交通灯控制电路数电课程设计数字电路课程设计

合集下载

数字电路交通灯课程设计

数字电路交通灯课程设计

数字电路交通灯课程设计一、课程目标知识目标:1. 让学生理解并掌握数字电路的基本原理,包括逻辑门、触发器等组成部分。

2. 使学生能够运用交通灯控制电路的原理,分析并设计简单的数字电路系统。

3. 帮助学生了解交通灯控制电路在实际生活中的应用,理解其工作原理和功能。

技能目标:1. 培养学生运用所学知识,设计并搭建简单的数字电路交通灯控制系统的能力。

2. 培养学生通过小组合作,进行问题分析、方案设计、实验操作和结果分析的综合技能。

3. 提高学生运用现代工具和设备进行电路设计和测试的能力。

情感态度价值观目标:1. 激发学生对电子技术领域的兴趣,培养其主动探索科学问题的精神。

2. 培养学生的团队合作意识,使其学会在团队中发挥个人优势,共同解决问题。

3. 培养学生具备安全意识,了解并遵循实验室安全操作规程,养成良好的实验习惯。

课程性质:本课程为电子技术实践课程,侧重于学生动手能力和实际操作能力的培养。

学生特点:初三学生具备一定的物理基础和电子技术知识,对实际操作有较高的兴趣。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的实践操作能力。

通过课程学习,使学生能够将所学知识应用于实际生活中,培养其创新精神和动手能力。

在此基础上,将课程目标分解为具体的学习成果,以便进行后续的教学设计和评估。

二、教学内容1. 理论知识:- 逻辑门电路:介绍与门、或门、非门等基本逻辑门的工作原理和应用。

- 触发器:重点讲解RS触发器、D触发器等常用触发器的工作原理和使用方法。

- 交通灯控制电路原理:分析交通灯控制电路的基本组成、工作原理及其应用。

2. 实践操作:- 设计并搭建数字电路交通灯控制系统:学生分组进行电路设计,包括选择合适的逻辑门、触发器等组件,搭建交通灯控制电路。

- 电路测试与调试:学生进行电路测试,观察交通灯控制效果,针对问题进行调试。

3. 教学大纲:- 第一阶段:回顾已学过的逻辑门电路和触发器知识,为后续学习打下基础。

交通灯控制器数电课程设计

交通灯控制器数电课程设计

交通灯控制器数电课程设计交通灯控制器是现代城市交通管理的重要设备之一,它通过控制红绿灯的变化来引导车辆和行人的交通行为。

在这个数电课程设计中,我将介绍一个基于数字电路的交通灯控制器的设计方案。

我们需要明确交通灯控制器的工作原理。

交通灯控制器需要根据交通流量和道路情况来合理地控制红绿灯的变化。

一般来说,交通灯控制器包括计时器、传感器、状态切换逻辑和信号输出等部分。

在这个设计中,我们将使用数字电路来实现交通灯控制器。

数字电路是一种由逻辑门构成的电子电路,它能够对输入信号进行逻辑运算,并输出相应的结果。

我们可以使用逻辑门来实现交通灯控制器的各个部分。

我们需要设计一个计时器来控制红绿灯的变化。

计时器可以根据设定的时间间隔来输出不同的信号。

我们可以使用时钟信号来驱动计时器,每个时钟周期结束时,计时器的值加1。

当计时器的值达到设定的时间间隔时,就会触发一个输出信号,用于控制红绿灯的切换。

我们需要使用传感器来检测交通流量和道路情况。

传感器可以将交通流量和道路情况转化为电信号,并输入到交通灯控制器中。

根据传感器的输入信号,交通灯控制器可以做出相应的决策,例如延长绿灯时间或者提前切换红灯。

然后,我们需要设计状态切换逻辑来根据输入信号决定交通灯的切换。

状态切换逻辑可以根据当前的交通流量和道路情况,以及交通灯的当前状态,来计算下一个交通灯的状态。

例如,当交通流量较大时,状态切换逻辑可以延长绿灯时间;当交通流量较小时,状态切换逻辑可以提前切换红灯。

我们需要设计信号输出部分来控制红绿灯的显示。

信号输出部分可以根据状态切换逻辑计算得到的交通灯状态,输出相应的信号,控制红绿灯的亮灭。

例如,当状态切换逻辑计算得到应该显示绿灯时,信号输出部分就会输出一个绿灯信号,使绿灯亮起。

这个基于数字电路的交通灯控制器的设计方案包括计时器、传感器、状态切换逻辑和信号输出等部分。

通过合理地设计这些部分,并进行适当的调试和优化,我们可以实现一个高效、稳定的交通灯控制器,为城市交通管理提供有力的支持。

数字电子技术课程设计交通灯控制电路设计

数字电子技术课程设计交通灯控制电路设计

目录一、设计任务及原理 ..........................................................................................................二、具体要求.....................................................................................................................三、输入输出资源说明…………………………………………………………………………….四、顶层设计结果………………………………………………………………………………….五、各子模块设计 ............................................................................................................5.1时钟分频模块................................................................................................................5.2倒计时模块 ........................................................................................................................5.3交通灯控制模块 ................................................................................................................5.4点阵显示模块 ....................................................................................................................六、仿真测试结果 ............................................................................................................七、实习总结与心得.........................................................................................................数字电子技术课程设计题目:交通灯控制电路设计一、设计任务及原理:交通灯的显示有很多方式,如十字路口、丁字路口等,而对于同一个路口又有很多不同的显示要求,比如十字路口,车辆如果只要东西和南北方向通行就很简单,而如果车子可以左右转弯的通行就比较复杂。

数字电子电路课程设计数字交通灯的设计

数字电子电路课程设计数字交通灯的设计

数字电子电路课程设计数字交通灯的设计数字电子电路课程设计是电子信息类专业本科生的必修课程之一,是培养学生掌握数字电子技术和电路设计的基础课程。

本文将重点介绍数字电子电路课程设计中的数字交通灯的设计,包括设计思路、实现方法以及相关技术难点。

一、设计思路数字交通灯是指用数字电路实现的交通信号灯,它模拟现实中的交通信号灯工作原理,可以对交通流量进行控制,从而达到维持交通秩序的作用。

数字交通灯的设计思路主要包括:状态图设计、状态转移表、电路设计等。

1. 状态图设计状态图是指在不同的条件下,相应的状态变化图示。

在数字交通灯设计中,状态图主要指交通信号灯的三种状态:红灯、黄灯、绿灯。

红灯代表禁止通行,黄灯代表准备要改变信号状态,绿灯代表允许通行。

因此,在状态图设计中,需要设计三种状态之间的转换关系,以及每种状态下灯的亮灭情况。

2. 状态转移表状态转移表是根据状态图所绘制的决策表,它表示其中每个状态的输入和输出。

在数字交通灯设计中,状态转移表主要包括状态、输入、输出三个方面。

状态包括三种:红灯、黄灯、绿灯;输入包括:时钟信号、手动开关和车辆检测信号;输出包括:红灯、黄灯、绿灯、喇叭等。

3. 电路设计电路设计是用于实现状态转移表的数字电路,它可以采用逻辑门电路或者是PLD电路来实现。

在电路设计中,需要考虑到电路的实现方法、实现难度和电路的稳定性。

二、实现方法数字交通灯的实现方法可以通过逻辑门电路或者是PLD电路来实现。

其中,逻辑门电路是一个基于逻辑开关的基本电路,它包括且非门、与门、或门等数字逻辑电路。

PLD电路是一种可编程逻辑器件,包括可编程门阵列(PGA)、可编程逻辑阵列(PLA)、可编程读只存储器(PROM)等。

1. 逻辑门电路实现逻辑门电路实现数字交通灯主要包括D触发器、补码加法器、逻辑门等模块。

其中,D触发器用于实现状态转移表的状态存储,补码加法器用于实现时钟控制计数器,逻辑门用于实现输入和输出控制。

交通灯控制电路+数电课程设计+数字电路课程设计

交通灯控制电路+数电课程设计+数字电路课程设计

——交通灯控制电路系别:电气工程系专业:自动化班级:07级3班姓名:学号:J******** ****:***目录第一章:序言 (2)第二章:设计任务书 (2)第三章:电路组成和工作原理 (4)第四章:设计步骤及方法 (7)第五章:总结 (10)第七章:参考文献 (10)第一章序言随着社会的飞速发展,城市交通问题日益凸显严重,尤其在城市街道的十字叉路口,频繁发生交通问题,为了保证交通秩序和行人安全,一般在每条街上都有一组红、黄、绿交通信号灯。

其中红灯亮,表示道路禁止通行;黄灯亮表示该道路上未过停车线的车辆禁止通行,已经过停车线的的车辆继续通行;绿灯亮表示道路允许通行。

交通灯控制电路自动控制十字路口的红、黄、绿交通灯。

交通灯通过的状态转换,指挥车辆行人通行,保证车辆行人的安全,实现十字路口交通管理自动化。

第二章设计任务书一、设计题目:交通灯控制电路二、技术内容及要求:1、设计任务、设计任务设计一个十字路口的交通信号灯控制器,控制A、B两条交叉道路上的车辆通行,具体要求如下:叉道路上的车辆通行,具体要求如下:a)每条道路设一组信号灯,每组信号灯由红、黄、绿3个灯组成,绿灯表示允许通行,红灯表示禁止通行,黄灯表示该车道上已通过停车线的车辆继续通行,未过停车线的车辆停止通行。

的车辆停止通行。

b)每条道路上每次通行的时间为25s. c)每次变换通行车道之前,要求黄灯先亮5s,才能改变换车道。

道。

d)黄灯亮时,要求每秒钟闪烁一次。

黄灯亮时,要求每秒钟闪烁一次。

2、设计目的、设计目的通过本设计熟悉用中规模集成电路进行时序逻辑电路和组合逻辑电路设计的方法,掌握简单数字控制器的设计方法。

辑电路设计的方法,掌握简单数字控制器的设计方法。

三、给定条件及器件四、设计内容1.电路各部分的组成和工作原理。

电路各部分的组成和工作原理。

2.元器件的选取及其电路逻辑图和功能。

元器件的选取及其电路逻辑图和功能。

3.电路各部分的调试方法。

交通灯控制器数电课程设计

交通灯控制器数电课程设计

交通灯控制器数电课程设计交通灯控制器是一个常见的数电课程设计项目,下面是一个简单的交通灯控制器的设计方案:1. 需求分析:- 交通灯要能够按照规定的时间间隔不断切换状态。

- 交通灯的状态包括红灯、黄灯和绿灯,分别对应停止、警告和通行状态。

- 红灯、黄灯和绿灯的时间间隔可以根据实际需要进行调整。

2. 设计方案:- 使用数字时钟芯片,如NE555,来生成固定频率的时钟信号。

- 使用多路选择器,如74LS151,来选择不同的灯的状态输出。

- 使用逻辑门电路,如与门和或门,来实现灯的状态切换。

3. 设计步骤:- 使用时钟芯片来产生一个频率为1Hz的时钟信号。

- 使用分频器电路,如74LS90,将时钟信号的频率分为三等份,分别用于控制红灯、黄灯和绿灯的持续时间。

- 使用多路选择器74LS151,根据时钟信号的状态与分频器的控制信号,选择对应的灯输出高电平或低电平。

- 使用逻辑门电路,通过组合逻辑将时钟信号和选择器输出的灯状态进行控制,实现交通灯的状态切换。

4. 硬件设计:- 使用电路实验板、面包板或PCB板等硬件平台进行电路连接。

- 导入时钟芯片、分频器、多路选择器和逻辑门等器件。

- 连接器件之间的引脚,构建交通灯控制器电路。

5. 软件设计:- 使用VHDL、Verilog或其他HDL语言进行交通灯控制器的逻辑设计和仿真。

- 根据交通灯的时序要求设置时钟频率、分频器的初始状态和选择器的状态等参数。

- 通过仿真软件进行功能验证和时序分析,优化电路设计。

6. 实现与调试:- 将硬件连接完成后,使用示波器、逻辑分析仪等仪器对电路进行调试。

- 观察交通灯的状态是否按照预期进行切换。

- 根据实际需要调整各个灯的持续时间和时钟频率等参数,进行效果调试。

7. 总结:- 对交通灯控制器的设计进行总结和评估,包括可靠性、灵活性和可扩展性等方面。

- 提出改进方案,进一步优化交通灯控制器的设计。

注意事项:- 在设计过程中,要遵守相关的电路布线规范和安全操作规程。

交通灯控制器数电课程设计

交通灯控制器数电课程设计

交通灯控制器数电课程设计一、引言交通灯控制器是城市交通管理中的重要设备,用于控制道路上的交通信号灯的亮灭状态。

本文将基于数电课程设计一个简单的交通灯控制器电路,并介绍其原理和实现过程。

二、设计原理交通灯控制器的设计需要考虑以下几个方面的因素:1. 灯的亮灭状态:交通灯通常包括红灯、黄灯和绿灯,每种灯的亮灭状态需要根据交通规则进行控制。

2. 灯的切换时间:交通灯的切换时间需要合理设置,以保证交通流畅和安全。

3. 输入信号的获取:交通灯控制器需要根据外部输入信号来控制灯的切换,如道路上的车辆、行人等。

三、电路设计1. 时钟电路:交通灯控制器需要一个时钟信号来控制灯的切换时间。

可以通过使用555定时器构建一个稳定的时钟电路。

2. 计数器电路:交通灯控制器需要一个计数器来计算时间,并根据时间来控制灯的切换。

可以使用74LS90或74LS93等计数器芯片实现。

3. 逻辑门电路:交通灯控制器需要逻辑门电路来实现交通灯状态的控制和切换。

可以使用与门、或门、非门等逻辑门芯片来实现。

四、实现过程1. 时钟电路的设计:根据555定时器的工作原理,选择合适的电阻和电容值,构建一个稳定的时钟电路。

2. 计数器电路的设计:根据交通灯的切换时间要求,设置计数器的计数值,并将计数器与时钟电路连接,实现计数器的工作。

3. 逻辑门电路的设计:根据交通灯的状态要求,使用逻辑门芯片构建一个交通灯控制电路,实现交通灯的切换和控制。

4. 输入信号的获取:可以使用传感器等设备来获取道路上的车辆、行人等输入信号,并将其与交通灯控制器连接,实现灯的切换。

五、功能扩展1. 灯的数量扩展:可以根据实际需要,扩展交通灯的数量,如添加左转灯、右转灯等。

2. 信号优先级控制:可以根据不同道路的交通状况,设置交通灯的信号优先级,以提高交通效率。

3. 线路保护功能:可以在交通灯控制器中添加线路保护装置,以防止线路过载或短路等故障。

六、总结本文基于数电课程设计了一个简单的交通灯控制器电路,并介绍了其原理和实现过程。

数电课设交通灯控制电路

数电课设交通灯控制电路

数电课设交通灯控制电路交通灯控制电路是一种常见的数电课设项目,它模拟了现实生活中交通灯的工作原理。

本文将介绍交通灯控制电路的设计和实现过程。

交通灯控制电路是一种典型的定时器应用,通过控制红、黄、绿三个信号灯的亮灭状态,实现交通流量的有序调度。

在设计交通灯控制电路时,需要考虑到以下几个方面:输入电源、时钟信号、状态转移逻辑以及输出控制。

输入电源是交通灯控制电路的基础。

一般情况下,交通灯控制电路使用直流电源供电,通常为12V或24V。

输入电源需要稳定可靠,以确保交通灯控制电路的正常工作。

时钟信号是交通灯控制电路的关键。

交通灯的变换需要按照一定的时间间隔进行,因此需要一个稳定的时钟信号来控制交通灯的状态切换。

常见的时钟信号源有晶振电路、RC电路等,可以根据实际需求选择合适的时钟信号源。

然后,交通灯控制电路的状态转移逻辑是实现交通灯工作的核心。

一般情况下,交通灯的状态变化是按照红灯-红黄灯-绿灯-黄灯的顺序进行的。

可以使用状态转移图或状态转移表来描述交通灯的状态转移逻辑,并将其转化为逻辑门电路的设计。

输出控制是交通灯控制电路的最终目的。

通过逻辑门电路的输出控制,可以控制红、黄、绿三个信号灯的亮灭状态。

一般情况下,交通灯控制电路使用LED作为信号灯的光源,通过逻辑门电路的输出控制,实现交通灯的亮灭控制。

在实际的交通灯控制电路设计过程中,还需要考虑到一些特殊情况的处理。

例如,交通灯的切换时间需要根据实际道路情况进行合理的设置,以保证交通的畅通;交通灯控制电路还需要考虑到异常情况的处理,例如断电恢复后的状态恢复等。

总结起来,交通灯控制电路是一种常见的数电课设项目,通过控制红、黄、绿三个信号灯的亮灭状态,实现交通流量的有序调度。

在设计交通灯控制电路时,需要考虑输入电源、时钟信号、状态转移逻辑以及输出控制等方面,同时也需要考虑一些特殊情况的处理。

通过合理的设计和实现,交通灯控制电路可以有效地模拟现实生活中交通灯的工作原理,为交通的安全和顺畅做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——交通灯控制电路目录第一章:序言 (2)第二章:设计任务书 (2)第三章:电路组成和工作原理 (4)第四章:设计步骤及方法 (7)第五章:总结 (10)第七章:参考文献 (10)第一章序言随着社会的飞速发展,城市交通问题日益凸显严重,尤其在城市街道的十字叉路口,频繁发生交通问题,为了保证交通秩序和行人安全,一般在每条街上都有一组红、黄、绿交通信号灯。

其中红灯亮,表示道路禁止通行;黄灯亮表示该道路上未过停车线的车辆禁止通行,已经过停车线的的车辆继续通行;绿灯亮表示道路允许通行。

交通灯控制电路自动控制十字路口的红、黄、绿交通灯。

交通灯通过的状态转换,指挥车辆行人通行,保证车辆行人的安全,实现十字路口交通管理自动化。

第二章设计任务书一、设计题目:二、技术内容及要求:三、给定条件及器件四、设计内容1.电路各部分的组成和工作原理。

2.元器件的选取及其电路逻辑图和功能。

3.电路各部分的调试方法。

4.在整机电路的设计调试过程中,遇到什么问题,其原因及解决的办法。

第三章电路组成和工作原理设系统工作的十字路口由主、支两条干道构成,4路口均设红、黄、绿三色信号灯和用于计时的2位由数码管显示的十进制计数器,其示意图如图5—1所示。

图1 十字路口交通信号灯控制示意图根据交通规则,交通信号灯自动定时控制器所需实现的功能如下:(1)主、支干道交替通行,通行时间均可在0 ~ 99 s内任意设定。

(2)每次绿灯换红灯前,黄灯先亮较短时间(也可在0 ~ 99 s内任意设定),用以等待十字路口内滞留车辆通过。

(3)主支干道通行时间和黄灯亮的时间均可由同一计数器按减计数方式计数(零状态瞬间进行状态的转换,视为无效态)。

(4)在减计数器回零瞬间完成十字路口通行状态的转换(换灯)。

(5)计数器的状态由EWB显示器件库中的带译码器七段数码管显示,红、黄、绿三色信号灯由EWB显示器件库中的指示灯模拟2.系统工作流程图设主干道通行时间为N1,支干道通行时间为N2,主、支干道黄灯亮的时间均为N3,通常设置为N1>N2>N3。

系统工作流程图如图5-2所示。

图2 系统工作流程3.系统硬件框图图3 硬件结构框图交通灯控制系统的原理框图如图3所示。

它主要由控制器、定时器、译码器和秒脉冲信号发生器等部分组成。

秒脉冲发生器是该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。

图中:S0: 表示甲车道或乙车道绿灯亮的时间间隔为25秒,即车辆正常通行的时间间隔。

定时时间到,TL=1,否则,TL=0。

TY:表示黄灯亮的时间间隔为5秒。

定时时间到,TY=1,否则,TY=0。

ST:表示定时器到了规定的时间后,由控制器发出状态转换信号。

由它控制定时器开始下个工作状态的定时。

(1)如图2所示,主干道绿灯亮,支干道红灯亮。

表示主干道上的车辆允许通行,支干道禁止通行。

绿灯亮足规定的时间隔N1时,控制器发出状态信号,转到下一工作状态。

(2)主干道黄灯亮,支干道红灯亮。

表示甲车道上未过停车线的车辆停止通行,已过停车线的车辆继续通行,支干道禁止通行。

黄灯亮足规定时间间隔N3时,控制器发出状态转换信号,转到下一工作状态。

(3)主干道红灯亮,支干道绿灯亮。

表示主干道禁止通行,支干道上的车辆允许通行,绿灯亮足规定的时间间隔N2时,控制器发出状态转换信号,转到下一工作状态。

(4)主干道红灯亮,支干道黄灯亮。

表示甲车道禁止通行,支干道上未过停车线的车辆停止通行,已过停车线的车辆继续通行。

黄灯亮足规定的时间间隔N3时,控制器发出状态转换信号,系统又转换到第(1)种工作状态。

交通灯以上4种工作状态的转换是由控制器器进行控制的。

设控制器的四种状态编码为00、01、11、10,并分别用S0、S1、S3、S2表示,则控制器的工作状态及功能如表、1所示,控制器应送出甲、乙车道红、黄、绿灯的控制信号。

为简便起见,把灯的代号和灯的驱动信号合二为一,并作如下规定:表1 控制器工作状态及功能表一、控制器——控制器是交通管理的核心,它应该能够按照交通管理规则控制信号灯工作状态的转换。

二、定时器——定时器由与系统秒脉冲(由时钟脉冲产生器提供)同步的计数器构成,要求计数器在状态信号ST作用下,首先清零,然后在时钟脉冲上升沿作用下,计数器从零开始进行增1计数,向控制器提供模5的定时信号TY和模25的定时信号TL。

三、——第四章设计步骤及方法一、列出控制器与信号灯的关系表:(1)状态控制器: 由流程图可见,系统有4种不同的工作状态(S0~S3),选用4位二进制递增集成计数器74163作状态控制器,74163的功能表如图所示,电路符号在图中可见,取底两位输出QB、QA作状态控制器的输出。

状态编码S0、S1、S2、S3分别为00、01、10、11.(2)状态译码器:以状态控制器输出(QB、QA)作为译码器的输入变量,根据四个不同通行状态对主、支干道三色信号灯的控制要求,列出灯的控制要求,列出灯控函数真值表,如表X所示。

表2、灯控函数真值表由灯控函数真值表可写出六盏灯的逻辑表达式,经化简获得六盏灯的逻辑式为R=QB r=Q`BY=Q`BQA y=QBQAG=Q`BQ`A g=QBQ`A根据灯控函数逻辑表达式,可写出由与门和非门组成的状态译码器电路,如图3所示。

将状态控制器,状态译码器以及模拟三色信号灯相连接,构成三色信号灯逻辑控制电路,如图4所示。

需要特别指出的是,上述获得状态译码电路的过程完全可以借助EWB自动进行,在EWB主界面下,打开仪器库,调出逻辑转换仪。

在逻辑转换仪面板上的真值表内填入某灯的输入变量和输出函数值,按下“真值表→简化逻辑函数”按钮,即可得到简化的灯控逻辑函数。

再按下“简化逻辑函数→逻辑图”按钮,即可得到某灯的逻辑图。

表1图4 三色信号灯逻辑控制电路黄灯闪烁控制:要求黄灯每秒闪一次,即黄灯0.5秒亮,0.5秒灭,故用一个频率为2的脉冲与控制黄灯的输出信号用一个与门连接进来再接到黄灯就可以实现(3)信号灯计时显示逻辑电路选用两片74190(功能表如表2所示)十进制可逆计数器构成2位十进制可预置数的减法计数器,如图5所示。

74190具有异步并行置数功能、保持功能,虽然没有专用的清零输入端,但可以借助QA、QB、QC、QD的输出数据间接实现清零功能。

两片计数器之间采用异步连接方式,利用个位计数器的借位输出脉冲(RCO`)直接作为十位计数器的计数脉冲(CLK),个位计数器输入秒脉冲作为计数脉冲。

选用两片只带译码器功能的七段显示数码管实现两位十进制数显示。

D1、C1、B1、A1和D0、CO、B0、A0是十位和个位计数器的8421码置数输入端。

由74190功能表可知,该计数器在零状态时RCO`端输出低电平。

将个位与十位计数器的RCO`端通过或门控制两片计数器的置数控制端LOAD`(低电平有效),从而实现了计数器减计数至“00”状态瞬间完成置数的要求。

将数据输入端的8421BCD码置入计数器。

可以选择100以内的预置数值,实现0~100s内的计时显示要求。

图5 信号灯计时显示逻辑电路表2 74190功能表(4)信号灯顺序定时置数逻辑电路为使系统简化,如上所述,用同一减法计数器分时显示主、支干道通行时间(即主、支干道绿灯亮的时间)和主支干道通行转换中黄灯亮的时间,为此,必须解决好按顺序定时置数问题。

8路单向三态传输门74465的功能表如表2所示.表8路三态传输门74465功能表选用三片74465可组成按顺序定时置数的控制电路,如图5所示。

三片74465输入端分别以8421BCD码形式设定主、支干道路通行时间和黄灯亮的时间,输出端分别按高、底位对应关系并联后按D7~D0由高位到低位排列后,接到递减计数器的置数输入端。

三片74465的选通控制端G2`分别命名为AG`、Ag和AY`,分别表示主干道的绿灯、支干道的绿灯和黄灯选通(低电平有效)、并完成对递减计数器的预置数。

三片74465任何时刻只能有一篇选通,其他两片输出端均处于高阻态。

(5) 秒脉冲发生器秒脉冲发生器可由555多谐振荡器构成,为简化电路,可直接选用秒脉冲信号源代替秒脉冲发生器。

555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。

按其工艺分双极型和CMOS型两类,其应用非常广泛。

1.555定时器的组成和功能在1脚接地,5脚未外接电压,两个比较器A 1、A 2基准电压分别为CC CC V 31,V 32的情况下,555时基电路的功能表如表6—1示。

(6)顺序定时置数控制电路 为了使顺序定时置数逻辑电路中的三片744665一次数序工作,并保证三片74465任何时刻只能有一片选通,其他两片输出端均处于高组态.需要设计顺序定时置数控制电路,图8交通信号灯自动指挥系统中与子电路”灯控逻辑”相连接的两个非门\一个或非门可实现这一功能.图6 递减计数器的分时置数控制电路图交通信号灯自动指挥系统仿真实验:在EWB主界面内,粘贴的方法将上述各部分单元电路置于同一界面内,再按照各自对应关系相互连接构成的交通灯信号灯自动指挥系统如图8所示.很明显,由于采用了子电路表示方法,使系统电路大大简化。

在该系统中,由G7~G0设定主干道通行时间为35S,AG`由主干道绿灯亮时选通。

由g7~g0设定支干道通行时间25S,Ag`由支干道绿灯亮时选通。

由Y7~Y0设定黄灯亮的时间为5S,AY`由主干道或支干道黄灯亮时选通。

当减法计数器回零瞬间,置数控制端产生一个窄负脉冲,经反相器变为正脉冲,送至状态控制器时钟脉冲输入端,使状态控制器反转为下一个工作状态,,状态译码器完成换灯的同时,由顺序定时置数控制电路选通下一片74465,计数器置入新的定时值并开始新状态下的减法计数,当计数器减计数再次回零时又重复上述过程,这样信号灯就自动按设定时间顺序交替转换。

在上述系统中,置数输入时根据定时时间的8421编码将相应输入端接高、低电平实现的,在实际应用系统中,可采用8421码数码拨盘,实现减法计数器的预置数控制。

在系统安装调试中,首先将各单元电路调试正常,然后再进行各单元电路之间的连接,要特别注意电路之间的高、低电平配合。

若系统组装完毕,“通电”测试,工作不正常,仍可将各单元电路拆开,引入秒脉冲单独调试,该系统可用于其他控制与显示场合。

二、表6.74LS163功能表其工作原理为:由秒脉冲发生器产生的秒脉冲CP分别送给两个74LS163的清零端2处。

如图所示:输入端3.4.5.6分别接地.。

U1的7和10与U2的15相连。

.即:只有当时15处产生一个高电平脉冲时才能触发U1中的14产生脉冲同时和U3A中的2下作用产生脉冲。

74LS00在ST中12.13共同作用下将信号11分别送给U1和U2的SR。

相关文档
最新文档