小学六年级---比和比例

合集下载

部编新人教版小学六年级数学下册《比和比例》具体内容及教学建议

部编新人教版小学六年级数学下册《比和比例》具体内容及教学建议

《比和比例》具体内容及教学建议编写意图(1)教材首先以小精灵提问的方式,引导学生复习比和比例的基础知识,比较它们的联系与区别。

通过例1,借助表格梳理,引导学生重温比和比例的意义、各部分名称和基本性质,体现让学生自主归纳的思想。

(2)例2,仍然借助表格的方式,梳理比和分数、除法的关系,把学生分散的知识点进行整合,学会整体地、一般性地把握知识,使知识融会贯通,体会变中有不变的思想。

(3)例3,让学生回顾比的基本性质、分数的基本性质、商不变的规律之间的联系,揭示三者之间的密切联系和内在一致性。

(4)例4,让学生复习正比例关系、反比例关系的概念,并通过生活中的实例说明两种量成正、反比例的判断方法,培养学生的函数思想。

教学建议(l)引导学生进行自主复习。

本节内容几乎涵盖了比和比例的全部知识点,教师可要求学生在课前对本节内容进行自主归纳与整理,形成知识体系。

例如,让学生梳理比、比例、正(反)比例的前后承接关系,了解概念的逐步发展。

通过课上交流,把自己整理过程中不够完备的地方进行补充、完善。

(2)引导学生发现概念之间的联系与区别,形成知识网络。

除了让学生理清前面所述的比、比例、正(反)比例的概念之间的关系以外,还要像例2、例3那样,把相关的概念、性质放在一起进行整理,使学生看到不同形式背后的一致性。

如例2,除了让学生交流展示自己整理的结果,还可追问:能用一个式子来表示三者之间的关系吗?即ab=a÷b=a:b(b≠0),并由此引出例3的问题,将表面上看似不同的三个知识整合为本质相同的“一个知识”。

(3)加强函数思想的教学。

例4,通过实例理解、描述正、反比例的概念时,要注意强调“前提”,即在什么前提下,哪两个量成正比例关系?在什么前提下,哪两个量成反比例关系?。

小学六年级--比和比例知识点梳理

小学六年级--比和比例知识点梳理

复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为x,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

小学六年级--比和比例知识点梳理说课讲解

小学六年级--比和比例知识点梳理说课讲解

小学六年级--比和比例知识点梳理复习课:比和比例知识点一: 比和比例的联系与区别知识点二:比和分数、除法的联系知识点三:求比值和化简比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定)2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:kxy=(一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。

2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

3、比的应用通过比可以应用一些问题。

二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。

2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。

在一比例里,两外项的积等于两内项的积。

这叫做比例的基本性质。

3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

这个求未知项的过程,叫做解比例。

三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。

2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。

3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。

比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。

定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。

比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。

比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数叫做比例的项。

两外两项叫做内项,中间两项叫做外项。

如果中间的两项是两个相同的数,这样的比例叫做对称比例。

比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。

我们把比例尺分为放大比例尺和缩小比例尺两种。

缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。

六年级数学比和比例知识点

六年级数学比和比例知识点

1、比的意义和性质
(1)比的意义:两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的
数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0 除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以
是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,
2、比例的意义和性质
(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫
做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的基本性质
在比例里,两个外项的积等于两个两个内向的积。

(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个
数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

小学六年级--比和比例知识点梳理

小学六年级--比和比例知识点梳理

复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为x,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

小学六年级数学比和比例(难题)

小学六年级数学比和比例(难题)

比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。

午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。

比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。

比和比例(课件)-六年级数学下册人教版

比和比例(课件)-六年级数学下册人教版

答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。

5 32
前比 后

项号 项

3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级比和比例
比和比例
比的概念是借助于除法的概念建立的。

两个数相除叫做两个数的比。

例如,5÷6可记作5∶6。

比值。

表示两个比相等的式子叫做比例(式)。

如,3∶7=9∶21。

判断两个比是否成比例,就要看它们的比值是否相等。

两个比的比值相等,这两个比能组成比例,否则不能组成比例。

在任意一个比例中,两个外项的积等于两个内项的积。

即:如果a∶b=c∶d,那么a×d=b×c。

两个数的比叫做单比,两个以上的数的比叫做连比。

例如a∶b∶c。

连比中的“∶”不能用“÷”代替,不能把连比看成连除。

把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。

例如,
甲∶乙=5∶6,乙∶丙=4∶3,
因为[6,4]=12,所以
5∶ 6=10∶ 12, 4∶3=12∶9,
得到甲∶乙∶丙=10∶12∶9。

例1已知3∶(x-1)=7∶9,求x。

解: 7×(x-1)=3×9,
x-1=3×9÷7,
例2六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。

求现在的男、女生人数之比。

分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。

由此求出
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。

在例2中,我们用到了按比例分配的方法。

将一个总量按照一定的比分成若干个分量叫做按比例分配。

按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。

例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。

分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,
答:生石灰、硫磺粉、水分别需要180,360和2160千克。

在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。

如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。

例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。

完成任务时,师傅比徒弟多加工多少个零件?
分析与解:解法很多,这里只用按比例分配做。

师傅与徒弟的工作效率
有多少学生?
按比例分配得到
例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。

某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。

求这天这三种车辆通过的数量。

分析与解:大客车、小轿车通过的数量都是与小客车相比,如果能将5∶6中的6与4∶11中的4统一成[4,6]=12,就可以得到大客车∶小客车∶小轿车的连比。

由5∶6=10∶12和4∶11=12∶33,得到
大客车∶小客车∶小轿车=10∶12∶33。

以10辆大客车、12辆小客车、33辆小轿车为一组。

因为每组中收取小轿车的通行费比大客车多10×33-30×10=30(元),所以这天通过的车辆共有210÷30=7(组)。

这天通过
大客车=10×7=70(辆),
小客车=12×7=84(辆),
小轿车=33×7=231(辆)。

练习
1.一块长方形的地,长和宽的比是5∶3,周长是96米,求这块地的面积。

2.一个长方体,长与宽的比是4∶3,宽与高的比是5∶4,体积是450分米3。

问:长方体的长、宽、高各多少厘米?
3.一把小刀售价6元。

如果小明买了这把小刀,那么小明与小强的钱数之比是3∶5;如果小强买了这把小刀,那么小明与小强的钱数之比是9∶11。

问:两人原来共有多少钱?
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。

问:最后三人各分到多少只贝壳?
6.一条路全长60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走各段路程所用的时间之比是3∶4∶5。

已知他走平路的速度是5千米/时,他走完全程用多少时间?
7.某俱乐部男、女会员的人数之比是3∶2,分为甲、乙、丙三组,甲、乙、丙三组的人数之比是10∶8∶7。

如果甲组中男、女会员的人数之比是3∶1,乙组中男、女会员的人数之比是5∶3,那么丙组中男、女会员的人数之比是多少?
答案与提示练习
1.540米2。

2.长100厘米,宽75厘米,高60厘米。

解:长∶宽∶高=20∶15∶12,
450000÷(20×15×12)=125=53。

长=20×5=100(厘米),宽=15×5=75(厘米),
高=12×5=60(厘米)。

3.86元。

解:设小明有x元钱。

根据小强的钱数可列方程
36+50=86(元)。

4.2640元。

5.甲50只,乙40只,丙48只。

解:甲∶乙∶丙=25∶20∶24,138÷(25+20+24)=2,甲=2×25=50(只),乙=2×20=40(只),
丙=2×24=48(只)。

6.12时。

7.5:9。

相关文档
最新文档