隧道断面快速测量方法

合集下载

隧道断面测量与设计断面录入方法

隧道断面测量与设计断面录入方法

隧道断面测量与设计断面录入方法隧道断面测量方法与数据格式实测隧道断面时,只需要采集到断面上各点的三维坐标即可,在开始采集数据时(第一个点)在点属性中写入特定的标记信息。

可按如下方法:(1) 在已知平面坐标和高程的测站上架设全站仪,设置仪器为地形点碎步测量的方式,记录格式为“点号,X,Y,Z,点属性”;(2) 输入已知坐标和量取的仪器高度设站,后视另一平面已知点定向,然后使仪器转到隧道横断面方向,任意测量一个点,在点属性中记入“CHA-里程值”。

如果里程值不准确,请在里程之前加一个“*”。

提示:最好在表示新断面开始的CHA-记录行中,测点的坐标中输入测站点的坐标。

(3) 以线路前进方向为准,顺时针方向采集断面点,直到本断面测量结束。

如果测量的顺序是逆时针方向,利用GS P软件可以将断面数据逆转过来。

提示:如果仪器面向线路的起始方向(小里程方向),则测量断面的顺序应为逆时针方向。

提示:如果实测断面点的顺序不对,会影响GSP计算超欠挖面积,对于超欠值的计算没有影响。

(4) 在一个测站上不能测量出该断面所有的断面点时,可以分多次测量,利用GSP软件的断面拼接功能拼接起来即可。

测量完成,下载记录的断面数据文件。

GSP处理的是从全站仪中记录的三维坐标数据。

一般的全站仪都有测量地形图的功能,记录地形点的坐标和点属性,文本格式为:点号,X,Y,Z,点属性如果您的记录格式不是这样的格式,请在全站仪中设置记录格式,或编辑转换成上述格式。

GSP要求在每一个新的断面开始时,在点属性中记录“CHA-0000”。

其中“CHA-”表示新的断面测量开始,“0000”表示断面的中线里程,如果您不知到该断面的里程,请用“*”代替,GSP自动计算。

这个点的坐标记录测站点的坐标。

对于点号,GSP忽略。

以下为例:0,2893106.665,472382.214,65.286,CHA-* 1,2893106.665,472382.214,65.2862,2893106.929,472382.455,66.3733,2893107.057,472382.572,68.4724,2893106.851,472382.384,69.9875,2893106.583,472382.139,70.9366,2893106.063,472381.665,72.0217,2893105.486,472381.138,72.9318,2893104.894,472380.598,73.5999,2893104.162,472379.93,74.20710,2893103.252,472379.1,74.7111,2893102.361,472378.286,74.96812,2893101.337,472377.352,75.04713,2893100.335,472376.437,74.83214,2893099.249,472375.446,74.27115,2893098.711,472374.956,73.82316,2893098.156,472374.449,73.18117,2893097.695,472374.029,72.4918,2893097.231,472373.605,71.6319,2893097.016,472373.409,71.11120,2893096.785,472373.198,70.34921,2893096.662,472373.086,69.72622,2893096.517,472372.954,68.83823,2893096.507,472372.944,67.57724,2893096.598,472373.027,66.64925,2893096.716,472373.136,65.9526,2893096.855,472373.262,65.290,2893113.711,472375.106,65.591,CHA-* 1,2893113.711,472375.106,65.5912,2893113.818,472375.203,66.5093,2893113.752,472375.143,68.5874,2893113.542,472374.952,70.0455,2893113.079,472374.529,71.5496,2893112.431,472373.938,72.6727,2893111.807,472373.369,73.5178,2893111.083,472372.708,74.2119,2893110.13,472371.838,74.74710,2893108.841,472370.662,75.04911,2893107.77,472369.685,74.94612,2893106.992,472368.975,74.68913,2893105.698,472367.793,73.90714,2893105.02,472367.175,73.22615,2893104.259,472366.481,72.11616,2893103.71,472365.98,70.84717,2893103.377,472365.676,69.54418,2893103.267,472365.576,68.18819,2893103.305,472365.61,67.4320,2893103.404,472365.7,66.63721,2893103.538,472365.822,65.93222,2893103.648,472365.924,65.35设计断面录入方法利用GSP录入隧道设计断面的步骤如下:1、打开设计断面图,标注出线路中线位置和设计标高位置;2、选择设计断面录入的起点,并计算出其断面坐标(距离线路中线和设计标高线的距离);如果是对称图形,建议选择在拱顶位置,然后输入右半断面图形数据;如下图所示的对称隧道断面,由几段相切的圆弧组成。

工程测量中的断面测量技术与数据处理方法

工程测量中的断面测量技术与数据处理方法

工程测量中的断面测量技术与数据处理方法随着现代工程技术的快速发展,工程测量在土木、建筑、交通等领域起着至关重要的作用。

而其中的断面测量技术与数据处理方法更是在工程项目中不可或缺的环节。

本文将从多个方面探讨工程测量中的断面测量技术与数据处理方法,并介绍实践中的应用。

一、断面测量技术的基本原理断面测量是工程测量中常用的一种方法,用于测量给定区域的横截面特征。

最常见的断面测量技术之一是激光扫描测量。

激光扫描测量利用激光束对目标物进行扫描,通过测量激光束的反射或散射信号来获得目标物的几何信息。

该技术具有高精度、高效率和非接触性的特点。

另一种常见的断面测量技术是雷达测高。

雷达测高利用电磁波在空间传播的原理,通过测量电磁波的发送和接收时间来计算目标物的高度。

这种技术在地形测量、建筑物测量以及交通设施测量等方面有着广泛的应用。

二、断面测量数据的处理方法在断面测量完成后,需要对所得到的数据进行处理和分析,以便得出详细的结论和结果。

以下将介绍几种常见的断面测量数据处理方法。

1. 数据清理与筛选在激光扫描测量中,受到环境因素的干扰,测量数据中可能会存在噪声等无效信息。

因此,在进行数据处理之前,需要对原始数据进行清理与筛选,剔除无效点和异常点,保留可靠的测量数据。

这可以通过滤波、去噪等算法实现。

2. 数据配准与融合在工程测量中,将多个断面测量数据进行配准与融合,可以得到更全面、准确的测量结果。

配准是指将多个测量数据转换到同一个坐标系下,以便进行统一的分析和比较。

融合是指将多个测量数据合并成一个整体数据,以展示整体的横截面特征。

3. 数据分析与可视化通过对断面测量数据进行分析和可视化处理,可以获得更详细的结论和结果。

数据分析可以采用统计分析、回归分析等方法,得出相应的测量参数和趋势。

而可视化处理可以利用地理信息系统(GIS)软件等工具,将测量数据以图形方式展示,更直观地显示目标物的形状和特征。

三、断面测量技术与数据处理方法的应用实例1. 建筑物测量断面测量技术在建筑物测量中有着广泛的应用。

盾构隧道断面测量技术

盾构隧道断面测量技术

盾构隧道断面测量技术浅述摘要:结合广州地铁三号线[天~华]两个区间段隧道施工测量工作的实践,介绍如何用水准仪和全站仪,进行地铁盾构隧道断面测量。

关键词:盾构隧道;断面测量;高程放样;三维坐标;偏差中图分类号: u45文献标识码:a 文章编号:1 概述盾构法隧道断面测量不同于一般的矿山法隧道断面测量,它是在隧道全面贯通后才进行的,是盾构隧道施工测量的最后工作,用以检测已成型的隧道是否有侵入限界。

它已无法改变既有的形状,对隧道的开挖没有实际的控制作用。

但业主设和计单位要根据断面测量的成果,确定是否要对原设计的线路进行调整,以满足行车及其他设备安装的需要。

2 测量要求盾构法隧道一般为圆形隧道,由多块预制管片拼装而成型,断面测量要求是:在指定的位置进行测量,每个断面测量10个点,如图形1。

顶部和底部测量其高程,计算两点间的高差,其他各点则是测量其到设计中线的横距(即水平距离)。

测量精度要求是里程误差<±50mm,点位高程误差<±10mm、横距误差<±10mm。

点位精度要求是比较高的。

盾构隧道断面测量要求是,曲线段4.5米,直线段9米测量一个断面。

每个断面测量10个点,这样的工作量是比较大。

因此要满足精度要求,又有较高的工作效率,选择适合的仪器和测量方法是比较重要的。

购买昂贵的隧道断面仪,仅能用于隧道断面测量,投资太大不合适。

为节省投资,在广州地铁三号线[天河客运站~华师站]盾构区间中,我们采用了水准仪配合全站仪,测量断面点三维坐标的方法进行断面测量,取得了很高的效率。

3 测量步骤3.1待测断面高程放样高程放样是指按断面测量的要求,在待测断面相应里程处的隧道管片,放样出具体的位置,一般是与轨面高相隔一定高度的位置,如上图1中左右两边上、中1、中2、下8个点。

盾构隧道施工过程中,要进行环片姿态测量的,因此每环的前端里程实际都已经知道,依据线路设计的轨面竖曲线要素,可求出各环对应里程处的轨面高程,则其他各点的高程也可以由相关尺寸求得。

隧道工程测量的步骤

隧道工程测量的步骤

隧道工程测量的步骤一、前期准备工作隧道工程的测量工作需要在施工前进行充分的准备工作,包括制定测量方案、确定测量基准等。

在这一步骤中,测量人员需要详细了解隧道的设计要求,熟悉隧道的地理环境,确定测量的范围和目标,并准备好所需的测量仪器和设备。

二、测量基准的确定测量基准是隧道工程测量的基础,它决定了测量结果的准确性和可比性。

在确定测量基准时,需要选择合适的基准点,并使用精密水准仪等仪器进行测量,以确保基准点的高程和坐标值的准确性。

三、隧道轴线的测量隧道轴线的测量是隧道工程测量的重要内容之一。

测量人员需要根据设计图纸上的坐标值和角度,使用全站仪等仪器对隧道轴线进行测量。

测量过程中,需要注意测量仪器的放置位置和测量点的选择,以保证测量结果的准确性。

四、隧道断面的测量隧道断面的测量是为了了解隧道的几何形状和尺寸,以便进行后续的施工和验收工作。

测量人员需要根据设计要求,选择合适的测量方法和仪器,对隧道断面的高程和平面坐标进行测量。

在测量过程中,需要注意测量点的选择和测量仪器的使用方法,以确保测量结果的准确性。

五、隧道内部测量隧道内部测量是为了了解隧道内部的空间形状和尺寸,以便进行后续的施工和安装工作。

测量人员需要进入隧道内部,使用测距仪、激光测距仪等仪器对隧道内部进行测量。

在测量过程中,需要注意测量点的选择和测量仪器的使用方法,以确保测量结果的准确性。

六、隧道变形监测隧道工程在施工过程中,由于地质条件和施工工艺的影响,可能会出现隧道的变形和沉降现象。

为了及时发现和监测隧道的变形情况,测量人员需要进行隧道的变形监测工作。

监测方法包括使用测距仪、全站仪等仪器对隧道的变形进行测量,并将监测数据进行记录和分析。

七、测量数据的处理和分析测量数据的处理和分析是隧道工程测量的最后一步。

测量人员需要使用计算机软件对测量数据进行处理和分析,以获得准确的测量结果。

在处理和分析过程中,需要注意数据的准确性和可靠性,排除误差和异常数据,并进行合理的数据分析和解释。

隧道测量规范

隧道测量规范

隧道测量规范隧道测量是指在隧道建设中进行各种测量工作,包括地形测量、控制测量、隧道内部尺寸测量、隧道验收测量等。

隧道测量的目的是为了控制隧道的位置和尺寸,确保隧道的安全和质量。

下面是一份隧道测量规范的简要介绍,包括测量设备、测量方法和测量要求等。

1. 测量设备隧道测量需要使用一系列专业的测量设备,包括全站仪、测高仪、电子经纬仪、控制点测量仪等。

这些设备应具备高精度、高稳定性和抗干扰能力,能够适应不同的测量环境和要求。

2. 测量方法(1)地形测量:地形测量是在隧道建设前进行的重要测量工作,包括地表地形测量和地下管线测量。

地形测量可以利用全站仪、测量车等设备进行,测量结果应准确、完整、可靠。

(2)控制测量:控制测量是为了控制隧道位置和尺寸的测量工作,包括控制点设置和控制点测量。

控制点测量应使用高精度的测量设备,并采用精确的测量方法,确保测量结果的准确性和可靠性。

(3)隧道内部尺寸测量:隧道内部尺寸测量是为了控制隧道断面尺寸的测量工作,包括横断面测量、纵断面测量和挖头位置测量等。

隧道内部尺寸测量应使用高精度的测量设备,采用适当的测量方法,测量结果应满足设计和施工要求。

3. 测量要求(1)测量精度要求:隧道测量的精度要求根据不同的测量任务和工程要求确定。

一般来说,地形测量的精度要求为1:500~1:1000,控制测量和隧道内部尺寸测量的精度要求为±2mm。

(2)测量报告要求:隧道测量应及时记录测量数据,并编制详细的测量报告。

测量报告应包括测量任务、测量设备、测量方法、测量数据和测量结果等内容,报告应符合国家和行业相关标准的要求。

(3)测量安全要求:隧道测量应保证测量人员的安全。

在进行测量工作时,应严格按照相关安全规定操作,采取必要的防护措施,确保测量工作的安全进行。

以上是对隧道测量规范的简要介绍,隧道测量是隧道建设中不可或缺的一部分,对于隧道的安全和质量具有重要的影响。

隧道测量应按照规范的要求进行,不仅要求测量设备的高精度和稳定性,还需要测量人员具备专业的测量知识和技能,以保证测量结果的准确性和可靠性。

隧道工程测量的步骤

隧道工程测量的步骤

隧道工程测量的步骤———送给初入隧道施工测量之门的同僚当你接到隧道施工工程,无论是被派遣或私人老板雇佣,第一、要先做隧道进口和出口控制网,为保证进出口坐标系统一致,需要以导线形式或三角锁形式联测,当然GPS更好。

如果有支洞,斜井,不管几个均需要将进口的控制点纳入整个控制网中,观测、平差计算。

其目的是为了保证所有控制点坐标、高程一致,同精度,防止隧道贯通出现偏差。

如果设计单位在这些部位提供的有平面、高程控制网点,你一定要进行复核测量,以免误用而造成不可挽回的经济损失。

如果工程是国家正规工程,你应在施测前或过程中上报监理一份布设控制网的设计报告,在结束的时候报一份技术总结供审批。

没有要求的或工程较小,这两项可合并一起,在建立控制网后写出报批。

第二、应根据控制网做好贯通误差估算,贯通误差限差要求请见相关规范。

如果贯通误差大于规范要求,需要对控制网进行优化,以满足规范要求。

第三、当控制网建立后(包括控制网点复核测量合限),即可按照设计图纸提供的坐标,将隧道轴线包括支洞、斜井轴线方向控制点在实地稳固标定,位置应选在开挖区以外的适当位置,防止被破坏,但又不要离开挖区过远,使用不便。

上述工作完成后,即可进行隧道进出口包括支洞,斜井进口的洞脸开挖放样。

开口线的测定应依照图纸,并换算出与控制轴线点的相互关系,用全站仪采用逐近法直接测定。

同时应测定洞脸开挖前的原始断面图或测绘不小于1/200的地形图,有地形图软件的话,在室内切出断面图,以供工程量计算之用(如果测地形图,需征得现场监理同意后方可或要求他旁站)。

注意:应根据图纸核对洞脸实际里程是否正确。

防止造成超欠挖。

如果无免棱镜功能全站仪,在洞脸开完逐渐向下的过程中,应将开挖后的断面逐渐测下来,随时检查是否存在欠挖部位,也免得开挖完成后,测绘断面困难,第四、当洞脸形成后,根据图纸,及施工组织设计和措施,将隧道的轮廓开挖线在洞脸上标出,其轮廓点间距不应大于50cm。

为了不至于欠挖,轮廓点可大于半径5cm放样,一般宁超不欠,但不可过大免得形成过量超挖。

隧道测量实用知识点总结

隧道测量实用知识点总结

隧道测量实用知识点总结一、测量仪器的选择和使用1. 高精度全站仪:在隧道测量中,高精度全站仪是一种非常常用的测量仪器。

它具有测角、测距和测高等功能,可用于测量隧道轴线、截面和地形等。

在选择全站仪时,应根据具体的测量要求和工程环境,选择合适的测距精度、角度精度和工作温度范围等参数。

在使用全站仪时,应注意保持仪器的稳定性和观测的准确性,避免在强风、雨雪等恶劣天气条件下进行测量。

2. 激光测距仪:激光测距仪是一种用激光束测量距离的专业测量仪器。

在隧道测量中,它可用于快速测量通风孔、道岔口、排水孔等位置的坐标和高程。

在选择激光测距仪时,应注意其测距精度、测距范围和工作稳定性等指标。

在使用激光测距仪时,应选择合适的测量环境,避免在强光、强尘、多雾等情况下进行测量。

3. 激光测量仪:激光测距仪和激光测量仪在外形上很相似,但在功能上有一定区别。

激光测距仪主要用于测量点到点的距离,而激光测量仪则可用于复杂地形和结构的三维测量。

在隧道测量中,激光测量仪可以用于测量隧道断面、支护结构和地质构造等。

4. GPS测量仪:全球定位系统(GPS)是一种用于测量地球表面坐标的卫星导航系统。

在隧道测量中,GPS可以用于测量隧道入口和出口的地理位置,以及隧道上部地质构造的坐标。

在选择GPS测量仪时,应考虑其测量精度、多路径效应和信号强度等因素。

在使用GPS测量仪时,应尽量选择没有遮挡的开阔地区进行观测,避免遮蔽信号和增加误差。

5. 其他测量仪器:除了以上常用的测量仪器外,还有一些其他特殊用途的仪器可以用于隧道测量,如探地雷达、地形扫描仪、便携式高精度测距仪等。

在选择和使用这些仪器时,应根据具体的测量任务和工程要求,进行合理的选择和布设。

二、隧道测量的原理和方法1. 点的测量:隧道测量中,点的测量是最基本的工作之一。

包括定位点的坐标和高程、关键控制点的坐标和走向、隧道截面点的坐标和形状等。

在点的测量中,应注意选择合适的测量方法,如单次测距法、交会测量法、三角测量法等,确保测量的准确性和可靠性。

隧道断面仪测量原理

隧道断面仪测量原理

隧道断面仪测量原理隧道断面仪是一种用于测量隧道断面形状和尺寸的仪器。

它通过测量隧道内部的各个点的坐标,然后根据这些坐标计算出隧道的断面形状和尺寸。

隧道断面仪的测量原理主要包括测量原理和计算原理两个方面。

一、测量原理隧道断面仪的测量原理是基于三角测量原理和激光测距原理。

具体步骤如下:1. 安装:首先,将隧道断面仪安装在隧道内部的一个固定位置上,通常是在隧道的顶部或者底部。

安装时需要确保仪器的水平度和稳定性。

2. 激光测距:隧道断面仪通过发射激光束,然后接收激光束的反射信号来测量隧道内部各个点的距离。

激光测距原理是利用激光束的光速和反射信号的时间差来计算距离。

3. 角度测量:隧道断面仪还需要测量隧道内部各个点的水平角度和垂直角度。

这可以通过仪器内部的陀螺仪和加速度计来实现。

4. 坐标测量:通过激光测距和角度测量,隧道断面仪可以得到隧道内部各个点的坐标。

这些坐标可以表示为三维坐标系中的点,也可以表示为二维坐标系中的点。

二、计算原理隧道断面仪的计算原理是基于三角计算和数学模型。

具体步骤如下:1. 数据处理:首先,将测得的各个点的坐标数据进行处理,包括数据的滤波、平滑和校正等。

这些处理可以提高数据的精度和准确性。

2. 坐标计算:通过测得的各个点的坐标数据,可以计算出隧道的断面形状和尺寸。

这可以通过三角计算和插值计算来实现。

三角计算可以计算出隧道的各个点之间的距离和角度,插值计算可以计算出隧道的断面形状。

3. 数据输出:最后,将计算得到的隧道断面形状和尺寸数据输出到计算机或者显示屏上。

这样,用户就可以直观地了解到隧道的断面形状和尺寸。

总结起来,隧道断面仪的测量原理主要包括测量原理和计算原理两个方面。

测量原理是基于三角测量原理和激光测距原理,通过测量隧道内部各个点的坐标来计算隧道的断面形状和尺寸。

计算原理是基于三角计算和数学模型,通过处理测得的坐标数据和进行计算,最终得到隧道的断面形状和尺寸数据。

隧道断面仪的测量原理和计算原理的应用可以提高隧道工程的设计和施工的精度和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道断面快速测量方法 隧道施工中各种工序衔接紧凑,平行作业、交叉施工的工程很多,且洞内作业面狭小,如排风不畅,空气质量差,红外线测量仪器反射信号太弱,往往无法进行测量工作。测量工作在隧道开挖施工中非常重要,它控制着隧道开挖的平面、高程和断面几何尺寸,关系到隧道的贯通。为满足测量工作需要,需选择关键工序工作面污染小的时间,停止一些次要工序提前加大排风来满足测量工作条件。若测量工作占用时间过长,将直接影响工程进度和经济效益。如何及时、准确的提供测量成果,使用的仪器和方法便成了重要因素。花几十万买一台隧道断面仪,仅能用于隧道断面测量,投资太大,为节省投资可采用全站仪配隧道断面测量软件来完成。用全站仪进行外业数据采集后,再对采集的数据进行分析。数据分析可用台式、便携电脑,也可用可编程计算器进行。现将三数据分析方法列于表从表-1可以看出,采用可编程计算器进行分析,内外业用时最少,测量

工作对工程作业时间影响最小。本文将对这种方便、快捷的测量和计算方法进行分析与介绍。

隧道断面单点测量耗时比较表 表-1

序号 仪器型号 配套设备 外业平均用时(min) 内业平均用时(min)

1 天宝 笔记本电脑及隧道断面软件 25 6

2 徕卡 台式电脑及隧道断面软件 8 5 3 徕卡 台式电脑及隧道断面软件 6.5 7 4 徕卡 CASIO FX—4500计算器 5 0 1极坐标断面测量法 1.1极坐标系的建立 图—1是一个隧道断面,垂直方向(高程)为纵轴,用表示;水平方向(距线路中线的距离)为横轴,用B表示。 图---1 圆心纵坐标等于路线设计高程减设计高程线至隧道中心的距离乘横坡比,加圆心至路面的高度。用公式()表示。

O=S-b×i+h=S-4.11×0.02+1.69 (1--1) 圆心横坐标等于10m(假定线路中心横坐标为10米)。加线路中心至隧道中心的距离

1.2数据采集: 1.2.1待测断面站点放样 可放出路中线、隧中线或距路中线任意宽度的点位,记录其地面高程、线路中线至待测断面站点的距离等。

1.2.2断面测量 仪器置于待测断面,(竖直度盘定天顶方向为度,顺时针注记)望远镜瞄准另一导线点或中线点定向后,转仪器正镜瞄准线路边线法线方向,也就是保证测量的竖直角读数,线路中线一侧为度,线路边线一侧为0-90度。记录仪器高、观测的竖直角、斜距。根据个人习惯,亦可记录水平距离和高差。如隧道内干扰大,可在仪器定向前,竖直度盘调至90度或270度,置水准尺于水准点上,读取塔尺读数来校核视线高。测量数据记录于表 1.3测量数据处理 为了与CASIO系列可编程计算器编程使用附号一致,部分附号按汉语拼音首位为代码,并启用“轴交点”一词。—4500断面测量计算程序如下:

程序名:SDDM(隧道断面 L1 Lb1 0 L2 {J,D} L3 Norm:T=J/10000 L4 I=IntT+Int(fracT×100)/60+frac(fracT×100)/36 L5 H=G+Y+Rec(D,I) L6 B=10+L+N×W L7 O=S-4.11×0.02+1.69 L8 C=(poI(B-15.11,H-O)-R)×100:Fix1:“Pc=”◢ L9 Goto 0 G--测站地面高程 Y--仪器高 J--观测的竖直角 D--斜距 L--线路中线至测站的距离 S--线路中线设计高程 R--半径 H--实测纵坐标 B--实测横坐标 O--圆心处的设计纵坐标 C--实测偏差(输出用 „pc=‟表示) I--T为计算过程对J的替换 N--修正符(当仪器不是置在中线上,且各种原因引起测量的竖直角读数,线路中线一侧不是度,

线路边线一侧不是0-90度时,计算结果偏差超常,无需重测,输“” 修正即可。其它情况输入“+1”,测站不能设在隧道中线时,测站至隧道中线的距离尽可能大于一米为益

角度输入,如203°'12〃输入2032312 66°03'18〃输入 0°0'10〃输入即可。 其它输入单位均为m,输出单位为。 本程序仅适用于单心圆隧道断面测量,如遇多心圆隧道,可根据实测的横坐标或纵坐标,用判断语句确定采用不同的半经和设计坐标,只需对程序适作调整。

1.3.1计算轴交点坐标 轴交点纵坐标等于测站地面高程加仪器高;轴交点横坐标等于10加线路中心至测站的距离。

1.3.2计算所测断面各点的实测坐标 实测纵坐标等于轴交点纵坐标加竖直角的余弦乘斜距。实测横坐标等于轴交点横坐标加竖直角

的正弦乘斜距,用下式表示: H=G+Y+cosI×D (1--2) B=10+L+SinI×D (1--2) 式中H—实测纵坐标 G—测站地面高程 Y—-仪器高 I--观测的竖直角J,计算过程中,程序用对J进行了替换 D—斜距 B—实测横坐标 L--线路中线至测站的距离 1.3.3计算所测断面各点的实测偏差 实测偏差等于断面各点的实测坐标与圆心处的设计坐标,进行坐标反算,求得测点至圆心的距离实际半径减设计半径。(设计半径按不同工序分别计算如开挖、初期支护、台车、二衬等。并考虑预留量)

C=√((B-15.11)²²)-R (1—3) 式中C—实测偏差(输出用‘pc=’表示) B—实测横坐标 H—实测纵坐标 O—圆心处的设计纵坐标 R—设计半径 15.11---圆心处的设计横坐标 2三维坐标段落测量法 在隧道施工断面测量工作中,无论采用隧道断面仪,还是采用全站仪配隧道断面测量软件来完成,一般用测量一个断面来代表一个段落,用一个断面代表一个段落,有一定的片面性,在隧道开挖断面测量工作中,其缺点极为明显。若采用三维坐标段落测量法进行隧道测量,可全面反映整个段落任意桩号各个点的超欠挖情况。

2.1数据采集 仪器置于任意点(做自由设站或导线点上,有针对性的对一个段落的特征点或任意点进行测量,记录x、、z三维坐标。

2.2确定测点对应的里程与距路线中线的距离

2.2.1圆曲线 在圆曲线上选任意点B,为起算里程,坐标反算分别求得,测站,起算点B,到圆心O的距离和方位角,两方位角之差(α)和半径计算曲线长L,B点里程加等于C点里程,测站至圆心的距离减半径等于测站至中线距离。测量参数见图所示。L由公式2—1求得。

L=πrα/180 (2-1) 式中L—弧长 r—半径 α—圆心夹角 2.2.2缓和曲线 在缓和曲线上求任意点的法线方向十分简单,但要求测站要对应那个桩号法线上的点,相当复杂。采用近似法,完全能满足测量精度要求。在测站前后的线路上各选一距离合适的点做为计算点,把两点当作直线看,按直线计算即可。测点见图—3所示。

2.2.3直线 在直线段上选任意点B作为起算点,已知直线段方位角,用坐标法反算求得BA方位角,通过两方位角之差α,和的距离解直角三角形可得BC距离L和的距离b。B点的桩号加等于测站点对应的桩号。测量参数图---4。

b=AB×Sinα (2-2) L= AB×Cosα (2-2) 2.3数据分析 根据测点的桩号计算线路的设计高程,通过线路的设计高程和隧道圆心的关系,计算隧道圆心的设计高程和线路中线到隧道圆心的距离。

经计算已知隧道圆心的设计高程;线路中线到隧道圆心的距离; 经测量已知测点的实测高程;测点至线路中线的距离。 按(1--3)式计算即可。无论是那一种线型,在系列可编程计算器,如FX—4500的帮助下,都可以采用渐进法编程另文专述)解决。看似复杂的方法,变得非常简便。

程序名:SDDM (隧道断面 L1 Lbl 0: L2 {DE}: progXH :progLJYD: L3 {G}:C=((poI(15.11-B-10,G-Z-1.6))-O“R”)×100:Fix1:“◢ L4 Goto 0 式中 XH子程序循环 LJYD:子程序路径引导(子程序另文专述 D E测点大地坐标 B+10测点横坐标 G 测点高程 Z+1.6圆心高程 R 隧道半径 C—实测偏差(输出用 „pc=‟表示)

三维坐标段落法隧道断面测量 表--3

隧道名称 检查项目 初期支护 圆心横坐标 隧道半径

桩 号 大地坐标X 大地坐标Y 实测高程 圆心高程 实测横坐标 实测偏差

3结语 极坐标断面测量法在隧道施工断面测量中,不需要专用的软件,且更为方便、快捷、准确、实用。如有可编程全站仪,测量结果可直接显示偏差。是隧道断面测量工作可选用方法之一。比较适用于隧道的初期支护、二衬的断面测量,尤其适用于台车就位调试工作,能边测量边出成果,及时正确的指导施工。更适用于政府、监理部门的检查工作,彻底的杜绝了施工单位弄虚作假的可能。同时测量人员也从繁忙的工作中得到了解放。

三维坐标段落法适合于施工中隧道开挖断面测量,可做到那里需要测后马上出结果,一次置镜能有效的测量全段落的特征点和任意点,可根据面积与点数的频率进行测量。人和仪器都不需要到开挖面下去,安全上也得到了保障。该方法也适用于初期支护、二衬施工的断面测量。还可用于对大型球体、球面进行精确的测量。!

相关文档
最新文档