汽车人机工程标准

合集下载

汽车人机工程标准范本(doc 36页)

汽车人机工程标准范本(doc 36页)

汽车人机工程标准范本(doc 36页)人机舒适性要求XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX。

乘坐舒适性:前排人员坐姿要求,后排人员坐姿要求;操作舒适性:驾驶员前部手控舒适区,前车门手控舒适区,后车门手控舒适区,座椅下部手控舒适区,机盖开度舒适性要求,后背门(后行李厢)开度舒适性要求;3.1 乘坐舒适性3.1.1 前排人员坐姿要求前排人员包括驾驶员和前排乘客,在布置上需要满足相应的布置要求,一般情况下,驾驶员与副驾驶员设计坐姿一致,驾驶员还需特别关注下肢的布置角度要求,下图为驾驶员对人体主要关节角度的一般性要求CH:踝关节 85°<A4<110° 87°E:肩部点 25°<A5<60°C:肘关节 80°<A6<165°P:腕关节 170°<A7<190°M:指关节T: A点·舒适驾驶姿态-H点根据舒适驾驶姿态进行确定,不同车型的空间、坐姿角度的具体要求如下表所示。

表对于不同车型来说座椅靠背角度一般:25°为最佳舒适状态,靠背角度也可以根据实际需要做相应的调整;踝关节角度一般:87°为最佳舒适状态,关节角度也可以根据实际需要做相应的调整。

·方向盘与踏板之间的关系-方向盘和油门踏板位置根据95%美国男性四肢的舒适角度进行确定图·方向盘中心与H点的间距-纵向长度:405-415mm-垂直高度:370-380mm·方向盘下端与座椅垫之间的关系-我们称之为方向盘间隙-方向盘间隙:最小165mm·座椅调节滑轨的行程包括最前位置和最后位置。

-最前位置:5%的美国女性-最后位置:95%的美国男性*如果是大中型汽车,H点可以位于最后位置的前方表-座椅调节滑轨倾斜角:3°-5°·头部间隙-顶盖装饰板与驾驶员视点之间的高度:200mm -230mm·视觉-确定H点应在考虑前后视野的基础上寻求良好的视觉效果3-2)横向H点位置·应考虑以下因素:-内部乘员宽度-车顶纵梁(横向头部间隙)-方向盘-踏板-等等·内部乘员宽度-肩部空间和臀部空间-考虑到车门内饰和副仪表板的有效空间表·H点位置表·横向头部间隙表·方向盘和踏板踏板的分类:手动挡踏板和制动档踏板手动挡踏板的外形尺寸制动档踏板的外形尺寸油门踏板、制动踏板、离合踏板的相对位置的确定图*SgRP( 座椅参考点): H点踏板间距(mm)踏板高度差(mm)分类C B *1)A*2)A-BB-C 油门-刹车刹车-离合器设70-80 40-50 最60-70 70-80 30-40 0-计指南小1655注:*1) 右置: 最小155;*2) 右置: 同样概念说明:1.θ1 1°- 2°(正常:1.5 °)L ( 方向盘与H点在平面上的长度): 0-10mm 注:*2 H点为座椅调节范围尺寸代码①(此尺寸仅供参考)②③④⑤AHP (油门踪点)4.后H点·如果是紧凑型和小型轿车,应考虑到乘客空间比后乘客厢更为重要。

智能车辆人机工程

智能车辆人机工程

智能车辆人机工程智能车辆人机工程是指将人与智能车辆之间的交互和界面设计优化,以提升驾驶者体验、安全性和操作效率的领域。

在现代社会中,智能车辆正逐渐取代传统机械车辆成为交通主力,人机工程的重要性也日益凸显。

智能车辆人机工程的目标是提供一个符合人类认知和操作习惯的界面,使驾驶者能够轻松理解和控制车辆的功能。

为了实现这一目标,需要考虑以下几个方面:第一,界面的可视化设计。

智能车辆的界面设计应尽可能简洁明了,图标、文字和颜色等元素都应符合人类视觉的特点。

界面布局应合理,避免信息过载和冗余,让驾驶者能够一目了然地获取所需的信息。

第二,交互方式的优化。

传统机械车辆通过操纵杆和脚踏板等来控制,而智能车辆可以通过语音指令、触摸屏和手势识别等更直观的方式进行交互。

智能车辆人机工程的任务就是研究如何最大程度地减少驾驶者的认知负担,提供更便捷、高效的交互方式。

第三,安全性的考虑。

智能车辆人机工程需要确保驾驶者在驾驶过程中能保持专注和警觉。

例如,可以通过主动提醒和警报系统来减少驾驶者的疲劳和注意力分散,提高驾驶安全性。

另外,还需要考虑驾驶者对警告信息的理解和反应时间,设计出更人性化的提示方式。

第四,个性化的需求。

每个驾驶者的需求和习惯都不同,智能车辆人机工程需要灵活应对。

例如,可以根据驾驶者的喜好和习惯进行个性化设置,提供个性化的驾驶体验。

还可以通过驾驶者的反馈和数据分析来不断优化界面和交互方式,提供更智能化的驾驶体验。

智能车辆人机工程是一项涉及多个学科和领域的综合性任务。

它需要工程师、心理学家、人机交互专家和人类行为学家等多个领域的专家共同合作。

只有通过深入研究和不断创新,才能进一步提升智能车辆的人机交互体验和安全性,为驾驶者提供更优质的驾驶体验。

综上所述,智能车辆人机工程是一个综合的任务,涉及到界面设计、交互方式优化、安全性和个性化需求等多个方面。

通过改进智能车辆和驾驶者之间的交互方式,提高驾驶者的体验和安全性,可以为智能车辆的未来发展打下坚实的基础。

汽车总布置设计-人机工程

汽车总布置设计-人机工程

校核内容
驾驶员SAE95%人体坐姿舒适性校核 后排乘员SAE95%人体坐姿舒适性校核 驾驶员SAE5%人体坐姿舒适性校核
引用标准
SAE J1100-2005 SAE J826-2002 SAE J4002-2005 SAEJ1517-1998 SAE J1052-2002 Motor Vehicle Dimensions(汽车尺寸) H点机械和设计工具规程和规格 H点机械和设计工具规程和规格 驾驶员选择的座椅位置 汽车驾驶员及乘员头部位置
E点
“E点”指驾驶员眼睛的中心,用于评估A柱妨碍视野的程度。
直接视野视点
参考IDG标准,用于校核A、B、C柱直接视野障碍角度的视点,相对驾驶员R点的坐标为 (0,0,635)。
16
四、人体坐姿校核
校核目的
在整车布置设计的过程中,为了能尽量降低驾驶员的疲劳程度,通过对人体的生理结构进行研 究而得到人体的舒适驾驶姿势,这是在总布置设计中必须遵守的依据,同时本着提高车内 空间利用率、满足外造型和整车尺寸原则,进行人性化的最优化设计。
13
三、人机工程关键硬点定义
眼椭圆大小
14
三、人机工程关键硬点定义
眼椭圆位置
其中:具有离合踏板时t=1,无离合踏板时t=0 L1:加速踏板参考点(PRP)X坐标 L6:速踏板参考点到方向盘中心水平距离 H30:R点到踵点垂直距离 W20:R点Y坐标 H8:驾驶员踵点(AHP)Z坐标
15
三、人机工程关键硬点定义
25
四、人体坐姿校核
驾驶员SAE5%人体坐姿舒适性校核 轿车驾驶员人体坐姿舒适推荐值
代码 尺寸名称 舒适参考范围 250-405 —— 20-30 95-115 —— 100-145 87-110

汽车人机工程标准.doc

汽车人机工程标准.doc

人机舒适性要求XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX。

乘坐舒适性:前排人员坐姿要求,后排人员坐姿要求;操作舒适性:驾驶员前部手控舒适区,前车门手控舒适区,后车门手控舒适区,座椅下部手控舒适区,机盖开度舒适性要求,后背门(后行李厢)开度舒适性要求;3.1 乘坐舒适性3.1.1 前排人员坐姿要求前排人员包括驾驶员和前排乘客,在布置上需要满足相应的布置要求,一般情况下,驾驶员与副驾驶员设计坐姿一致,驾驶员还需特别关注下肢的布置角度要求,下图为驾驶员对人体主要关节角度的一般性要求————95%美国男性5%美国女性关节名称舒适角度最佳角度靠背角 20°<A1<30° 25°H: 胯点 95°<A2<110° 95°G: 膝关节 95°<A3<135° 125°CH:踝关节 85°<A4<110° 87°E:肩部点 25°<A5<60°C:肘关节 80°<A6<165°P:腕关节 170°<A7<190°M:指关节T: A点·舒适驾驶姿态-H点根据舒适驾驶姿态进行确定,不同车型的空间、坐姿角度的具体要求如下表所示。

表对于不同车型来说座椅靠背角度一般:25°为最佳舒适状态,靠背角度也可以根据实际需要做相应的调整;踝关节角度一般:87°为最佳舒适状态,关节角度也可以根据实际需要做相应的调整。

·方向盘与踏板之间的关系-方向盘和油门踏板位置根据95%美国男性四肢的舒适角度进行确定图·方向盘中心与H点的间距-纵向长度:405-415mm-垂直高度:370-380mm·方向盘下端与座椅垫之间的关系-我们称之为方向盘间隙-方向盘间隙:最小165mm·座椅调节滑轨的行程包括最前位置和最后位置。

汽车人机工程标准

汽车人机工程标准

前、后车门扶手的高度要定义在扶手舒适区域内

— 13 —
后视图 图
图 1. 定位扶手使驾驶员可以紧握方向盘并把胳肘放在扶手上歇息,为适应胳肘要求,可把扶手固定在
H 点与胳肘舒适区域前部的边缘之间。 2.外扶手高度应在内扶手高度的 25mm之内。 3. 整个胳肘舒适区域的扶手宽度为: 50-60mm 4. 为了方便前臂,整个前臂舒适区域具有 30mm的最小扶手宽度。 3.4 车内中间扶手箱舒适区域 3.4.1 扶手箱的高度
车门内拉手在车门内扶手上面,其高度根据车门内扶手的高度而定。
— 15 —
图 1. 车门内拉手的最小抓握长度 120mm要在 B 区域内,如果拉手的长度超过 2. 抓握区域最小半径 5mm; 3. 建议抓握直径最小 25mm,最大 50mm。 车门内拉手的类型: a. 杯型拉手; b. 全握式拉手; c. 带型拉手; d. 棒式拉手 3.5.1 杯型拉手
3.1 乘坐舒适性
3.1.1 前排人员坐姿要求 前排人员包括驾驶员和前排乘客,在布置上需要满足相 应的布置要求,一般情况下,驾驶员与副驾驶员设计坐姿一致,驾驶员还需特别关注下肢的布
置角度要求,下图为驾驶员对人体主要关节角度的一般性要求
———— 95%美国男性
5%美国女性
关节名称
靠背角
20
舒适角度 °< A1< 30°
带式拉手的尺寸要求为: 1. 最小手指间隙: 40mm; 2. 上部(斜向间隙) 30mm外侧(横向间隙) 。 3.5.4 棒式拉手


棒式拉手的尺寸要求为 :
1. 手进入 / 外侧间隙:最小 20mm; 2. 手进入 / 上部间隙:最小 40mm; 3. 手进入 / 下部间隙,棒顶端至罩盖下端:最小

汽车制造业人机工程评分标准的建立及实施

汽车制造业人机工程评分标准的建立及实施

调整、排除故障、点检、保养等工作。
14
第三节 丌同专业权重值
第二章
评价标准
评价岗位属性分值区间
不同专业评价指标权重
15ቤተ መጻሕፍቲ ባይዱ
第四节 如何评价
“ 拿取范围优化” & ” 人机工程” 则作为现场改善 最重 要的两大方法模块。我们从人机工程角度描述和优化 岗位, 从产品、料箱和周围环境的优化来一起进行人机工 程负荷 分析。
率,体现企业”以人为本,人文关怀“理 念 。
Vergangenheit
Zukunft
4
第二节 为什么需要评价人机工程
关注人机工程的重要性
第一章
人机工程 概述
【案例1 :腰椎间盘突出症发病 率 居高丌下】
据国家卫生部统计,我国腰椎病患者已突破2亿人,
腰椎间盘突出症患者占全国总人数的15.2%,多年 来一直呈上升趋势,而且逐年以惊人的速度由中老 年向青壮年扩展。也就是说每100 人中就有15~16 例 患病者。 原因:不良的坐姿、不正确的作业姿势、长时间的 弯腰
合,大幅度降低人的工作强度,改善人机工程。
32
第四章
第四节 结论& 展 望
结论& 展 望
模拟和可视化工具:对技术系统进行分析、综合和优化的模拟工具;可建立多身体动态人体模型,评估运 动过程。
33
第四章
第四节 结论& 展 望
现场模拟测试运行
结论& 展 望
34
谢谢!
3
分 55.1%

23
评价标准实际应用
第三章 自制沙发 评价标准 移动样块
实际应用
Vor
Nach
改善前:需要长时间弯腰按住沙发移动按钮,人机工 程评分158

浅析汽车人机工程设计方案

浅析汽车人机工程设计方案

标题:浅析汽车人机工程设计方案摘要:随着科技的飞速发展,汽车行业在人机工程学方面的研究越来越深入,以提高驾驶安全性、舒适性和便捷性。

本文将简要介绍汽车人机工程设计的基本原则,并以实际案例分析汽车人机工程设计在实际应用中的优势和挑战。

一、引言人机工程学是一门研究人与机器之间交互关系的学科,旨在优化设计,提高人的工作效率和满意度。

在汽车行业,人机工程设计方案越来越受到重视,因为它关系到驾驶员的操作便捷性、乘坐舒适度和行车安全性。

二、汽车人机工程设计原则1. 安全性:汽车设计需考虑到在紧急情况下,驾驶员能迅速、准确地操作各种设备,降低事故发生的风险。

2. 舒适性:座椅、方向盘、踏板等部件的设计应符合人体工程学,使驾驶员在长时间驾驶过程中保持舒适。

3. 便捷性:汽车操作界面应简洁明了,便于驾驶员快速熟悉和操作。

4. 直观性:仪表盘、显示屏等显示系统应采用易于理解的设计,使驾驶员能够迅速获取所需信息。

5. 适应性:汽车设计应考虑到不同身高、体型的驾驶员,提供个性化设置。

三、案例分析以某款豪华轿车为例,其人机工程设计方案在实际应用中具有以下优势:1. 座椅调节:座椅提供多种调节选项,包括高度、倾斜度、前后位置等,以满足不同驾驶员的需求。

2. 方向盘调节:方向盘可进行高度和距离调节,使驾驶员在驾驶过程中保持最佳姿势。

3. 仪表盘设计:仪表盘采用高清显示屏,信息清晰易懂,便于驾驶员快速获取车辆状态。

4. 控制系统:车辆的各种控制系统(如空调、音响等)采用直观的触摸屏操作,降低了驾驶员在驾驶过程中的分心程度。

然而,在实际应用中也存在一些挑战,如:1. 操作学习成本:部分高端车辆的操作系统较为复杂,驾驶员需要一段时间才能熟练掌握。

2. 功能分散:部分车辆的功能过于分散,可能导致驾驶员在紧急情况下操作不便。

四、结论汽车人机工程设计方案在提高驾驶安全性、舒适性和便捷性方面具有重要意义。

随着科技的发展,汽车行业应继续深入研究人机工程学,以期为驾驶员提供更加人性化、智能化的驾驶体验。

车辆人机工程学

车辆人机工程学

车辆人机工程学
车辆人机工程学指的是将人体工程学、心理学和工程学原理应用
于汽车、卡车、摩托车及其他车辆的设计和开发过程中,以实现更好
的人机交互性能和操作的可靠性,提高驾驶员的安全和舒适性。

车辆人机工程学的主要目标是让驾驶员在车辆驾驶过程中感到舒适、安全和易于操作,从而减少疲劳、提高驾驶效率和遵从交通规则
的意愿。

在车辆设计阶段,人机工程学的应用可以减少舒适性和安全
性方面的问题,提高驾驶员的操作效率。

具体而言,车辆人机工程学
包括以下方面:
1. 控制系统设计:根据人体工程学原理设计控制器、仪表盘、按
钮和开关等,在车辆操作时容易操作、易于理解和记忆。

2. 座椅设计:根据人体工程学原理设计座椅的高度、角度、深度、腰部支撑和头枕等,以适应驾驶员的身体比例,减少疲劳和不舒适。

3. 车窗和后视镜设计:根据视觉心理学原理设置车窗和后视镜,
以确保驾驶员可以更清晰地看到周围环境和其他车辆的情况。

4. 灯光设计:在夜间或恶劣天气下,正确设置车灯和信号灯,以
确保驾驶员能够正确地看到路面情况和道路的标志。

总之,车辆人机工程学是一门涵盖广泛且十分重要的学科,它对
于车辆的设计和开发至关重要,可以使驾驶员在驾驶过程中感到更加
舒适和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人机舒适性要求XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX。

乘坐舒适性:前排人员坐姿要求,后排人员坐姿要求;操作舒适性:驾驶员前部手控舒适区,前车门手控舒适区,后车门手控舒适区,座椅下部手控舒适区,机盖开度舒适性要求,后背门(后行李厢)开度舒适性要求;3.1 乘坐舒适性3.1.1 前排人员坐姿要求前排人员包括驾驶员和前排乘客,在布置上需要满足相应的布置要求,一般情况下,驾驶员与副驾驶员设计坐姿一致,驾驶员还需特别关注下肢的布置角度要求,下图为驾驶员对人体主要关节角度的一般性要求————95%美国男性5%美国女性关节名称舒适角度最佳角度靠背角 20°<A1<30° 25°H: 胯点 95°<A2<110° 95°G: 膝关节 95°<A3<135° 125°CH:踝关节 85°<A4<110° 87°E:肩部点 25°<A5<60°C:肘关节 80°<A6<165°P:腕关节 170°<A7<190°M:指关节T: A点·舒适驾驶姿态-H点根据舒适驾驶姿态进行确定,不同车型的空间、坐姿角度的具体要求如下表所示。

表对于不同车型来说座椅靠背角度一般:25°为最佳舒适状态,靠背角度也可以根据实际需要做相应的调整;踝关节角度一般:87°为最佳舒适状态,关节角度也可以根据实际需要做相应的调整。

·方向盘与踏板之间的关系-方向盘和油门踏板位置根据95%美国男性四肢的舒适角度进行确定图·方向盘中心与H点的间距-纵向长度:405-415mm-垂直高度:370-380mm·方向盘下端与座椅垫之间的关系-我们称之为方向盘间隙-方向盘间隙:最小165mm·座椅调节滑轨的行程包括最前位置和最后位置。

-最前位置:5%的美国女性-最后位置:95%的美国男性*如果是大中型汽车,H点可以位于最后位置的前方表名称座椅调节范围(mm) 微型轿车轿车160-180-座椅调节滑轨倾斜角:3°-5°·头部间隙-顶盖装饰板与驾驶员视点之间的高度:200mm -230mm ·视觉-确定H点应在考虑前后视野的基础上寻求良好的视觉效果3-2)横向H点位置·应考虑以下因素:-内部乘员宽度-车顶纵梁(横向头部间隙)-方向盘-踏板-等等·内部乘员宽度-肩部空间和臀部空间-考虑到车门内饰和副仪表板的有效空间表·H点位置表·横向头部间隙表·方向盘和踏板踏板的分类:手动挡踏板和制动档踏板手动挡踏板的外形尺寸制动档踏板的外形尺寸油门踏板、制动踏板、离合踏板的相对位置的确定图*SgRP( 座椅参考点): H点踏板间距(mm)踏板高度差(mm)分类 C B *1) A *2) A-B B-C 油门-刹车刹车-离合器设计指70-80 40-50 最小165 60-70 70-80 30-40 0-5 南注:*1) 右置: 最小155;*2) 右置: 同样概念说明:1.θ1 1°- 2°(正常:1.5 °)L ( 方向盘与H点在平面上的长度): 0-10mm 注:*2 H点为座椅调节范围尺寸代码①(此尺寸仅供参考)②③④⑤设计要求260-320 370-380 405-415 390-395 23°-25°4.后H点·如果是紧凑型和小型轿车,应考虑到乘客空间比后乘客厢更为重要。

但是,大中型轿车则不同。

·一般来说,后乘客空间是根据车辆等级采用下列一些人体模型建立起来的。

表名称百分位人体高度紧凑型轿车10%美国男性167mm小型轿车10/50%美国男性167/176mm中型轿车50/95美国男性176mm大型轿车95%美国男性185mm4-1)沿长度和高度方向的H点位置·后H点取决于前H点和后车轮中心AHP (油门踪点)·正常情况下,地板护面到H点的高度为300mm表·检查头部向后摆动间隙4-2)沿宽度方向的H点位置·H点的位置应根据95%的美国男性进行确定而不考虑车辆的尺寸-95%美国男性尺寸表-后H点离车中心至少为250mm-后H点离轮罩内侧至少900mm以避免臀部与轮罩进行干涉-后H点应象前H点一样考虑头部间隙表表名称乘客肩部至车门内饰的间距汽车中心至H点紧凑型轿车110 285小型轿车115 315中型轿车125 350大型轿车130 375-由于造型原因,后排横向头部间隙在正常情况下至少要比前横向头部间隙大5mm3.1.2 后排人员的坐姿要求相对于前排乘客来说,后排乘客对腿部的要求没有前排的那么多,其它关节位置的角度要求可参考前排乘员来进行设计,但后排乘客需要考虑头部后仰空间的要求,要保证后排乘员头部运动的过程中不会碰到行李舱隔板装置,具体区域如下图所示:图安全带、高位制动灯、行李隔板及其它装饰板布置时要注意满足乘员头部空间的要求,不要超过上图所示的乘员头部轮廓线。

3.2 空间要求的具体定义3.2.1 头部空间的定义头部空间是针对大众人群的,因此定义头部空间时需要考虑95%的人体的头部包络线图图如图所示1. W27——头部间隙斜向空间;2. H35——纵向空间;3. W35——横向空间。

设计时为保证人体舒适性需要满足前期策划时定义的工程目标值3.2.2 肩部空间、臀部空间前期策划时要考虑驾驶员、乘员的肩部空间、臀部空间,可以参考竞品车定义其工程目标值。

图如图所示1. W3——肩部空间;2. W5——臀部空间设计时需要满足前期策划时的工程目标值3.2.3 后排乘员膝部空间前排座椅调整到最后位置时,后排乘员的膝部最小间隙为51mm,如图所示:图3.2.3 脚部空间脚部空间主要是评价人进出车辆方便性的一个指标图如图所示1. L18——车门开启最大时,从门槛内饰上方的102mm处测得的座垫与内饰件最小距离2. 四门车——前排L18最小值为440mm、后排最小值为300mm。

3. 两门轿车——前排L18最小值为440mm、后排最小值为200mm3.2.4 小腿与门槛外板的间隙人下车时小腿与门槛外板要留有一定的间隙,主要是考虑5%的女性在下车时小腿与门槛不相撞即可,如下图所示图3.2.5 方向盘与坐垫的间隙考虑人机舒适性,方向盘下端与坐垫要有足够的间隙图如图所示H74——方向盘下端和坐垫的最小间隙推荐值为150mm。

3.3 车门扶手舒适区域前、后车门扶手的高度要定义在扶手舒适区域内图后视图图图1.定位扶手使驾驶员可以紧握方向盘并把胳肘放在扶手上歇息,为适应胳肘要求,可把扶手固定在H点与胳肘舒适区域前部的边缘之间。

2.外扶手高度应在内扶手高度的25mm之内。

3.整个胳肘舒适区域的扶手宽度为:50-60mm4.为了方便前臂,整个前臂舒适区域具有30mm的最小扶手宽度。

3.4 车内中间扶手箱舒适区域3.4.1 扶手箱的高度车内中间扶手箱的高度根据车门扶手的高度来确定,车内中间扶手的高度应在车门扶手高度的25mm之内满足人机舒适性的要求。

图3.4.1 扶手箱的宽度适用两人的扶手宽度最少为:100mm;适用壹人的扶手宽度最少为:50mm。

图图3.5 车门内拉手舒适区域(适合所有类型的车门内拉手)车门内拉手在车门内扶手上面,其高度根据车门内扶手的高度而定。

图1. 车门内拉手的最小抓握长度120mm要在B区域内,如果拉手的长度超过120mm可以在C区域内;2. 抓握区域最小半径5mm;3. 建议抓握直径最小25mm,最大50mm。

车门内拉手的类型:a. 杯型拉手;b. 全握式拉手;c. 带型拉手;d. 棒式拉手3.5.1 杯型拉手图杯型拉手的尺寸要求为:1. 抓握打开宽度:最小30mm;2. 拉手深度:最小36mm;3. 上部最近接触点的间隙最小30mm。

3.5.2 全握式拉手图全握式拉手的尺寸要求为:抓握打开宽度:最小35mm3.5.3 带式拉手图带式拉手的尺寸要求为:1. 最小手指间隙:40mm;2. 上部(斜向间隙)30mm外侧(横向间隙)。

3.5.4 棒式拉手图图棒式拉手的尺寸要求为:1. 手进入/外侧间隙:最小20mm ;2. 手进入/上部间隙:最小40mm;3. 手进入/下部间隙,棒顶端至罩盖下端:最小30mm。

3.4 进车车辆方便性的要求车辆进出高度主要进出车辆方便性的测量方法。

前期定义时要全面考虑人机舒适性的要求,定义足够的出入空间·进入高度-前(H11):从前H点X平面至H点位置上方装饰车身开启处的垂直尺寸。

·进入高度-后(H12):从后H点至H点前方330mm的一个截面上部装饰车身开启处的垂直尺寸。

·出口高度-后(H69):从后H点至上部装饰车身开启处的垂直尺寸。

它位于装饰车身开启处与后H点上方483mm一个水平面相交处前方254mm这个位置。

图如图中所示车辆进出高度的参考值为1. H11——进入高度-前:770-800mm;2. H12——进入高度-后:760-810mm;3. H69——出口高度-后:710-780mm。

设计时要满足前期定义的工程目标值1.2 操作舒适性1.2.1 驾驶员手控操纵区域为方便驾驶员在正常驾驶位置时的操纵,仪表台及其周边的按钮装置要布置在驾驶员受控区域内。

图1. 曲面A——三指手控区域(旋转类按钮例如:空调旋钮、收音机旋钮等要布置在此区域内);2. 曲面A沿X方向前移50mm——手指手控区域(触摸类按钮例如电动后视镜开关、除霜加热开关、A/C开关等要布置在此区域内);3. 曲面A沿X方向后移50mm——全握手控区域(抓握类机构例如换挡机构、驻车制动机构等要布置在此区域内)。

1.2.2 前车门合理手控区域前车门上面的控制开关、车门开启手柄等控制器要布置在相应的控制曲线之内。

上部手控界限以水切为界。

图1. 红色线框——“无倾斜”控制要求曲线;2. 曲线A沿X方向前移100mm(H点上方128mm)——需用手全握进行操纵的控制曲线,例如车门开启手柄;3. 曲线A沿X方向前移100mm(H点下方100mm)——无需用手全握进行操纵的控制曲线。

1.2.3 前车门下部合理控制区域随座椅前后移动的控制器要布置在相应的操纵区域内,方便操纵。

图图中所示4条曲线——随座椅前后移动的控制器的控制曲线。

相关文档
最新文档