湖南省长沙市第一中学高三数学第一次月考试题理
湖南省长沙市第一中学2022-2023学年高三上学期月考(一)数学试题(解析版)

【解析】
【详解】当E,F排在前三位时, =24,当E,F排后三位时, =72,当E,F排3,4位时, =24,N=120种,选D.
6.函数 ( 且 )在一个周期内的图象如图所示,将函数 图象上的点的横坐标伸长为原来的2倍,再向右平移 个单位长度,得到函数 的图象,则 ()
A. B.1C.-1D.
参考数据:
参考时间轴:
A.宋B.唐C.汉D.战国
【答案】D
【解析】
【分析】根据给定条件可得函数关系 ,取 即可计算得解.
【详解】依题意,当 时, ,而 与死亡年数 之间的函数关系式为 ,
则有 ,解得 ,于是得 ,
当 时, ,于是得: ,解得 ,
由 得,对应朝代为战国,
所以可推断该文物属于战国.
故选:D
(1)记 ,写出 ,并求出数列 的通项公式;
(2)求数列 的前2022项和 .
【答案】(1) , ,
(2)
【解析】
【分析】(1)根据 的定义求得 ,求出 ,由等比数列通项公式可得结论;
(2)由 得 , ,然后用并项求和法结合等比数列前 项和公式计算.
【小问1详解】
,
又
【小问2详解】
,则
18.如图, 为 中点,曲线 上任一点到 点的距离相等, 在曲线 上且关于 对称.
长沙市一中2023届高三月考试卷(一)
数学
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】利用对数不等式及分式不等式的解法求出集合 ,结合集合的补集及交集的定义即可求解.
2020年湖南省长沙市一中高三第1次月考 理科数学(含答案)

" "
(!#/-
*!/!.#-
+!/!/#-
,!/#.'-
" '!设#%%则)##&!*是)01#&$*的 "
"
(!充分不必要条件
*!必要不充分条件
" "
+!充要条件
,!既不充分也不必要条件
" "
)!已知向量&!!%$"%&!/'%)"的夹角为%则2-3#等于
" "
(!/#4%
*!#4%
+!/##)%
数学!理科"试题!一中版"!第!4页!共"页"
!二"选考题#共!$分!请考生在##$#'两题中任选一题作答%如果多做%则按 所做的第一题记分!
##!!本小题满分!$分"选修)/)#坐标系与参数方程 在极坐标系中%曲线/ 的极坐标方程为&6852!以极点为原点%极轴为 # 轴 的 正 半 轴 建 立 平 面 直 角 坐 标 系%直 线 : 的 参 数 方 程 为
程,!7&%7(的结果精确到$:!"
!'"根据第!#"问所求的回归方程%试估计收费标准为多少时%!$$天销售
额8 最大+ !!$$天销售额8&!$$;入住率;收费标准#"
9
参考数据#7(&,2&!#9,$,/9#($%7&&$/7((#%#&#)$%2%#,#&'6%$$$%
2#,#/9##
,&!
湖南省长沙市第一中学高三上学期月考卷(一)地理试题

长沙市一中2022届高三月考试卷(一)地理得分本试题卷分选择题和非选择题两部分,共10页。
时量75分钟,满分100分。
第I卷选择题(共48分)一、选择题:本大题共24小题,每小题2分,共48分在每小题给出的四个选项中只有一项是符合题目要求的。
指状砂坝型三角洲为河流入海(湖)后形成的指状砂体与分流间湾系统,指状砂体由河口坝、分流河道和天然堤构成,呈现出河在坝内的河一坝组合样式。
下图为美国墨西哥湾阿拉法拉亚水下三角洲演化模式图。
据此完成1~3题。
A.①—②—③—④B.①—④—②—③C.①—③—④—②D.①—②—④—③A.物源补给、潮汐强弱B.河口形状、河水水位C.海底地形、泥沙粒径D.流域植被、降水强度2021年2月21日,2021年中央一号文件发布。
围绕全面推进乡村振兴加快农业农村现代化,对“三农”工作作出全面部暑。
其中加强乡村公共基础设施建设是乡村振兴战略举措之一。
下图为我国某地乡村村落空间结构变化和新乡村建设一角冬季拍摄的图片。
据此完成4~5题。
A.区位优越,布局合理B.等级有序,设施完善C.邻里和睦,城乡一体D.方便出行,环境舒适5.根据图片信息,图中的新乡村可能位于我国的中国是智能手机生产大国。
智能手机的产业链很长零部件来自世界各地产品销往德国、法国、俄罗斯、印度等20多个国家和地区下图是某智能手机的零部件主要来源地。
据此完成6~7题。
6.中国近年来一直是世界最大的手机生产组装基地,其主要区位因素是①中国手机产业基础好,设施完善②与东南亚相比中国劳动力便宜③中国能研发生产全部手机零部件④中国手机需求量大,市场广阔A.①③B.①④C.②③D.②④7.一般而言,当价格不变时,集成电路可容纳的电子元器件每隔18~24个月就会增加一倍,性能提升一倍。
因此,电子产品的价格是呈下降趋势的,但是,最近几年,国产手机价格却越来越贵。
其原因最可能是A.受国际形势影响,核心技术自由买卖B.面向世界大市场,航空运输成本上升C.争夺下游厂商,增加零部件进货成本D.国产手机品牌升级,科研经费在增加归一化植被指数(NDVI)是反映植被生长状况的一个重要的遥感参数,指数越高,地表植被覆盖度越高。
湖南省长沙市第一中学2020届高三第一次月考数学(理)试题

绝密★启用前湖南省长沙市第一中学2020届高三第一次月考数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .1【答案】B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.2.已知i 为虚数单位,a ∈R ,若复数z =a +(1-a ) i 的共轭复数在复平面内对应的点位于第一象限,且5z z ⋅=,则z =( ) A .2-iB .-1+2iC .-1-2iD .-2+3i试卷第2页,总21页【答案】A 【解析】 【分析】通过复数的运算得到方程()2215a a +-=,根据其在复平面的位置得到结果. 【详解】由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =, ∴12z i =-+或2z i =-,∵在复平面内对应的点位于第一象限, ∴2z i =-,故选A. 【点睛】本题主要考查了复数的运算以及其几何意义,属于基础题. 3.设x ∈R ,则“x 2<1”是“lg x <0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】解出不等式,结合充分条件、必要条件的概念即可得到结果. 【详解】∵21x <11x ⇔-<<,lg 0x <⇔01x <<,01x <<⇒11x -<<,11x -<<不能推出01x <<,∴“21x <”是“lg 0x <”的必要不充分条件,故选B. 【点睛】本题主要考查了不等式的解法,充分条件、必要条件的概念,属于基础题. 4.已知向量a =(1,0),b =(-3,4)的夹角为θ,则sin2θ等于 ( ) A .725-B .725C .2424-D .2425【答案】C 【解析】 【分析】首先根据向量夹角公式求出cos θ的值,然后求出sin θ,最后根据二倍角正弦公式即可得出结果. 【详解】33cos 155a b a bθ⋅==-=-⨯⋅, ∵0θπ≤≤, ∴4sin 5θ==,24sin 22sin cos 25θθθ==-,故选C. 【点睛】本题主要考查了向量夹角的计算以及二倍角正弦公式的应用,属于中档题. 5.设a =183log ,b =244log ,c =342,则a 、b 、c 的大小关系是 ( )A .a <b <cB .a <c <bC .b <c <aD .c <b <a【答案】D 【解析】 【分析】利用指数函数和对数函数的单调性可得2c <,2a >,2b >,将,a b 分别表示为631log a =+,641log b =+,进而可得结果.【详解】314222c =<=,18933log log 2a =>=,241644log log 2b =>>, 所以c 最小,因为18633log 1log a ==+,24644log 1log b ==+, ∵6643log log <,∴a b >,故选D【点睛】本题主要考查了指数函数,对数函数的单调性的应用,寻找中间量是解题的关键,属于中档题.6.函数f (x )=(33)ln xxx -+的图象大致为( )试卷第4页,总21页…………线…………○………………线…………○……A . B .C .D .【答案】D 【解析】 【分析】由函数为偶函数可排除B ,由()0,1x ∈,()0f x <,可排除,A C ,进而可得结果. 【详解】∵()(33)ln xxf x x -=+,函数定义域为{}0x x ≠,()()(33)ln (33)ln x x x x f x x x f x ---=+-=+=,∴函数()f x 为偶函数,其图象关于y 轴对称,可排除B.当()01x ∈,时,330x x -+>,ln 0x <,()0f x <,其图象应在x 轴下方,可排除,A C ,故选D. 【点睛】本题主要考查了由函数的解析式判断函数的图象,主要根据函数的性质利用排除法得到结果,属于中档题.7.运行如图所示的程序框图,若输出的S 的值为101,则判断框中可以填( )○…………线…………○……_○…………线…………○……A .200?i >B .201?i ≥C .202?i >D .203?i >【答案】C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】程序的功能是计算3571sin3sin5sin 7sin 2222S ππππ=⨯+⨯+⨯+⨯+=1357-+-+,而101150213579199201=+⨯=-+-++-+,2012203i =+=,故条件为202?i >,故选C. 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有( ) A .50种 B .60种 C .70种 D .90种【答案】C 【解析】 【分析】试卷第6页,总21页根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案. 【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种, 丙同学可以从剩下的10种中任意选,∴选法有1131030C C ⋅=种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有种1141040C C ⋅=,不同的选法共有304070+=种,故选C. 【点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题. 9.将函数()2sin(2)16f x x π=--的图象向左平移6π个单位长度得到函数()g x 的图象,则下列说法正确的是 ( ) A .函数()g x 的最小正周期是2π B .函数()g x 的图象关于直线12x π=-对称C .函数()g x 在,62ππ⎛⎫⎪⎝⎭上单调递减D .函数()g x 在0,6π⎛⎫⎪⎝⎭上的最大值是1【答案】C 【解析】 【分析】求出函数的周期判断A 的正误;函数的对称轴判断B 的正误;函数的单调性判断C 的正误;函数的最值判断D 的正误; 【详解】由题意知:()2sin(2)16g x x π=+-,最小正周期T 22ππ==,选项A 错误; 当12x π=-时,112g π⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点(,1)12π--对称,选项B 错误;当(,62x ππ∈时,72(,)626x πππ+∈,∴函数()g x 在,62ππ⎛⎫⎪⎝⎭上单调递减,选项C 正确;∵函数()g x 在0,6π⎛⎫⎪⎝⎭上单调递增,()()16g x g π<=, 即函数()g x 在0,6π⎛⎫⎪⎝⎭上没有最大值,∴选项D 错误,故选C. 【点睛】本题考查三角函数的简单性质,最值、单调性、周期以及单调性,考查命题的真假的判断,属于中档题.10.若()ln f x x =与()23g x x x a ++=两个函数的图象有一条与直线y x =平行的公共切线,则a = ( ) A .-1 B .0C .1D .3【答案】B 【解析】 【分析】求出切线方程,利用公切线结合判别式0=推出结果即可. 【详解】在函数()ln f x x =上的切点设为(,)x y , 根据导数的几何意义得到11x=⇒1x =, 故切点为(10),,可求出切线的方程为1y x =-, 因为直线l 和()23g x x x a ++=也相切,从而231x x a x ++=-,化简得到2210x x a +++=,只需要满足()4410a ∆-+==,所以0a = 故选B. 【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,属于中档题.11.设函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,则关于函数()f x 有以下五个命题:①x ∈R ,()()1f f x =; ②()(),,()x y R f x y f x f y ∃∈+=+;试卷第8页,总21页③函数()f x 是偶函数;④函数()f x 是周期函数; ⑤函数()f x 的图象是两条平行直线 其中真命题的个数是( ) A .5 B .4C .3D .2【答案】B 【解析】 【分析】由()0f x =或1,计算可判断①;由0x =0y =定义可判断③;由周期函数的定义可判断④;由x 的范围可判断⑤. 【详解】 由()10x f x x ⎧=⎨⎩,为有理数,为无理数,可得()0f x =或1,则x R ∀∈,()f x 为有理数,则()()1ff x =,故①正确;当0x =0y =()()()0000f x y f x f y +=+,故②正确; ∵x 为有理数,则x -为有理数,x 为无理数,则x -为无理数, ∴函数()f x 是偶函数,故③正确;任何一个非零的有理数T ,都有()()f x T f x +=,则T 是函数的周期, ∴函数()f x 是周期函数,故④正确;由于x 为有理数,()1f x =;x 为无理数时,()0f x =,()f x 的图象不为连续的直线,故⑤错误.∴真命题的个数是4个,故选B . 【点睛】本题考查命题的真假判断,主要是分段函数的周期性和函数值的特点,以及图象特点,考查判断能力和推理能力,属于基础题.12.已知三棱锥D —ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D —ABC 的体积取到最大值时,球O 的表面积为( ) A .53π B .2π C .5π D .203π【答案】A 【解析】 【分析】订…………○…………__考号:___________订…………○…………三棱锥D-ABC 的体积取到最大值时,平面ABC ⊥平面DBC ,取BC 的中点G ,连接AG ,DG ,分别取△ABC 与△DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,求出外接球的半径,然后求解球的表面积. 【详解】 如图,当三棱锥D ABC -的体积取到最大值时,则平面ABC 与平面DBC 垂直, 取BC 的中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥ 分别取ABC △与DBC △的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体ABCD 的球心,由1AB AC BC DB DC =====,得正方形OEGF 的边长为6,则OG ∴四面体A BCD -的外接球的半径R ===∴球O 的表面积为=2543ππ⨯=,故选A. 【点睛】本题考查直线与平面垂直的判断,几何体的外接球的表面积的求法,几何体的体积的求法,考查空间想象能力以及计算能力.试卷第10页,总21页第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知定义在R 上的奇函数()f x 满足()()3f x f x +=,且当3[0,2x ∈时,()2f x x =-,则112f ⎛⎫= ⎪⎝⎭____【答案】14【解析】 【分析】求出函数的周期,结合函数的奇偶性,转化求解函数值即可. 【详解】由()()3f x f x +=知函数()f x 的周期为3, 又函数()f x 为奇函数,所以2111111(()((22224f f f =-=-==, 故答案为14. 【点睛】本题考查函数的奇偶性的性质与应用,函数值的求法,考查转化思想以及计算能力,属于基础题.14.已知ABC △是等腰直角三角形,1,2()AC BC CP CA CB ===+,则AP BP ⋅=____ 【答案】4 【解析】 【分析】利用已知条件将,AP BP 分别用,CA CB 表示,然后求解向量的数量积即可. 【详解】∵2,2AP AC CP CA CB BP BC CP CA CB =+=+=+=+. ∴22(2)(2)224AP BP CA CB CA CB CA CB ⋅=+⋅+=+=, 故答案为4. 【点睛】本题主要考查了向量的线性运算,考查向量的数量积的运算,是基本知识的考查. 15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。
湖南省长沙市第一中学2025届高三上学期月考卷(一)地理

大联考长沙市一中2025届高三月考试卷(一)地理本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题:本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
区域人口迁移通常经历“单核心”向“多核心”演化的过程。
下图为“我国长三角部分时期人口迁移的空间演化过程示意图”,完成下面小题。
1.与单核心阶段相比,多核心阶段人口迁移的特点是()A.人口迁移的通道较少B.人口迁移的规模更小C.人口仅在小城镇间流动D.人口迁移的频次更高2.在多核心阶段,若次级城市吸引力增强,可能带来的影响有()①疏导核心城市的人口压力②加剧核心城市的逆城市化③降低核心城市的行政级别④促进区域经济一体化发展A.①②B.②③C.①④D.③④甘肃西接阿尔金山和祁连山,是我国西北地区重要的生态安全屏障。
为规范国土空间开发,实现区域的协调发展,甘肃将全省划分为3个主体功能区:城镇化发展区、农产品主产区、重点生态功能区(图1)。
图2示意2021年县域碳排放网络空间关联关系图(节点的大小表示在网络关系中的重要程度,节点间线的长度和粗细表示联系的频繁程度)。
据此完成下面小题。
3.甲、乙、丙分别表示()A.城镇化发展区、农产品主产区、重点生态功能区B.城镇化发展区、重点生态功能区、农产品主产区C.农产品主产区、重点生态功能区、城镇化发展区D.重点生态功能区、城镇化发展区、农产品主产区4.关于甘肃省碳排放的说法,正确的是()①陇中地区的碳排放强度最小②陇东南地区碳中和压力最大③河西地区因受地形的影响县域间碳排放网络空间联系弱④县域碳排放网络空间紧密度由中小县域向周边县域递减A.①②B.①④C.②③D.③④5.关于城关区的发展方向,下列规划合理的是()A.积极推进农创产业及新型农业发展B.积极创新推动低碳试点,发挥低碳引领导向C.积极发展生态经济和文化旅游经济D.积极优化产业结构,停止高耗能产业的发展风和水是干旱地区的两种主要作用力。
湖南省长沙市第一中学2024-2025学年高三上学期月考卷(一)物理试题

湖南省长沙市第一中学2024-2025学年高三上学期月考卷(一)物理试题一、单选题1.下列说法正确的是()A.由牛顿第二定律,可以得到加速度的定义式为F amB.伽利略最先建立描述运动的物理量,如平均速度、瞬时速度和加速度C.千克、米和牛顿都是国际单位制中的基本单位D.根据开普勒第二定律,不同行星与太阳的连线在相同的时间扫过相同的面积2.北京时间8月10日凌晨,2024年巴黎奥运会田径赛事在法兰西体育场的赛场火热进行中。
中国选手巩立姣和宋佳媛进入女子铅球的决赛,其中巩立姣已经是奥运会的“五朝元老”。
如图所示,运动员斜向上推出铅球,铅球飞行一段时间后落地,若不计空气阻力,则()A.铅球飞到最高点时速度为零B.运动员斜向上推出铅球过程,运动员做的功全部转化为铅球的动能C.铅球在空中飞行过程中,铅球的动量变化率恒定D.只要铅球离手时初速度更大,在空中飞行的时间一定更长3.一根粗细不均匀的绳子摆放在地面上,已知绳子的质量为5kg,绳长为1m,抓住绳子一端缓慢往上提起,直到另一端恰好离开地面,此过程需做功30J。
若抓住绳子的另一端把绳子缓慢提起来,拉力做功为(g取210m/s)()A.10J B.20J C.30J D.50J4.质量为M的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手。
首先左侧射手开枪,子弹水平射入木块的最大深度为1d,然后右侧射手开枪,子弹水平射入木块的最大深度为2d,如图所示。
设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。
当两颗子弹均相对木块静止时,下列说法中正确的是()A .最终木块静止,12d d =B .最终木块向右运动,12d d <C .最终木块向左运动,12d d =D .最终木块静止,12d d <5.如图所示,金属环M 、N 用不可伸长的细线连接,分别套在水平粗糙细杆和竖直光滑细杆上,当整个装置以竖直杆为轴以不同大小的角速度匀速转动时,两金属环始终相对杆不动,下列判断正确的是( )A .转动的角速度越大,细线的拉力越大B .转动的角速度越大,环N 与竖直杆之间的弹力越大C .转动的角速度不同,环M 与水平杆之间的弹力大小可能不相等D .转动的角速度不同,环M 与水平杆之间的摩擦力大小可能相等6.如图所示静止于水平地面的箱子内有一粗糙斜面,将物体无初速放在斜面上,物体将沿斜面下滑。
2024-2025学年湖南省长沙市第一中学高三上学期月考(一)地理试卷含详解

大联考长沙市一中2025届高三月考试卷(一)地理本试卷卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题:本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
区域人口迁移通常经历“单核心”向“多核心”演化的过程。
下图为“我国长三角部分时期人口迁移的空间演化过程示意图”,完成下面小题。
1.与单核心阶段相比,多核心阶段人口迁移的特点是()A.人口迁移的通道较少B.人口迁移的规模更小C.人口仅在小城镇间流动D.人口迁移的频次更高2.在多核心阶段,若次级城市吸引力增强,可能带来的影响有()①疏导核心城市的人口压力②加剧核心城市的逆城市化③降低核心城市的行政级别④促进区域经济一体化发展A.①②B.②③C.①④D.③④甘肃西接阿尔金山和祁连山,是我国西北地区重要的生态安全屏障。
为规范国土空间开发,实现区域的协调发展,甘肃将全省划分为3个主体功能区:城镇化发展区、农产品主产区、重点生态功能区(图1)。
图2示意2021年县域碳排放网络空间关联关系图(节点的大小表示在网络关系中的重要程度,节点间线的长度和粗细表示联系的频繁程度)。
据此完成下面小题。
3.甲、乙、丙分别表示()A.城镇化发展区、农产品主产区、重点生态功能区B.城镇化发展区、重点生态功能区、农产品主产区C.农产品主产区、重点生态功能区、城镇化发展区D.重点生态功能区、城镇化发展区、农产品主产区4.关于甘肃省碳排放的说法,正确的是()①陇中地区的碳排放强度最小②陇东南地区碳中和压力最大③河西地区因受地形的影响县域间碳排放网络空间联系弱④县域碳排放网络空间紧密度由中小县域向周边县域递减A.①②B.①④C.②③D.③④5.关于城关区的发展方向,下列规划合理的是()A.积极推进农创产业及新型农业发展B.积极创新推动低碳试点,发挥低碳引领导向C.积极发展生态经济和文化旅游经济D.积极优化产业结构,停止高耗能产业的发展风和水是干旱地区的两种主要作用力。
湖南省长沙市第一中学高三模拟试卷(一)数学答案和解析

长沙市一中2023模拟试卷(一)数学一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2R 4,39x A x x B x =∈<=<∣∣,则()A.A B B =B.A B =RC.A B A =D.A B A⋃=【答案】C 【解析】【分析】求出集合,A B ,再由交集和并集的定义即可得出答案.【详解】因为{}{}{}{}2R422,392xA x x x xB x x x =∈<=-<<=<=<∣∣∣∣,所以A B A = ,A B B ⋃=.故选:C .2.设2iR,ia a z +∈=,则“1a >”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据复数模的计算公式及充分条件、必要条件的定义判断即可【详解】由题意得22i 2i iaz a -==-,所以z ==因为z >,所以245a +>,解得1a >或1a <-,故“1a >”是“z >的充分不必要条件.故选:A3.天文计算的需要,促进了三角学和几何学的发展.10世纪的科学家比鲁尼的著作《马苏德规律》一书中记录了在三角学方面的一些创造性的工作.比鲁尼给出了一种测量地球半径的方法:先用边长带有刻度的正方形ABCD 测得一座山的高GT h =(如图①),再于山顶T 处悬一直径为SP 且可以转动的圆环(如图②),从山顶T 处观测地平线上的一点I ,测得OTI α∠=.由此可以算得地球的半径r =()A.sin 1sin h αα- B.cos 1sin h αα- C.sin 1cos h αα- D.cos 1cos h αα-【答案】A 【解析】【分析】根据解直角三角形,结合正弦函数的概念即可求得答案.【详解】由图可知,OI TI ⊥,故sin OI r OT r h α==+,解得sin 1sin h r αα=-,故选:A .4.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是()A.1()sin 2xf x e xπ=⋅ B.1||()cos2x f x ex π=⋅C.()ln ||sin 2f x x x π=⋅ D.()ln ||cos2f x x x π=【答案】D 【解析】【分析】利用排除法,根据奇偶性和()f x 在()0,1x ∈时的函数值正负可排除.【详解】由图可得()f x 的图象关于y 轴对称,即()f x 为偶函数,其中A 选项,()11()sin sin 22xxf x e x e x f x ππ-⎛⎫-=⋅-=-⋅=- ⎪⎝⎭,故()f x 为奇函数,与图象不符,故排除A ;C 选项,()()ln ||sin ln ||sin 22f x x x x x f x ππ⎛⎫-=-⋅-=-⋅=- ⎪⎝⎭,故()f x 为奇函数,与图象不符,故排除C ;B 选项,当()0,1x ∈时,10xe >,cos02x π>,则()0f x >,与图象不符,故排除B.故选:D.5.已知π3sin cos 65αα⎛⎫-+= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭()A.725-B.725C.2425-D.2425【答案】B 【解析】【分析】根据三角恒等变换公式求解.【详解】π313sin cos cos cos ,6225ααααα⎛⎫-+=-+= ⎪⎝⎭所以313sin cos 225αα+=,所以π3sin ,65α⎛⎫+= ⎪⎝⎭2πππ97cos 2cos212sin 12,3662525ααα⎛⎫⎛⎫⎛⎫+=+=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:B.6.已知函数()πsin (12)6f x x ωω⎛⎫=-<< ⎪⎝⎭,若存在12,R x x ∈,当122πx x -=时,()()120f x f x ==,则函数()f x 的最小正周期为()A.2π3B.4π3C.2πD.4π【答案】B 【解析】【分析】由题意可得出2π2T k ⋅=,结合12ω<<,可得32ω=,再由三角函数最小正周期的公式即可得出答案.【详解】因为存在12,R x x ∈,当122πx x -=时,()()120f x f x ==,所以π2π,Z 2T k k k ω⋅=⋅=∈,即,Z 2kk ω=∈,又因为12ω<<,则3k =,所以32ω=,所以函数()f x 的最小正周期为:2π4π332T ==,故选:B .7.设,A B 是平面直角坐标系中关于y 轴对称的两点,且2OA = .若存在,R m n ∈,使得mAB OA +与nAB OB +垂直,且()()2mAB OA nAB OB +-+= ,则AB 的最小值为()A.1B.C.2D.【答案】D 【解析】【分析】构造向量,利用向量垂直和()()2mAB OA nAB OB +-+= ,结合基本不等式得出a b的最大值2,结合图形可得答案.【详解】如图,,A B 是平面直角坐标系中关于y 轴对称的两点,且2OA =,由题意得:AB OB OA =- ,令()1a OA mAB OA m OA mOB ==+-+'=,则,,A A B '三点共线,()1b OB nAB OB n OB nOA ==++-'=,则,,B A B '三点共线,故有,,,A A B B ''共线,由题意mAB OA + 与nAB OB +垂直,()()2mAB OA nAB OB +-+= ,知OA OB ''⊥uuu r uuu r ,且2a b B A ''-==为定值,在A OB ''△中,224||||2a b a b =+≥ ,当且仅当a b =时,a b取最大值2,此时A OB ''△面积最大,则O 到AB 的距离最远,而2OA = ,故当且仅当a b=,即,A B ''关于y 轴对称时,AB 最小,此时O 到AB 的距离为112B A ='' ,所以2AB ==,故AB = AB的最小值为故选:D.8.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则()A.122θθ<,132θθ<B.122θθ<,132θθ>C.122θθ>,132θθ<D.122θθ>,132θθ>【答案】A 【解析】【分析】根据面面角的定义求得1AMG θ∠=,根据线面角的定义找到2ANH θ∠=,3FMG θ=∠,通过比较12,θθ的正弦值比较两角的大小,接着根据12,2θθ的范围判断12,2θθ的大小,根据线段长度的大小关系求得13,2θθ的大小关系.【详解】分别过点M 和点B 作BN ,MN 的平行线相交于点G ,因为BN l ⊥,所以MG l ⊥,所以1AMG θ∠=,过A 点作AH MG ⊥,连接NH ,所以2ANH θ∠=,取1,===AM MN AH ,22sin 2θ==AH AN ,此时1222πθθ<=;排除CD.取线段AG 中点为点F ,又C ,D 为AB ,MN 的中点,所以CF 与DM 平行且相等,所以//CD MF ,所以CD 与半平面β所成角为3FMG θ=∠,显然31θθ<,又因为AM MG >,所以132θθ<;排除B.故选:A.【点睛】(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为:“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,众数为3;乙地:平均数为2,方差为3;丙地:平均数为3,极差为5;丁地:平均数为5,众数为6.则一定没有发生大规模群体感染的是()A.甲地B.乙地C.丙地D.丁地【答案】BC 【解析】【分析】A.举例判断;B.假设出现一次大于7,设108x ≥,利用方差运算判断;C.假设出现了8人,则一定有出现3人情况判断;D.举例判断.【详解】对于甲地,如0,0,1,1,1,3,3,3,3,8,故错误;对于乙地,若出现一次大于7,设108x ≥,则()()()()22222129101222210S x x x x ⎡⎤=-+-++-+-⎣⎦ ,()()()222129122236310x x x ⎡⎤≥-+-++-+>⎣⎦ ,矛盾,故正确;对于丙地,若出现了8人,则一定有出现3人情况,这样平均数就不可能是3,∴丙地不可能有超过7人的情况,故正确.对于丁地,无法判断是否有超过7人的情况,如2,2,3,5,6,6,6,6,6,8,平均数为5,众数为6,故错误;故选:BC .10.在平面直角坐标系xOy 中,已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,且双曲线C 的左焦点在直线0x y +=上,A ,B 分别是双曲线C 的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA ,PB 的斜率分别为1k ,2k ,则下列说法正确的是()A.双曲线C 的渐近线方程为2y x =±B.双曲线C 的方程为2214x y -=C.12k k 为定值14D.存在点P ,使得121k k +=【答案】BC 【解析】【分析】【详解】因为双曲线C 的左焦点(,0)c -在直线0x y ++=上,所以c =,又离心率为52c e a ==,所以2a =,故2221b c a =-=,所以双曲线方程为2214x y -=,故双曲线的渐近线方程为20x y ±=,故A 错误;B 正确;由题意可得(2,0),(2,0)A B -,设P (m ,n ),可得2214m n -=,即有22144n m =-,所以212212244n n n k k m m m =⋅==+--,故C 正确;因为点P 是双曲线C 的右支上位于第一象限的动点,所以120,0k k >>,则121212k k +≥=⨯=,当且仅当12k k =时,等号成立,由A ,B 为左右顶点,可得12k k ≠,所以121k k +>,故D 错误.故选:BC【点睛】本题主要考查了双曲线的标准方程,双曲线的简单几何性质,直线的斜率,属于中档题.11.如图圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,12,O O 为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则下列各选项正确的是()A.球与圆柱的体积之比为2:3B.四面体CDEF 的体积的取值范围为320,3⎛⎤ ⎥⎝⎦C.平面DEF 截得球的截面面积最小值为4π5D.若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】ABD 【解析】【分析】根据给定的条件,利用球、圆柱的体积公式计算判断A ;利用12CDEF E O CD V V -=建立函数关系判断B ;求出球心O 到平面DEF 距离的最大值判断C ;令点P 在圆柱下底面圆所在平面上的投影点为Q ,设QFE ∠θ=,利用勾股定理建立函数关系,求出值域可判断D .【详解】对于A ,球的体积为34π32π33r V ==,圆柱的体积2π(2)16πV r r '=⨯=,则球与圆柱的体积之比为2:3,A 正确;对于B ,设d 为点E 到平面BCD 的距离,0d r <≤,而平面BCD 经过线段EF 的中点1O ,四面体CDEF 的体积11221163224433233C DEF E O DC O DC d V V S d d --==⋅=⨯⨯⨯⨯=≤ ,所以四面体CDEF 的体积的取值范围为320,3⎛⎤⎥⎝⎦,B 正确;对于C ,过O 作1OH DO ⊥于H ,如图,而122O O DO ⊥,则21211sin DO OH DO O OO DO ∠==,又1DO ==OH =,设截面圆的半径为1r ,球心O 到平面DEF 的距离为1d ,则1d ≤,又1r ==≥=DEF 截球的截面圆面积2116ππ5S r =≥,C 错误;对于D ,令经过点P 的圆柱的母线与下底面圆的公共点为Q ,连接,QE QF ,当Q 与,E F 都不重合时,设QFE ∠θ=,则4cos ,4sin QF QE θθ==,当Q 与,E F 之一重合时,上式也成立,因此4cos ,4sin QF QE θθ==,π[0,)2θ∈,则PE PF +=,令t =26t =+,而02πθ≤<,即0sin 21θ≤≤,因此2612t +≤≤,解得1t ≤≤,所以PE PF +的取值范围为[2+,D 正确.故选:ABD.12.定义:对于定义在区间I 上的函数()f x 和正数()01αα<≤,若存在正数M ,使得不等式()()1212f x f x M x x α-≤-对任意12,x x I ∈恒成立,则称函数()f x 在区间I 上满足α阶李普希兹条件,则下列说法正确的有()A.函数()f x =[)1,+∞上满足12阶李普希兹条件.B.若函数()ln f x x x =在[]1,e 上满足一阶李普希兹条件,则M 的最小值为2.C.若函数()f x 在[],a b 上满足()01M k k =<<的一阶李普希兹条件,且方程()f x x =在区间[],a b 上有解0x ,则0x 是方程()f x x =在区间[],a b 上的唯一解.D.若函数()f x 在[]0,1上满足1M =的一阶李普希兹条件,且()()01f f =,则存在满足条件的函数()f x ,存在[]12,0,1x x ∈,使得()()1223f x f x -=.【答案】ABC 【解析】【分析】根据李普希兹条件的概念直接可以判断AB 选项,再利用反证法判断C 选项,通过分类讨论可判断D 选项.【详解】A 选项:不妨设12x x >,()()12f x f x ∴-=()()()()1212212121f x f x x x x x -∴==<--,故1M ∃≥,对[)12,1,x x ∀∈+∞,均有()()()121212f x f x M x x -≤-,A 选项正确;B 选项:不妨设12x x >,()ln f x x x = 在[]1,e 单调递增,()()()()1212f x f x f x f x ∴-=-,()()1212f x f x M x x ∴-≤-,即()()()1212f x f x M x x -≤-,即()()1122f x Mx f x Mx -≤-对12x x ∀>,[]12,1,e x x ∈恒成立,即()f x Mx -在[]1,e 上单调递减,()0f x M '∴-≤对[]1,e x ∀∈恒成立,所以1ln M x ≥+对[]1,e x ∀∈恒成立,即2M ≥,即M 的最小值为2,B 选项正确;C 选项:假设方程()f x x =在区间[],a b 上有两个解0x ,t ,则()()000f x f t k x t x t -≤-<-,这与()()00t t f x f x -=-矛盾,故只有唯一解,C 选项正确;D 选项:不妨设12x x >,当1212x x -≤时,()()121212f x f x x x -≤-≤,当1212x x ->时,()()()()()()()()()()()1212121212110101012f x f x f x f f f x f x f f x f x x x x -=-+-≤-+-≤-+-=--<,故对[]12,0,1x x ∀∈,()()1212f x f x -≤,不存在12,x x 使()()1223f x f x -=,D 选项错误;故选:ABC.三、填空题(本题共4小题,每小题5分,共20分)13.已知圆22:(4)16M x y -+=,过点()2,0N 的直线l 与圆M 交于,A B 两点,D 是AB 的中点,则D 点的轨迹方程为__________.【答案】()2231x y -+=【解析】【分析】由圆的垂径定理可得MD DN ⊥,结合向量垂直的条件:数量积为0,化简可得所求轨迹方程,即可求得答案.【详解】圆22:(4)16M x y -+=,所以圆心为()4,0M ,半径为4,设(),D x y ,由线段AB 的中点为D ,可得MD DN ⊥,即有()()(4,)(2,)420MD ND x y x y x x y y ⋅=-⋅-=--+⋅=,即()2231x y -+=,所以点D 的轨迹是以()3,0为圆心,1为半径的圆;故答案为:()2231x y -+=.14.“以直代曲”是微积分中最基本、最朴素的思想方法,如在切点附近,可用曲线在该点处的切线近似代替曲线.曲线ln y x =在点()1,0处的切线方程为__________,利用上述“切线近以代替曲线”的思想方法计算所得结果为__________(结果用分数表示).【答案】①.1y x =-②.2120【解析】【分析】求出导函数得切线斜率,由点斜式得切线方程,由题意知ln 1x x ≈-,则ln 1≈,即2120≈,即可得出答案.【详解】由已知ln y x =,1y x'=,所以在点()1,0处的切线斜率为1k =,则在点()1,0处的切线方程为1y x =-,由题意知,ln 1x x ≈-,所以ln 1≈-,即112020ln e e 1≈-,所以112020121eln e 112020≈+=+=,即2120≈.故答案为:1y x =-;2120.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= ,且212AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的标准方程为__________.【答案】2211612x y +=【解析】【分析】由题设可得2a c =,直线AB 的方程为330bx cy bc -+=,点线距离公式表示O 到直线AB 的距离,又222a b c =+联立解得22,a b 即可得出答案.【详解】由20AB AF ⋅= 可得290BAF ∠=,由212AF AB AF =+可得112BF F F =,则△12AF F 是等边三角形,设122F F c =,则2a c =①,∴直线AB 的方程为13x yc b+=-,即330bx cy bc -+=,∴O 到直线AB3=②,又222a b c =+③,联立①②③,解得216a =,212b =,故椭圆C 方程为2211612x y +=.故答案为:2211612x y +=16.已知实数a ,b ,c 满足1e e ln 3a c c b a b +-++≤++,(其中e 为自然对数的底数),则a b c +-的最小值是______.【答案】2ln 2-##ln 4-【解析】【分析】变形给定不等式,构造函数并借助函数的单调性,求出,,a b c 的关系,再利用导数求出函数的最值作答.【详解】1ln 1e e ln 3e e ln 3a c c a c b c b a b a b +-++-++≤++⇔+≤++,令函数()e 1x f x x =--,求导得()e 1x f x '=-,当0x <时,()0f x '<,当0x >时,()0f x '>,因此函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,则()(0)0f x f ≥=,即R x ∀∈,e 1x x ≥+,于是ln 1e 1,e ln 11a c b c a c b c +-+≥++≥-++,即ln 1e e ln 3a c b c a b +-++≥++,当且仅当0,ln 10a c b c +=-+=,即1,e c a c b -=-=时取等号,依题意,1,e c a c b -=-=,1e 2c a b c c -+-=-,令1e (2)x x g x -=-,求导得1e 2()x g x -=-',当1ln 2x <+时,()0g x '<,当1ln 2x >+时,()0g x '>,从而函数()g x 在(,1ln 2)-∞+上单调递减,在(1ln 2,)++∞上单调递增,min ()(1ln 2)2ln 2g x g =+=-,所以a b c +-的最小值是2ln 2-.故答案为:2ln 2-.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用导数探求函数单调性、最值是解决问题的关键.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在数列{}n a 中,11a =-,()*12362,Nn n a a n n n -=+-≥∈.(1)求证:数列{}3n a n +为等比数列,并求数列{}n a 的通项公式;(2)设n n b a n =+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析;23nn a n =-;(2)122(1)n n n +--+【解析】【分析】(1)根据等比数列的定义证明,由等比数列的通项公式化简,可得数列{}n a 的通项公式;(2)由分组求和法化简求解即可.【小问1详解】()*12362,N n n a a n n n -=+-≥∈ ,∴当2n ≥时,()()11111333263133332233n n n n n n a n a n a n a n n n a n a -----+-+-+===+-++-+-,数列{}3n a n +是首项为132a +=,公比为2的等比数列,32n n a n ∴+=,23nn a n =-;【小问2详解】2322n n n n n b a n a n n n=+==-+=-数列{}n b 的前n 项和()()()()12312...222426...22nn n T b b b n=+++=-+-+-++-()()1212122222...2246...222(1)122n n n nn n n n +-+=+++-++++=⨯=--+-.18.在ABC 中,内角,A B C 、的对边分别为,,a b c ,且满足1tan 12tan a C b B ⎛⎫=+ ⎪⎝⎭.(1)求C 的大小;(2)若ABC的面积为,且2CD DA =,求BD 的最小值.【答案】(1)π3C =(2)3【解析】【分析】(1)由正弦定理、同角三角函数的商数关系和两角和正弦公式化简已知式,即可得出答案;(2)由三角函数的面积关系可得40ab =,由2CD DA = ,得23CD b =,再由余弦定理结合均值不等式即可得出答案.【小问1详解】因为1tan 12tan a C b B ⎛⎫=+ ⎪⎝⎭,利用正弦定理得:()sin sin 1sin cos 1sin 2cos sin 2cos sin B C A C B B C B C B +⎛⎫=+= ⎪⎝⎭,由于π++=A C B ,所以()sin sin B C A +=,即sin sin sin 2cos sin A AB C B=,即2sin cos sin sin sin A C B A B =,由()ππ0,π,sin 0,0,,π,sin 022A A B B ⎛⎫⎛⎫∈≠∈⋃≠ ⎪ ⎪⎝⎭⎝⎭,故1cos ,0π2C C =<<且π2C ≠,故π3C =.【小问2详解】由于ABC 的面积为113sin 222ab C ab =⋅=,解得:40ab =,由2CD DA =,得23CD b =,在BCD △中,由余弦定理得:222224242222802cos 293933333BD a b a b C a b ab ab ab ab =+-⋅=+-≥⋅-==,故4153BD ≥,当且仅当2,3a b =即415,3a b ==,BD 的最小值为4153.19.如图1,四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,60BCD ∠=︒,AB =,3BC =,E 为线段CD 上一点,满足BC CE =,F 为BE 的中点,现将梯形沿BE 折叠(如图2),使平面BCE ⊥平面ABED .(1)求证:平面ACE ⊥平面BCE ;(2)能否在线段AB 上找到一点P (端点除外)使得直线AC 与平面PCF 所成角的正弦值为34?若存在,试确定点P 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点P 是线段AB 的中点,使得直线AC 与平面PCF 所成角的正弦值为34.【解析】【分析】(1)在直角梯形ABCD 中,根据3BE BC ==,60BCD ∠=︒,得BCE ∆为等边三角形,再由余弦定理求得AE ,满足222AE BE AB +=,得到AE BE ⊥,再根据平面BCE ⊥平面ABED ,利用面面垂直的性质定理证明.(2)建立空间直角坐标系:假设在AB 上存在一点P 使直线AC 与平面PCF 所成角的正弦值为34,且AP AB λ=uu u r uu u r,()0,1λ∈,求得平面PCF 的一个法向量,再利用线面角公式34cos ,CA n ==求解.【详解】(1)证明:在直角梯形ABCD 中,3BE BC ==,60BCD ∠=︒,因此BCE ∆为等边三角形,从而3BE =,又AB =,由余弦定理得:212923cos303AE =+-⨯︒=,∴222AE BE AB +=,即AE BE ⊥,且折叠后AE 与BE 位置关系不变,又∵平面BCE ⊥平面ABED ,且平面BCE 平面ABED BE =.∴⊥AE 平面BCE ,∵AE ⊂平面ACE ,∴平面ACE ⊥平面BCE .(2)∵BCE ∆为等边三角形,F 为BE 的中点,∴CF BE ⊥,又∵平面BCE ⊥平面ABED ,且平面BCE 平面ABED BE =,∴CF ⊥平面ABED ,取AB 的中点G ,连结FG ,则//FG AE ,从而FG BE ⊥,以F 为坐标原点建立如图所示的空间直角坐标系:则33,,02A ⎫-⎪⎭,330,0,2C ⎛ ⎪⎝⎭,则333,,22CA =--⎪⎭,假设在AB 上存在一点P 使直线AC 与平面PCF 所成角的正弦值为34,且AP AB λ=uu u r uu u r ,()0,1λ∈,∵30,,02B ⎛⎫⎪⎝⎭,∴()3,3,0AB = ,故()3,3,0AP λλ=- ,∴)()33331,21,22CP CA AP λλ=+=---⎝⎭ ,又330,0,2FC ⎛= ⎝⎭,该平面PCF 的法向量为(),,n x y z =,)()333121002203302x y z n CP n FC z λλ-+--=⎧⋅=⇒⎨⎨⋅=⎩⎪=⎪⎩ ,令()21y λ=-得)())321,21,0n λλ=--,∴()()223342332141cos ,CA n λλ=⋅-+-=,解得12λ=或76λ=(舍),综上可知,存在点P 是线段AB 的中点,使得直线AC 与平面PCF 所成角的正弦值为34.【点睛】本题主要考查面面垂直的性质定理和向量法研究线面角问题,还考查了转化化归的思想和运算求解的能力,属于中档题.20.抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A 在抛物线C 上.已知以F 为圆心,()FA FA p >为半径的圆F 交l 于,P Q 两点,若90,PFQ APQ ∠=.(1)求p 的值;(2)过点A 的直线m 交抛物线C 于点B (异于点A ),交x 轴于点M ,过点B 作直线m 的垂线交拋物线C 于点D ,若点A 的横坐标为正实数t ,直线DM 和抛物线C 相切于点D ,求正实数t 的取值范围.【答案】(1)1p =(2)4,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据题意,可得FS =PS =QS =p ,再设A 到准线l 的距离为d ,即可求得d =FA =FQ,进而通过面积即可求解.(2)设2221212,,,,,222x x t A t B x D x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为AB BD ⊥,所以2114x x x t =--+,求直线m 的方程得11M x tx x t=+,由切线DM ,令0y =,得22M x x =,综上,即可求解.【小问1详解】设准线l 与y 轴交于S ,因为90PFQ ∠= ,由对称性可知:FS =PS =QS =p ,设A 到准线l 的距离为d ,则d =FA =FQ,11222APQ S PQ d p =⋅⋅=⨯= ,解得:1p =.【小问2详解】由(1)设2221212,,,,,222x x t A t B x D x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而2222121121,,,,22x t x x AB x t BD x x ⎛⎫⎛⎫--=-=- ⎪ ⎪⎝⎭⎝⎭uu u r uu u r 因为AB BD ⊥,所以()()()()2222121121.04x t x x AB BD x t x x --⋅=--+=uu u r uu u r又121,x t x x ≠≠,所以()()12104x t x x +++=,又10x t +≠,得2114x x x t=--+①,()221111122ABx t k x t x t -=⋅=+-,所以直线m 的方程为()()21122t y x t x t -=+-,令0y =,得11M x tx x t=+②,由直线DM 与抛物线C 相切于点D ,则切线方程为()22222x y x x x -=-由切线过点M ,令0y =,得22M x x =③,由①②③得111124x t x x t x t--=++,即211340x tx ++=,又存在1x 满足上式,则()23160t ∆=-≥,又0t ≥,则43≥t ,又221||12222t t FA p =+=+>,得1t >.综上,正实数t 的取值范围为4,3⎡⎫+∞⎪⎢⎣⎭21.国球是指在一个国家内广泛开展,并在国际上居于领先地位的球类运动,中国的国球是乒乓球,乒乓球起源于英国的19世纪末.长沙市某社区为了丰富社区老人的退休生活,每年的重阳节定期举行乒乓球比赛.通过资格赛和淘汰赛,该社区的李大爷和张大爷进入决赛争夺冠军,决赛采用五局三胜制,即选手率先获得三局胜利时,比赛结束并赢得冠军.根据以往李大爷和张大爷的比赛胜负数据分析,李大爷和张大爷实力相当,每局获胜的可能性相同,每局比赛相互独立.(1)求张大爷获得乒乓球比赛冠军的概率;(2)冠亚军决赛结束后,社区组委会决定进行趣味性和观赏性极强的“花式乒乓球”对抗赛,“花式乒乓球”对抗赛由刘大爷和周大爷进行比赛,比赛采用三局两胜制,即选手率先获得两局胜利时,比赛结束并赢得冠军.刘大爷和周大爷在一局比赛获胜的概率分别为21,33,且每局比赛相互独立.比赛开始前,工作人员拿来两盒新球,分别为“装有2个白球与1个黄球”的白盒与“装有1个白球与2个黄球”的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丟弃,裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球,记两位大爷决出冠军后,两盒内白球剩余的总数为ξ,求随机变量ξ的分布列与数学期望.【答案】(1)12(2)分布列见解析;()4727E ξ=;【解析】【分析】(1)张大爷获得乒乓球比赛冠军共进行的局数为3,4,5,求出其对应的概率,由分类加法计数原理即可得出答案.(2)求出随机变量ξ的可能取值及其对应概率,由数学期望公式求解即可得出答案;【小问1详解】记张大爷获得乒乓球比赛冠军共进行的局数为随机变量η,则η的可能取值为3,4,5,记事件A :“张大爷获得乒乓球比赛冠军”,则()()()()345P A P P P ηηη==+=+=3222223411111111C C 22222222⎛⎫⎛⎫⎛⎫⎛⎫=+⨯⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【小问2详解】设刘大爷和周大爷“花式兵兵球”对抗赛进行了X 局比赛,易知2X =或3X =,则()222152339P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,故()()43129P X P X ==-==,记i W 表示第i 局从白盒中抽取的白色球.i W 表示第i 局从白盒中抽取的黄色球,i X 表示第i 局从黄盒中抽取的黄色球,i X 表示第i 局从黄盒中抽取的白色球,随机变量ξ的所有可能取值为1,2,3;()()()()()()()()12123123123123P P X P WW P X P WW W P W W X P W X W ξ===+=++5214212111111932932323338513⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯= ⎪⎪⎝⎭⎝⎭,()()()()()()()()()1212123123223P P X P W W P W X P X P W W X P W X X ξ===++=+5211142121213293233932333281⎛⎫⎛⎫=⨯+⨯+⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭()()()()()12123323P P X P W X P X P W X X ξ===+=512412114933933281⎛⎫⎛⎫=⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,则ξ的分布列为:ξ123P358132811481()3532144712381818127E ξ=⨯+⨯+⨯=22.已知函数()11eln 4xf x ax x a -⎛⎫=-> ⎪⎝⎭.(参考数据,e 2.718,ln20.693≈=)(1)证明:()()11ln f x a x ≤-+;(2)若()32f x x ≤-,求实数a 的取值的集合.【答案】(1)见解析(2){}1a ∈【解析】【分析】(1)设()()()1ln x f x a x ϕ=++,对()x ϕ求导,得到()x ϕ的单调性,证明()max 1x ϕ≤即可证明()()11ln f x a x ≤-+;(2)设()()23g x f x x =+-,对()g x 求导,讨论1a =,1a >和114a <<时,()max 0g x ≤是否成立,即可求出实数a 的取值的集合.【小问1详解】设()()()()11ln eln 1ln xx f x a x ax x a x ϕ-=++=-++,则()11ϕ=,()()()11e ln 1x a x a x xϕ-+=-+'-+,设()()()()11e ln 1xa u x x a x xϕ-+==--++',则()()212e 11x x a x u x x--+-'=,设()21e1xv x x -=-,()()212e x v x x x -'=-,当02x <<时,()0v x '>,函数()v x 单调递增,当2x >时,()0v x '<,函数()v x 单调递减,所以当0x >时,()()421ev x v ≤=-,因为当01x <<,()()10v x v <=且14a >,此时()()212e 110x x a x u x x--+-'=<,当1x >时,()()221112e 24v x v a x <=-<<+,此时也有()0u x '<,所以当0x >时,()()x u x ϕ'=单调递减,当01x <<时,,()()()10x u x u ϕ'=>=,()x ϕ单调递增,当1x >时,()()()10x u x u ϕ'=<=,()x ϕ单调递减,所以当14a >时,()()11x ϕϕ≤=,所以()()11ln f x a x ≤-+,故原不等式得证.【小问2详解】设()()123eln 23xg x f x x ax x x -=+-=-+-,则()10g =,()()1e ln 12x g x a x -'=--++,令()110g a '=-=,可得1a =,令()()12e ln 1xh x a x -=--+,其中0x >,()1111ee x x a x h x a x x --⎛⎫'=-=- ⎪⎝⎭,令()1ex xp x a -=-,其中0x >,则()11e x xp x --'=,当01x <<时,()0p x '>,此时函数()p x 单调递增,当1x >时,()0p x '<,此时函数()p x 单调递减,所以()()max 11p x p a ==-,①当1a =时,()()10p x p ≤=,则()()10h x p x x'=≤,且()h x '不恒为0,所以函数()g x '在区间()0,∞+上单调递减,所以当01x <<时,()()10g x g ''>=,则()g x 单调递增,当1x >时,()()10g x g ''<=,则()g x 单调递减.所以()()10g x g ≤=,即()32f x x ≤-.②当1a >时,()()110p x p a ≤=-<,则()()10h x p x x'=<,所以函数()g x '在区间()0,∞+上单调递减,因为()11e 1110,2e 0e g a g -⎛⎫=-=- ⎪⎝⎭'',此时存在11,1e x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,且当()()1,1,0x x g x ∈'<,()g x 单调递减,所以()()110g x g >=,不合题意;③当114a <<时,()()max 110p x p a ==->,因为()ln 1ln 1ln 1,1ln ln 0e a aa p a a a a --->-=-=->,由于函数()p x 在区间()1,+∞上单调递减,故存在21ln x a =-,使得当()21,x x ∈时,()0p x >,此时,()()10h x p x x'=>,则函数()g x '在区间()21,x 上单调递增,故当()21,x x ∈时,()()110g x g a ''>=->,()g x 单调递增,所以()()210g x g >=,不满足题意.综上所述,若()32f x x ≤-,则{}1a ∈.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求△ABC周长的最小值.
18.(本小题满分12分)
已知四棱锥P—ABCD的底面ABCD是等腰梯形,AB//CD,AC∩BC=0,
PB⊥AC,PA= PB=AB=2CD=2 ,AC=3.
(1)证明:平面PBD丄平面ABCD;
(2)点E是棱PC上一点,且OE//平面PAD,求二面角E—ห้องสมุดไป่ตู้B —A的正弦值.
(1)若 ,求曲线C的直角坐标方程以及直线/的极坐标方程;
(2)设点P(2,-1),曲线C与直线 交于A,B两点,求 的最小值.
23.(本小题满分10分)选修4—5:不等式选讲
已知 的最小值为 .
(1)求 的值;
(2)若实数 满足 ,求 的最小值,
数学(理科)
一、选择题:
1.B 2.A 3.B 4.C 5.D 6.D 7.C 8.C 9.C 10.B
A. 2-iB.-l + 2iC.-1-2iD.-2+3i
3.设 ,则“ ”是“ ”的(B)
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.已知向量a=(l,0),b=(-3,4)的夹角为 ,则 等于
A. B. C. D.
5.设 ,则 的大小关系是
A. a<b<cB.a<c<bC.b<c<aD.c<b<a
16.若 ,且 ,使得 ,则实数 的取值范围是 (e为自然对数的底数).
三、解答题:本大题共70分,解答应写出文字说明,证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(本小题满分12分)
已知△ABC是的内角A,B,C的对边分别为a,b,c,满足 且 .
湖南省长沙市第一中学高三数学第一次月考试题理
时量:120分钟 满分:150分
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={ },A={ },则 的元素个数是A. 4B. 3C. 2D. 1
2.已知 为虚数单位, ,若复数 的共轭复数 在复平面内对应的点位于第一象限,且 ,则
6.函数 的图象大致为(D)
7.运行如图所示的程序框图,若输出的S的值为101,则判断框中可以填
A.i>200?B.i>201?
C. i>202?D.i>203?
8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物 (鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有
A. 50 种B.60种
C. 70 种D.90种
9.将函数 的图象向左平移 个单位长度得到函数的图象,则下列说法正确的是(C)
A.函数 的最小正周期是
B.函数 的图象关于直线 对称
C.函数 在 上单调递减
函数 在 上的最大值是1
10.若函数 与 两个函数的图象有一条与直线 平行的公共切线,则
A.-1B. 0C. 1D. 3
13.已知定义在R上的奇函数 满足 ,且当 时, ,则
14.已知△ABC是等腰直角三角形,|AC|=|BC| =1, ,则 .
15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求兰角形面积的方法以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积。”如果把以上这段文字写成公式就是 ,其中a,b,c是△ABC的内角A,B,C的对边,若sin C=2sin AcosB,且b2,2,c2成等差数列,则△ABC面积S的最大值为 .
11.设函数 ,则关于函数 有以下五个命题:
① ;
② ;
③函数 是偶函数;
④函数 是周期函数;
⑤函数 的图象是两条平行直线.
12.已知三棱锥D—ABC的四个顶点在球0的球面上,若AB=AC=BC=DS = DC=1,当三棱锥 D-ABC的体积取到最大值时,球0的表面积为
A. B. C. D.
二、填空题:本大题共4小题.每小题5分,共20分。把各题答案的最简形式写在题中的横线上。
19.(本小题满分12分)
如图,在平面直角坐标系 中,椭圆C: 左、右焦点分别为F1,F2 ,P为椭圆C上一点,且PR垂直于 轴, 连结并延长交椭圆于另一点Q,设 .
(1)若点P的坐标为(1, ),求椭圆C的方程;
(2)若 ,求椭圆C的离心率的取值范围.
20.(本小题满分12分)
某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近五家“农家乐”跟踪调查了 100天,这五家“农家乐”的收费榇准互不相同,得到的统计数据如下表, 为收费标准(单位:元/日)为人住天数(单位:天),以频率作为各自的“人住率”,收费标准 与 人住率、的散点图如图.
11.B 12.A
二、填空题:
13.
14.4
15.
16.
17.
18.
19.
20.
21.
22.
23.
(1)若从以上五家“农家乐”中随机抽取两家深入调查,记 为“入住率”超过0.6的农家乐的个数,求 的概率分布列;
(2)令 ,由散点图判断 与 哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程;( 的结果精确到0.1)
(3)根据第(2)问所求的冋归方程,试估计收费标准为多少时,100天销售额L最大? (100天销售额L= 100×入住率×收费标准 )
21.(本小题满分12分)
已知函数 .
(1)若函数 在定义域上为增函数,求 的取值范围;
(2)证明: .
(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分。
22.(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中,曲线C的极坐标方程 ,以极点为原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 为参数).