含答案

高中数学选择填空破题(椭圆的进阶性质):椭圆的焦半径-Word版含答案

先看例题: 例:已知椭圆x a y ba b 222210+=>>()的焦点坐标是F c F c P x y 120000()()()-,和,,,是椭圆上的任一点,求证:1020||||PF a ex PF a ex =+=-,,其中e 是离心率。

证明:对于椭圆2222x y a b+=>>10()a b 的两焦点F c F c 1200()()-,、,, 相应的准线方程分别是x a c x a c=-=22和。

∵椭圆上任一点到焦点的距离与它到相应准线的距离的比等于这个椭圆的离心率, ∴120||PF c e a a x c ==+同理有220||PF c e a a x c==-。

化简得||||PF a ex PF a ex 1020=+=-,注意:||||PF PF 12、都是椭圆上的点到焦点的距离,习惯称作焦半径,||||PF a ex PF a ex 1020=+=-,称作焦半径公式,结合这两个公式,显然到焦点距离最远(近)点为长轴端点。

整理:焦点在x 轴上的椭圆x a y ba b 222210+=>>()上任一点()00P x y ,的两条焦半径为1020||||PF a ex PF a ex =+=-,,其中e 是离心率,12F F 、 是左、右焦点。

焦点在y 轴上的椭圆()222210y x a b a b+=>>上任一点()00M x y ,的两条焦半径为1020||||PF a ey PF a ey =-=+,,12F F 、 是上、下焦点。

再看一个例题,加深印象 例:已知椭圆x y 2225161+=,在椭圆上求一点M ,使它到两焦点距离之积为16。

解:显然椭圆焦点在x 轴上,所以可选用焦点在x 轴上的焦半径公式。

设M (x ,y ),由椭圆方程得543a b c ===,,,35e =∴ 故由题意有:1625925122222==+-=-=-||||()()MF MF a ex a ex a e x x ·, 解得:x =±5。

高中数学破题致胜微方法(椭圆的基本性质):13.椭圆的通径 Word版含答案

高中数学破题致胜微方法(椭圆的基本性质):13.椭圆的通径 Word版含答案
(Ⅰ)求椭圆的方程;
(Ⅱ)设A, B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若 ,求k的值.
2.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为()
A. B.
C. D.
3.已知椭圆 的左、右焦点分别是 、 ,点P在椭圆上.若P、 、 是一个直角三角形的三个顶点,则点P到 轴的距离为()
A. B.
C. D. 或
3.
, 故答案选D.
再看一个例题,加深印象
例:已知椭圆 的左、右焦点分别是 、 ,点P在椭圆上.如果线段
的中点在y轴上,那么 是 的()
A. 7倍B. 5倍C. 4倍D. 3倍
再由椭圆的性质可知:
即本题选A.
总结:ห้องสมุดไป่ตู้
1.椭圆通径是过椭圆的一个焦点垂直于长轴的弦。
2.过椭圆焦点的所有弦中,通径最短。
练习:
1.设椭圆 的左焦点为F,离心率为 ,过点F且与x轴垂直的直线被椭圆截得的线段长为 .

今天我们介绍椭圆的通径。椭圆通径是过椭圆的一个焦点垂直于长轴的弦。过椭圆焦点的所有弦中,通径最短。
先看例题:
例:已知椭圆C: 的右顶点为A(1,0),过C的焦点且垂直长轴的弦长为1.求椭圆C的方程.
所以M、N坐标可表示为
由已知弦长为1得: 从而
因此,所求的椭圆方程为 .
焦点在x轴的椭圆 的通径:

(完整word版)高考数学椭圆填空题题集(附答案)

(完整word版)高考数学椭圆填空题题集(附答案)

椭圆填空题11、(1)离心率一条准线方程为x=的椭圆的标准方程为________________;(2)短轴端点与焦点间的距离等于5,一条准线的方程是椭圆的方程为___________________。

2、(1)上有一点P到右焦点的距离为1,则P的坐标为_______;(2)AB A、B的横坐标之和为-7,。

3、椭圆的中心在原点,一个焦点为F(0,6),中心到准线的距离为10,则椭圆方程为___。

4、椭圆的中心在原点,短轴端点到焦点的距离是6,一条准线方程是y=9,则椭圆方程为_____________.5、b= 。

6、(1)y2=1上点P到右焦点F P到左准线的距离为______;(2)1:3,则这点到左、右准线的距离分别为_______________。

7、(1)中心在原点,长半轴长与短半轴长的和为0.6的椭圆的方程为________;(2)对称轴是坐标轴,(2,0)的椭圆的方程是_______。

8、(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________;(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________。

9、的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____。

10、m= 。

11、一个椭圆的中心在原点,焦点在x 轴上,离心率为36,一条准线为x=3,则该椭圆的方程是____.12、椭圆的一个焦点和短轴两端点连成三角形,这个三角形有一个角为120°,则该椭圆的离心率为____.13、椭圆的准线间的距离是焦距的2倍,则它的离心率为____。

14、椭圆的长、短轴都在坐标轴上,长、短轴的长度之和为36,离心率为53,则椭圆方程为_____。

15、椭圆的中心在原点,一个顶点为(2,0)且短轴长等于焦距则椭圆的方程为___。

16、椭圆13610022=+y x 上一点M 到左、右焦点的距离之比为1:3,则点M 到左准线的距离为___。

2020年高考数学一轮复习专题10.6椭圆双曲线抛物线的离心率与渐进线练习(含解析)

2020年高考数学一轮复习专题10.6椭圆双曲线抛物线的离心率与渐进线练习(含解析)

第六讲 椭圆双曲线抛物线的离心率与渐进线求离心率的三种方法(1)直接求出a ,c 来求解e .通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.注意:在解关于离心率e 的二次方程时,要注意利用不同曲线的离心率范围进行根的取舍,否则将产生增根.考向一 椭圆的离心率【例1】(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为 。

(2)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“∠PF 2F 1=75°,∠PF 1F 2=45°”,求C 的离心率. (3)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“C 上存在点P ,使∠F 1PF 2为钝角”,求C 的离心率的取值范围.【答案】(1)33 (2)6-22 (3)⎝ ⎛⎭⎪⎫22,1 【解析】解法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.解法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). (2)在△PF 1F 2中,∵∠PF 1F 2=45°,∠PF 2F 1=75°,∴∠F 1PF 2=60°,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,椭圆的长轴长为2a ,则在△PF 1F 2中,有m sin 75°=n sin 45°=2csin 60°,∴m +nsin 75°+sin 45°=2c sin 60°,∴e =c a =2c 2a =sin 60°sin 75°+sin 45°=6-22.(3)由题意,知c >b ,∴c 2>b 2.又b 2=a 2-c 2,∴c 2>a 2-c 2,即2c 2>a 2.∴e 2=c 2a 2>12,∴e >22.故C 的离心率的取值范围为⎝ ⎛⎭⎪⎫22,1.【举一反三】1. 设F 1,F 2是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF △ 是底角为30︒的等腰三角形,则椭圆E 的离心率为___________; 【答案】34【解析】如图,设直线32ax =交x 轴于D 点,因为21F PF △是底角为30︒的等腰三角形,则有122F F F P =,因为1230PF F ∠=︒,所以260PF D ∠=︒,230DPF ∠=︒,所以22121122DF F P F F ==,即31222a c c c -=⨯=,即322a c =,即34c a =,所以椭圆E 的离心率34c e a ==2. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为___________.【答案】5【解析】设F (c ,0),则222c a b =- 由题意,易得直线A 1B 2,B 1F 的方程分别为1x y a b +=-,1x yc b+=- 将上述两个方程联立,求解可得点T 的坐标为T 2()(,)ac b a c a c a c+--,则M ()(,)2()ac b a c a c a c +-- 又点M 在椭圆上,所以2222()1()4()c a c a c a c ++=--,整理得221030c ac a +-= 两边同时除以2a ,可得21030e e +-=,解得5e =或5e =-(舍去)3.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 。

高考数学复习选填题专项练习35---离心率(解析版)

高考数学复习选填题专项练习35---离心率(解析版)

高考数学复习选填题专项练习35---离心率第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·甘肃高三模拟)若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直,则该双曲线的离心率为( )A .2 BC D .【答案】B 【解析】【分析】由题中垂直关系,可得渐近线的方程,结合222c a b =+,构造齐次关系即得解【详解】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直.∴双曲线的渐近线方程为12y x =±.12b a ∴=,得2222214,4b a c a a =-=.则离心率2c e a ==.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.2.(2020·山西高三模拟)已知椭圆C :22221,(0)x y a b a b+=>>的左焦点为F ,若点F 关于直线0x y +=的对称点G 在椭圆C 上,则椭圆的离心率为( )A B C .23D 【答案】B 【解析】【分析】根据椭圆的几何性质及点关于直线的对称点可得G 点坐标,代入椭圆方程即可确定a 与c 的关系,进而得离心率.【详解】椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,则椭圆焦点(,0)F c -,点F 关于直线0x y +=的对称点G 在椭圆C 上,则(0,)G c ,因为G 在椭圆上,代入可得22201c a b+=,则b c =,由222a b c =+可得a =,所以2c e a ==,故选:B. 【点睛】本题主要考查椭圆的几何性质及简单应用,点关于直线对称点问题,属于基础题.3.(2020·河北石家庄二中高三月考)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,122PF PF =,且260MF N ∠=o ,则双曲线C 的离心率为( )A B CD 【答案】B 【解析】【分析】利用定义求出14PF a =,22PF a =,根据双曲线的对称性可得12MF PF 为平行四边形,从而得出1260F PF ∠=o,在12F PF ∆内使用余弦定理可得出a 与c 的等量关系,从而得出双曲线的离心率.【详解】由题意,122PF PF =,122PF PF a -=,14PF a ∴=,22PF a =.连接1MF 、2MF ,根据双曲线的对称性可得12MF PF 为平行四边形,260MF N ∠=oQ ,1260F PF ∴∠=o ,由余弦定理可得2224164242cos60c a a a a =+-⋅⋅⋅o ,c ∴=,ce a∴==,故选B. 【点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的等式,从而求出e 的值.本题是利用点到直线的距离等于圆半径构造出关于e 的等式,最后解出e 的值.4.(2020·河南高三月考)已知点,M N 是椭圆()2222:10x y C a b a b +=>>上的两点,且线段MN 恰为圆()2220x y r r +=>的一条直径,A 为椭圆C 上与,M N 不重合的一点,且直线,AM AN 斜率之积为13-,则椭圆C 的离心率为( )A .13 B .23 C.3D.3【答案】D 【解析】【分析】由题意知点,M N 关于原点对称,设出,,M N A 的坐标并代入椭圆方程,利用直线,AM AN 斜率之积为13-列方程,化简后求得22b a,由此求得椭圆离心率.【详解】由题意知点,M N 关于原点对称,设(),M s t ,则(),N s t --,设()00,A x y ,由22221s t a b+=,2200221x y a b +=相减得22202220t y b s x a -=--,所以222000222000AM AN t y t y t y b k k s x s x s x a ----⋅=⋅==-----,所以2213b a =,椭圆C的离心率为3e ==.故选:D . 【点睛】本小题主要考查椭圆离心率的求法,考查化归与转化的数学思想方法,属于中档题.5.(2020·河南高三月考)已知椭圆()22122:10x y C a b a b +=>>的离心率与双曲线22222:1x y C a b-=的离心率的一个等比中项为2,则双曲线2C 的渐近线方程为( ) A .14y x =±B .12y x =±C.y x =D.y = 【答案】D 【解析】【分析】根据等比中项的性质列方程,化简后求得ba,进而求得双曲线2C 的渐近线方程. 【详解】由题意得222222916a b a b a a -+⋅=,所以4716b a ⎛⎫= ⎪⎝⎭,b a=,所以双曲线2C 渐近线方程为2y x =±.故选:D . 【点睛】本小题主要考查等比中项的性质,考查椭圆和双曲线的离心率,考查双曲线的渐近线方程的求法,属于基础题.6.(2020·广东省普宁市华美实验学校高三月考)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2 BCD【答案】A【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).7.(2020·重庆一中高三月考)椭圆C :22221x y a b+=(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1A 与y 轴相交于点D ,若BD ⊥F 1A ,则椭圆C 的离心率等于( )A .13BC .12D【答案】D 【解析】【分析】由题意可得A ,B 的坐标,且知点D 为1F A 的中点,再由1BD F A ⊥,利用斜率之积等于1-列式求解.【详解】由题意可得,2(,)b A c a ,2(,)b B c a -,则点D 为1F A 的中点,2(0,)2b D a∴,由1BD F A ⊥,得11BD F A k k =-g ,即222212b b b a a a c c--=-g22ac =,∴22)2a c ac -=2+20e =,解得3e =.【点睛】本题考查椭圆的简单几何性质,考查两直线垂直与斜率的关系,是中档题.8.(2020·浙江省桐乡市高级中学高三一模)已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取得最大值时,点P 恰好在以,A F 为焦点的椭圆上,则椭圆的离心率为( ) A1 B1C.12D.12【答案】B 【解析】【分析】设(),P x y ,利用两点间的距离公式求出m 的表达式,结合基本不等式的性质求出m 的最大值时的P 点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设(),P x y ,因为A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,所以()()0,1,0,1A F -,则PA m PF====,当0y =时,1m =,当0y >时,m ==≤= 当且仅当1y =时取等号,∴此时()2,1P ±,2PA PF ==,Q 点P 在以,A F 为焦点的椭圆上,22c AF ==,∴由椭圆的定义得22a PA PF =+=,所以椭圆的离心率212c c e a a ====,故选B. 【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.9.(2020·全国高三月考)双曲线22221(0,0)y x a b a b-=>>的上焦点为(1F ,点A 的坐标为(1,0),点P 为双曲线下支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )A B C .2D .【答案】D 【解析】【分析】由题意可得1||3AF =,可得1||||PA PF +的最小值为5,设2F 为双曲线的下焦点,由双曲线的定义可得2||||2PA PF a ++的最小值为4,当A ,P ,2F 三点共线时,取得最小值,可得1a =,由离心率公式可得所求值.【详解】双曲线22221(0,0)y x a b a b-=>>的上焦点为1(0F ,,点A 的坐标为(1,0),1||3AF =,三角形1APF 的周长的最小值为8,可得1||||PA PF +的最小值为5,又2F 为双曲线的左焦点,可得12||||2PF PF a =+,当A ,P ,2F 三点共线时,1||||PA PF +取得最小值,且为2||3AF =,即有325a +=,即1a =,c =ce a==D .【点睛】本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力.10. (2020·福建省连城县第一中学高三一模)已知椭圆22y a +22x b=1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( )A .2B .2C .14D .14【答案】A 【解析】【分析】联立直线与椭圆方程求出交点A ,B 两点,利用平面向量垂直的坐标表示得到关于,,a b c 的关系式,解方程求解即可.【详解】联立方程222211y x a b y x a b ⎧+=⎪⎪⎨⎪-=⎪⎩,解方程可得0x y a =⎧⎨=⎩或0x b y =-⎧⎨=⎩,不妨设A (0,a ),B (-b ,0),由题意可知,BA u u u r ·BF u u u r=0,因为(),BA b a =u u u r ,(),BF b c =-u u u r ,由平面向量垂直的坐标表示可得,0b b ac ⋅-=,因为222b a c =-,所以a 2-c 2=ac ,两边同时除以2a 可得,210e e +-=,解得e=2或12e -=(舍去),所以该椭圆的离心率为2.故选:A 【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于,,a b c 的关系式是求解本题的关键;属于中档题、常考题型。

高中数学-《1椭圆的简单几何性质-离心率问题》 - 副本

高中数学-《1椭圆的简单几何性质-离心率问题》 - 副本

x2 a2
y2 b2
1(a
b
0)
的左、右焦点分别
为 F1(c,0), F2(c,0) , 若 椭 圆 上 存 在 一 点 P 使
a sin PF1F2
c sin PF2F1
,则该椭圆的离心率的取值范围
为 2 1 e 1 .
x2
链接高考:已知椭圆 a2
y2 b2
1 (a
b 0) 的左焦点为
F,右顶
1
1
C.2
D.3
类型二:构造a,c的齐次方程
类型三:寻找a,b,c的不等式求离心率的范围
2 e1 2
总结:与椭圆焦点三角形有关的问题有意考查椭
圆的定义、正弦定理或余弦定理、三角形边的关系、
面积公式、基本不等式等,其中包含关于
的等
量关系和不等关系,借此可确定离心率的值或取值
范围.
变式
3、已知椭圆
点为 A,点 B 在椭圆上,且 BF x 轴, 直线 AB 交 y 轴于
点 P.若 AP 2PB ,则椭圆的离心率是( )
3 A. 2
2
B. 2
1 C. 3
1 D. 2
小结:
•一种问题: 离心率的求法 •两种题型: (1)直接求出a、c
(2)建立关于a、c的关系 •三种方法: (1)利用几何特征z··x·x·····k··
——椭圆的离心率
标准方程 范围 对称性 顶点坐标 焦点坐标 轴长 离心率 a、b、c 的关系
x2 a2
y2 b2
1(a
b
0)
|x|≤ a,|y|≤ b
关于x轴、y轴成b)、
( c,0)
长轴长为2a, 短轴长为2b. a>b e c (0 e 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

今天我们研究构造齐次方程求椭圆的离心率。

椭圆的几何性质中,离心率问题是重点。

根据题设条件,借助a ,b ,c 之间的关系,构造a ,c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

先看例题:
例:椭圆22
221x y a b
+=(a>b>0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.
22
2155c e e a ==⇒= 规律整理:
构造齐次方程求离心率的一般方法
先列出关于a ,b ,c 的齐次方程,然后根据222
b a
c =-消去b ,
进而,方程两边同时除以a 2(a 4等,由方程的次数决定)
转化成关于e 的方程求解。

再看一个例题,加深印象 例:如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22
221x y a b
+=(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.
联立①②可得两直线交点T 的坐标为2()(,)ac b a c a c a c
+--, 则线段OT 的中点M 的坐标为()(,)2()
ac b a c a c a c +--, 代入椭圆22
221x y a b
+=,可得4c 2+(a +c )2=4(a -c )2,两边同时除以a 2 即得关于离心率的方程:e 2
+10e -3=0,
解之得5e =-±e ∈(0,1),∴5e =.
总结:
1.根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系.
2.在a 、c 的关系式中除以a 的合适次数,得到关于e 的齐次方程,解得离心率e . 练习: 1.椭圆x 2a 2+y 2
b 2=1(a >b >0)的半焦距为
c ,若直线y =2x 与椭圆的一个交点P 的横坐标恰为c , 则椭圆的离心率为
( ) A.2-22 B.22-12 C.3-1 D.2-1
2. 已知椭圆22
221x y a b
+=(a >b >0)的两个焦点分别为F 1(-c ,0)和 F 2(c ,0)(c >0),过点2
(,0)a E c
的直线与椭圆相交于A ,B 两点,且 F 1A ∥F 2B ,|F 1A |=2|F 2B |.
(Ⅰ)求椭圆的离心率;
(Ⅱ)求直线AB 的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在
1
AFC的外接圆上,
求n
m
的值.
答案:
从而e=2-1. 答案 D
2.。

相关文档
最新文档