小学周期循环
小学奥数全能解法及训练精讲-周期循环与数表规律

平年
闰年
一年有365天。 年份不能被4整 除;如果年份能 被100整除,但 不能被400整除。
一年有366天。 年份能被4整除; 如果年份能被100 整除,则年份必须 能被400整除。
精讲4
解法精讲
典例精析
例1 8名队员围成一圈做传球游戏,从⑴号开始,按顺时针方
向向下一个人传球。在传球的同时,按顺序报数。当报到
76时,球在几号队员手上?
思
1
路
8
分
2
析7
3
6
4
5
答案揭秘
76 ÷8=9 …4 余数是4 球应在4号队员手上。
例2
某年的二月份有五个星期日,这
年六月一日是星期____。
根据4×7=28,这年 二月份应为29天,2 月1日和2月29日均 为星期天,所以3月 1日为星期一。
思路 分析
答
从三月一日到六月一日共有:
小学奥数全能解法及训练
周期循环与数表规律
精讲1
周期
解法精讲
意义:我们把连续两次出现 所经过的时间叫周期。
现象:事物在运动变化的过程中, 某些特征有规律循环出现。
关键:确定循环周期。
精讲2
解题 思路
1
正确理解 题意,从 中找准变 化规律。
2
利用这些 规律作为 解题的依 据。
3
确定解题 的突破口。
精讲3
12月5日是星期日。
周期循环与数表规律
意义
现象
应用
规律总结
7颗珠子为一个 周期,75颗珠 子总共循环了 10次。
练习2
1989年12月5日是星期二,那么再 过十年的12月5日是星期__日____。
数学教案-周期问题-教学教案

数学教案-周期问题-教学教案周期问题一、活动年级小学五年级二、活动目标使学生了解许多事物的变化都有周期性,掌握事物变化的周期,并能灵活运用周期变化规律解决实际问题。
三、活动过程(一)由循环小数认识周期现象1.出示8.357357……,提问:这是什么小数?它有什么特征?2.想一想:我们日常生活中还有哪些周而复始的循环现象呢?(学生举例) 3.归纳:通过仔细观察,我们发现在日常生活中,有许多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象,(出示周期现象的概念)而重复出现的一节个数叫做周期。
(出示周期的概念)4.让学生指出8.357357……的循环节是几位?周期是几?(二)运用周期变化,解决问题。
1.根据周期找位置,定颜色。
(1)课件出示●○○○○●○○○○●○○○○提问:第16个圆片是什么颜色?第100个圆片是什么颜色?(2)让学生说一说排列规律,说出它的变化周期。
(3)想一想:第16个圆片应在第几位?为什么?(引导学生列出算式:16 5=3……1)第100个圆片应在第几周期第几位?说说你是怎么想的?怎么算的?(1005=20)(说明:没有余数,应该在第20周期最后一位。
应该是白色的圆片。
)(4)小结:要想准确判断某一圆片的位置和颜色,首先要弄清这一排列的周期是几,然后通过计算,知道它在第几周期第几位后,再确定它的颜色。
(5)练习:① 0.428571428571……的第545位上的数字是几?先让学生独立思考,再指名说说是怎么判断的。
②已知循环小数3.4650725072……,它的第100位小数是几?提示学生:这是一个混循环小数,循环节四位,不循环部分两位,在探求第100位小数是几时,首先要从100位中去掉不循环的2位,然后除以变化周期数。
2.根据周期找个数。
(1)课件出示○○○△△●○○○△△●○○○△△●提问:12个图片中有几个白色圆片?(2)学生数出后,再引导学生想一想:这些图形是按什么次序排列的,它的变化周期是几?想一想:1个周期里有几个白色圆片,几个三角,几个红色圆片?再引导学生通过计算算出12个图片中有几个白色圆片?(板书:12 6=2 3 2=6(个))(3)再想一想:100个图形中有()○,()个△,()个●?(引导学生用100 6=16……4)说明:100个图形中有16个周期和3个○○○、1个△。
(完整版)小学二年级数学中简单的周期问题

第二讲简单的周期问题在日常生活中,有很多想象总是按照一定的规律重复地出现。
如:一年总是按春、夏、秋、冬四个季节循环往复;一个星期总是由周一、周二、周三……周日,又到周一、周二、周三……如此反复;时钟总是从1时到2时,3时……12时,再回到1时开始,又一轮的运行。
像这样按规律不断重复出现的现象叫周期现象。
【例1】找出下面图形排列的规律,根据规律算出第16个图形是什么?(1)□△△□△△□△△□△△……(2)☆○○△☆○○△☆○○△……分析:(1)题的图形按“□△△”依次不断地重复出现,以3个图形为一个周期。
先算出16个图形里有几个周期。
16÷3=5……1,这商5表示16个图形里有5个周期;玉书表示第六个周期的第1个图形,即“□”。
(2)题的图形,按“☆○○△”依次不断地重复出现,以4个图形为一个周期。
16÷4=4,没有余数,表示16个图形里刚好有4个周期。
说明第16个图形正好是第4个周期的最后一个图形,即“△”。
解:(1)第16个图形是“□”。
(2)第16个图形是“△”。
【例2】一串珠子按图排列,那么第33颗是什么珠子?第48颗是什么珠子?分析:这串珠子的排列是有规律的,即按“出现,每6颗珠子为一个周期。
先算出33个珠子形成几个周期:33÷63,余数是3,表明第33颗是第六个周期的第3颗珠子,即“”。
48÷6=8,表明48颗珠子正好排完八个周期,即“”。
解:第33颗珠子是“48颗珠子是“【例3】国庆节挂彩灯,按“红、黄、蓝、白、绿、紫”的顺序挂,一共挂了50只彩灯,第50只彩灯是什么颜色的?红色的彩灯一共有多少只?分析:这些彩灯按“红、黄、蓝、白、绿、紫”六种颜色为一个周期。
先算出50只彩灯有几个这样的周期:50÷6=8……2,余数是2,这2只彩灯是第八个周期之后的红、黄两种彩灯,所以红色的彩灯有8+1=9(只)。
解:第50只彩灯是黄色的,红色的彩灯一共有9只。
小学奥数第三讲 循环小数与周期性问题.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三讲 循环小数与周期性问题阅读与思考从前有座山,山里有个庙,庙里老和尚在给小和尚讲故事,讲什么呢?老和尚讲:从前有座山,山里有个庙,庙里老和尚在给小和尚讲故事,讲什么呢?老和尚讲:从前有座山……小朋友,这个故事听过吗?其实呀,在我们日常生活中有许多不断循环出现的现象,如:春夏秋冬,一年四季,周而复始;星期天星期六,一周又一周,不断地循环往复等等。
在这些现象中,我们把连续两次出现所经过的时间叫周期。
四季的变化以一年为周期,星期的变化以七天为一周期。
在数学里,也常常会碰到一些重复出现的周期性规律的问题。
例如末位数字问题、星期问题、循环小数问题等。
本讲我们重点研究后者。
在周期性问题里,关键是找到规律性现象的周期,这样就可以使较难的问题转化为较简单的问题。
所以解决此类问题必须抓住两点:1、找出规律,发现周期现象,确定重复出现的元素的个数是几,周期就是几。
2、将题中要求的问题和某一周期的等式相对应,再运用一些简单的计算和分析求出答案。
循环小数是无限小数,它的小数从某位起,一个数字或几个数字依次不断重复出现,这一个或几个数字叫做循环节。
解决有关循环小数的问题,应先弄清循环节,循环节有几个数字,利用周期性问题的相关知识解决问题。
典型例题|例①|计算:1÷7,小数点后面第100位上的数字是几? 分析与解 1÷7=0.142857142857142857…观察小数点后面的数字,每6个数字一循环,循环节是“142857”,周期为6。
因为100÷6=16……4,余数是4,可知小数点后面第100位上的数字是第17个周期中的第4个数字,即是8。
训练快餐1计算4÷7,并将结果用“四舍五入法”精确到小数后第100位,这第100位上的数字是几?|例②|计算:6÷7=0.857142,在一个循环节里,数字和=(8+5+7+1+4+2)=27,1000÷6=166……4,1000个数字和=166×27+8+5+7+1=4503 训练快餐2循环小数0.21999小数点后第100位上的数字是几?这100个数字的和是多少?|例③|在循环小数0.2763824中,最少从小数点右面第几位开始到第几位为止的数字之和等于2020。
四年级上册数学教案-2 简单周期∣苏教版

四年级上册数学教案-2 简单周期∣苏教版一、教学目标1. 让学生掌握简单周期现象的概念,理解周期现象在生活中的应用。
2. 培养学生观察、分析、推理的能力,以及解决实际问题的能力。
3. 培养学生对数学的兴趣,激发学生探索周期现象的欲望。
二、教学内容1. 简单周期现象的概念2. 简单周期现象的特点3. 简单周期现象的应用三、教学重点与难点1. 教学重点:理解简单周期现象的概念,掌握简单周期现象的特点。
2. 教学难点:运用简单周期现象解决实际问题。
四、教学过程1. 导入新课利用生活中的实例,如四季更替、星期轮回等,引导学生发现周期现象的存在,激发学生的学习兴趣。
2. 探究新知(1)简单周期现象的概念通过实例,让学生了解什么是周期现象,引导学生发现周期现象的特点:按照一定的顺序重复出现。
(2)简单周期现象的特点通过实例,让学生进一步了解周期现象的特点,如:周期现象的顺序性、重复性、可预测性等。
(3)简单周期现象的应用结合生活实例,让学生了解周期现象在生活中的应用,如:日历、季节、潮汐等。
3. 实践活动组织学生进行小组合作,探讨生活中的周期现象,并举例说明。
引导学生运用周期现象解决实际问题,如:预测未来的天气、计算时间等。
4. 总结提升对本节课所学内容进行总结,强调周期现象的特点和应用。
布置课后作业,让学生进一步巩固所学知识。
五、课后作业1. 列举生活中的周期现象,并说明其特点和应用。
2. 结合实例,解释周期现象在生活中的作用。
3. 运用周期现象解决实际问题,如:计算时间、预测未来的天气等。
六、教学反思本节课通过实例导入,激发学生的学习兴趣。
在教学过程中,注重引导学生观察、分析、推理,培养学生的思维能力。
课后作业的布置,旨在让学生巩固所学知识,提高解决问题的能力。
总体来说,本节课达到了预期的教学目标。
但在教学过程中,还需进一步关注学生的学习情况,及时调整教学策略,以提高教学效果。
重点关注的细节:简单周期现象的特点在四年级上册数学教学中,简单周期现象的特点是学生理解和掌握周期概念的关键。
小学六年级奥数《第23讲 周期工程问题》

第23讲 周期工程问题一、知识要点周期工程问题中,工作时工作人员(或物体)是按一定顺序轮流交替工作的。
解答时,首先要弄清一个循环周期的工作量,利用周期性规律,使貌似复杂的问题迅速地化难为易。
其次要注意最后不满一个周期的部分所需的工作时间,这样才能正确解答。
二、精讲精练【例题1】一项工程,甲单独做需要12小时,乙单独做需要18小时。
若甲做1小时后乙接替甲做1小时,再由甲接替乙做1小时……两人如此交替工作,问完成任务时需共用多少小时?把2小时的工作量看做一个循环,先求出循环的次数。
①需循环的次数为:1÷(112 +118 )=365 >7(次)②7个循环后剩下的工作量是:1-(112 +118 )×7=136③余下的工作两还需甲做的时间为:136 ÷112 =13 (小时)④完成任务共用的时间为:2×7+13 =1413 (小时)答:完成任务时需共用1413 小时。
练习1:1、一项工程,甲单独做要6小时完成,乙单独做要10小时完成。
如果按甲、乙;甲、乙……的顺序交替工作,每次1小时,需要多少小时才能完成?2、一部书稿,甲单独打字要14小时,乙单独打字要20小时。
如果先由甲打1小时,然后由乙接替甲打1小时;再由甲接替乙打1小时……两人如此交替工作,打完这部书稿共需用多少小时?3、一项工作,甲单独完成要9小时,乙单独完成要12小时。
如果按照甲、乙;甲、乙……的顺序轮流工作,每人每次工作1小时,完成这项工程的2/3共要多少时间?【例题2】一项工程,甲、乙合作2623天完成。
如果第一天甲做,第二天乙做,这样交替轮流做,恰好用整数天完成。
如果第一天乙做,第二天甲做,这样交替轮流做,比上次轮流做要多半天才能完成。
这项工程由甲单独做要多少天才能完成?由题意可以推出“甲先”的轮流方式,完成时所用的天数为奇数,否则不论“甲先”还是“乙先”,两种轮流方式完成的天数必定相同。
根据“甲先”的轮流方式为奇数,两种轮流方式的情况可表示如下:甲乙甲乙……甲乙甲 乙甲乙甲……乙甲乙12甲竖线左边做的天数为偶数,谁先做没关系。
人教版小学五年级数学周期问题

0 (100-2)÷4=24……2
2. 根据周期找个数。
……
12个球里有〖 〗个
6
1
12÷6=2
2×3=6
2. 根据周期找个数。
100个球里有〖 〗个 有2〖 〗个 ;有〖 〗个 。
33 100÷6=16……4 3×16+3=51(个) 2×16+1=33(个)
1×16=16(个)
想一想:
玩一玩:
伸出你的左手,从大拇指 开始数数字, 1,2,3 ……
【按照如下规则:左手手心向上,从 大拇指开始数,数到小指为5,接下来回 头数无名指为6,中指为7,食指为8,大拇 指为9,再接下来食指为10……】
请问,数到2002时,你数在哪个手指上?
通过本节课的学习,你有什么 收获?
说一说:
要想准确判断某一水果的位置和种类,首先要弄清这一排列的周期是几,然后通过计 算,知道它在第几周期第几位后,再确定它的种类。
0.4285714208.547218…5…71428571…… 小数部分的第545位上的数字是【 】。
7 545÷6=90……5
已知循环小数: 3.4650725072…… 它的小数部分第100位数字是〖 〗。
……
51 16
1、9、9、8、一1、列9数、:9填、一8…填…: 共1999个。 最后一个数字是〖 〗;
〖 〗个 1, 其中有 〖 〗个 9,
〖 〗2004年的元旦 是星期四,那么2005年 的元旦是星期〖 〗 。
六
公园里有一排彩旗,按 3 面 黄旗,2面红旗,4面绿旗的顺序排列, 小红看到这排旗子的尽头是一面 绿旗。已知这排彩旗不超过200面, 这排旗最多有〖 〗面。
(精选)小学奥数周期问题--周期问题精讲

第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=(颗)=+47⨯+452⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524=+=(颗).⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20⨯=÷++=的周期.每个周期都有4盏蓝灯,20480(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5⨯+=(个).÷++=…5.52212【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】 ⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断200633÷=……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】 1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】 有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】 这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期循环与数表规律
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
基本公式:①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算。
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
例题精讲:
1. 某年的二月份有五个星期日,这年六月一日是星期_____.
2. 按下面摆法摆80个三角形,有_____个白色的.
……
3.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.
4. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.
那么数“1992”在___列.
6. 把分数
7
化成小数后,小数点第110位上的数字是_____. 7. 循环小数7992511
.0 与74563.0 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.
8. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.
9. 7⨯7⨯7⨯……⨯7所得积末位数是_____.
50个
10. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 9 2 8 6……这串数字从1开始往右数,第1989个数字是什么?
11. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?
12. 设n =2⨯2⨯2⨯……⨯2,那么n 的末两位数字是多少?
1991个
13.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?
———————————————答 案——————————————————————
1. 二
因为7⨯4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了
31+30+31+1=93(天).
因为937=13…2,所以这年6月1日是星期二.
2.日
依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有365⨯10+2=3652(天)
因为(3652+1)÷7=521…6,所以再过十年的12月5日是星期日.
[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.
3. 39
从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.
因为80÷6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13⨯3=39(个).
4. 白
依题意知,电灯的安装排列如下:
白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.
由73÷4=18…1,可知第73盏灯是白灯. 5. 13时.
分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991÷24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.
[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.
6. 3
仔细观察题中数表.
1 2 3 4 5 (奇数排) 第一组
9 8 7 6 (偶数排)
10 11 12 13 14 (奇数排) 第二组
18 17 16 15 (偶数排) 19 20 21 22 23 (奇数排) 第三组
27 26 25 24 (偶数排)
可发现规律如下:
(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;
(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.
(3)10÷9=1…1,10在1+1组,第1列 19÷9=2…1,19在2+1组,第1列
因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.
7. 7 7
4
=0.57142857…… 它的循环周期是6,具体地六个数依次是
5,7,1,4,2,8
110÷6=18 (2)
因为余2,第110个数字是上面列出的六个数中的第2个,就是7. 8. 35
因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.
9. 853,570,568,8255.
不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为19917=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3284+1=853(个),9的个数是2284+2=570(个),4的个数是2284=568(个).这些数字的总和为
1853+9570+4568=8255. 10. 9
先找出积的末位数的变化规律:
71末位数为7,72末位数为9,73末位数为3, 74末位数1;75=74+1末位数为7,76=74+2末位数为9,77=74+3末位数为3,78=247⨯末位数为1……
由此可见,积的末位依次为7,9,3,1,7,9,3,1……,以4为周期循环出现.
因为50÷4=12…2,即750=21247+⨯,所以750与72末位数相同,也就是积的末位数是9.
11. 依照题述规则多写几个数字: 1989286884286884……
可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.
12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990÷10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.
13. n 是1991个2的连乘积,可记为n =21991,首先从2的较低次幂入手寻找规律,列表如下:
n n 的十位数字 n 的个
位数字 n n 的十位数字 n 的个
位数字 21
0 2 2
12
9 6 22 0 4 213 9 2 23 0 8 214 8 4 24 1 6 215 6 8 25
3 2
216 3 6
. . . .
观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990÷20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.
14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.
6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.
由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期
中,6-5=1,5⨯5-6⨯4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:
2⨯[(100-10)÷30]+1 =2⨯3+1 =7(段)
[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.
. . . . . . 6 12 18 24 30 5 10 15 20 25
95
96 100 .
90
(资料素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。