山东省平阴县第一中学学年高一数学上学期第一次月考试题

合集下载

高一数学 第一学期第一次月考模拟卷(含答案)

高一数学 第一学期第一次月考模拟卷(含答案)

高一数学第一学期月考模拟卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,22.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{|3x x >-且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+> B.2y x = C.y = D.2y x=7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B =R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .110.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.1311.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件D.1a b >-≥,则11a b a b≥++三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=_______________.16.已知函数()f x ,则函数()y f x =的定义域为______________;函数(21)y f x =+的定义域是___________________.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.18.已知命题p :[1,2]x ∀∈,20x a -≥,命题q :x R ∃∈,2220x ax a +-=+.若命题p 与q 都是真命题,求实数a 的取值范围.19.解关于x 的不等式2(23)60()ax a x a R -++>∈.20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.高一数学第一学期月考模拟卷答案一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,2【解析】交集是两个集合的公共元素,故{}0,1P Q ⋂=.【答案】B 2.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+【解析】【详解】A 中的函数22,0,0x x y x x x x ⎧≥==⎨-<⎩,故两个函数的对应法则不同,故A 中的两个函数不是相同的函数;B 中函数y =R ,而2y =的定义域为[)0,+∞,故两个函数不是相同的函数;C 中的函数2x xy x+=的定义域为()(),00,-∞⋃+∞,而1y x =+的定义域为R ,故两个函数不是相同的函数;D 中的函数定义域相同,对应法则相同,故两个函数为同一函数,综上,选D.3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{3xx -且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-【解析】根据二次根式的性质结合分母不为0,求出函数的定义域即可.【详解】由题意得:3010x x +≥⎧⎨+≠⎩,解得:3x ≥-且1x ≠-.故选:A .4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】设A ={x |x >0},B ={x |x <1-,或x >0},判断集合A ,B 的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【详解】设A ={x |x >0},B ={x |x <1-,或x >0},∵A ≠⊂B ,故“x >0”是“20x x +>”成立的充分不必要条件.故选A .5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<【解析】【详解】因为21y x ax =-+有负值,所以必须满足二次函数的图象与x 轴有两个不同的交点,2()40Δa =-->,24a >,即2a >或2a <-,故选A .6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+>B.2y x =C.y =D.2y x=【解析】A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x = ,函数的值域为[)0,+∞,故错;C 、函数y =的定义域为(,1)(1,)-∞-+∞ 0>0>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【答案】A8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B = R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-【解析】【详解】集合{}2|340(1,4)A x x x =--<=-,集合{|()[(2)]0}(,)(2,)B x x m x m m m =--+>=-∞⋃++∞,若A B = R ,则124m m >-⎧⎨+<⎩,解得(1,2)m ∈-,故选C.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .1【答案】AC10.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.13【解析】28150x x -+= 的两个根为3和5,{}3,5A \=,A B B = ,B A ∴⊆,B ∴=∅或{}3B =或{}5B =或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=,当{}5B =时,满足510a -=,15a ∴=,当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.【答案】ABD11.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥【解析】A.当0,0a b <<时,2a b+不成立,故错误;B.a (1﹣a )22111244a a a ⎛⎫-+=--+≤ ⎪⎝⎭,故正确;C.2222222,2,2a b ab a c a cc b cb +≥+≥+≥,两边同时相加得a 2+b 2+c 2≥ab +bc +ca ,故正确D.当,a b 异号时,不成立,故错误;故选:BC 12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件 D.1a b >-≥,则11a ba b≥++【解析】A .当2,1a b ==-时,不等式成立,所以A 正确.B.当0a =时,0=02x ⋅<,不等式不成立,所以B 不正确.C.当0,0a b =≠时,220a b +≠成立,此时=0ab ,推不出0ab ≠.所以C 不正确.D.由(1)(1)11(1)(1)(1)(1)a b a b b a a b a b a b a b +-+--==++++++,因为1a b >-≥,则11a b a b≥++,所以D 正确.【答案】AD三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.,【解析】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题,则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.【解析】∵不等式2520ax x +->的解集是M ,2M ∈且3M ∉,∴4809130a a +>⎧⎨+≤⎩,解得–2a <139≤-15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=___________.【解析】【详解】由于{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则{}3X Y =I ,由题中定义可得(){}1,2,4,5,6,7,8U X Y X Y *==I ð,则(){}2,4,7U X Y Z =I I ð,因此,()(){}1,3,5,6,8UUX Y Z X Y Z **==⎡⎤⎣⎦I I ,故答案为{}1,3,5,6,8.16.已知函数f (x ),则函数y =f (x )的定义域为_____;函数(21)y f x =+的定义域是_____.【答案】(1).[]1,4-(2).31,2⎡⎤-⎢⎣⎦【解析】(1)令2340x x -++≥,解得14x -≤≤,()f x ∴的定义域为[]1,4-;(2)()f x 的定义域为[]1,4-,∴在函数(21)f x +中,满足1214x -£+£,解得312x -≤≤,(21)f x ∴+的定义域为31,2⎡⎤-⎢⎥⎣⎦.故答案为:(1)[]1,4-(2)31,2⎡⎤-⎢⎣⎦.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1){}23A B x x ⋂=≤<,{}13A B x x ⋃=<≤;(2)12a <<【解析】(1)当1a =时,{}{}2|430|13A x x x x x =-+<=<<,集合B {|23}x x =≤≤,所以{|23},{|13}A B x x A B x x ⋂=≤<⋃=<≤.(2)因为0a >,所以{}|3A x a x a =<<,B {|23}x x =≤≤,因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A ≠⊂,所以2,33,a a <⎧⎨>⎩解得:12a <<.18.已知命题p :任意x ∈[1,2],x 2-a ≥0,命题q :存在x ∈R ,x 2+2ax +2-a =0.若命题p 与q 都是真命题,求实数a 的取值范围.【答案】{a |a ≤-2,或a =1}.【解析】【详解】由命题p 为真,可得不等式x 2-a ≥0在x ∈[1,2]上恒成立.所以a ≤(x 2)min ,x ∈[1,2].所以a ≤1.若命题q 为真,则方程x 2+2ax +2-a =0有解.所以判别式Δ=4a 2-4(2-a )≥0.所以a ≥1或a ≤-2.又因为p ,q 都为真命题,所以112a a a ≤⎧⎨≥≤-⎩或所以a ≤-2或a =1.所以实数a 的取值范围是{a |a ≤-2,或a =1}.19.解关于x 的不等式ax 2-(2a +3)x +6>0(a ∈R ).【答案】详见解析【解析】【详解】原不等式可化为:(ax ﹣3)(x ﹣2)>0;当a =0时,化为:x <2;当a >0时,化为:(x 3a-)(x ﹣2)>0,①当3a >2,即0<a 32<时,解为:x 3a >或x <2;②当3a =2,即a 32=时,解为:x ≠2;③当3a <2,即a 32>时,解为:x >2或x 3a<,当a <0时,化为:(x 3a -)(x ﹣2)<0,解为:3a<x <2.综上所述:当a <0时,原不等式的解集为:(3a,2);当a =0时,原不等式的解集为:(﹣∞,2);当0<a 32<时,原不等式的解集为:(﹣∞,2)∪(3a,+∞);当a 32=时,原不等式的解集为:(﹣∞,2)∪(2,+∞);当a 32>时,原不等式的解集为:(﹣∞,3a)∪(2,+∞)20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.【答案】(1)34a b =⎧⎨=⎩;(2)4a ≤【解析】【详解】解:(1)关于x 的不等式()0f x <的解集为()1,b ,即1x =,x b =为方程2(2)40x a x -++=的两解,所以124b a b +=+⎧⎨=⎩解得34a b =⎧⎨=⎩(2)对任意的[]1,4x ∈,()1f x a ≥--恒成立,即2(2)50x a x a -+++≥对任意的[]1,4x ∈恒成立,即()2251x x a x -+≥-恒成立,①当1x =时,不等式04≤恒成立,此时a R∈②当(]1,4x ∈时,2254111x x a x x x -+≤=-+--,因为14x <≤,所以013x <-≤,所以4141x x -+≥=-当且仅当411x x -=-时,即12x -=,即3x =时取等号,所以4a ≤,综上4a ≤21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.【答案】(1)20018400400y x x ⎛⎫=++ ⎪⎝⎭,(4,50)x ∈;(2)当x =时,总造价最低为18400+元.【解析】【详解】(1)由矩形的长为()m x ,则矩形的宽为200(m)x,则中间区域的长为()4m x -,宽为2004(m)x-,则定义域为(4,50)x ∈,则200200100(4)4200200(4)4y x x x x ⎡⎤⎡⎤⎛⎫⎛⎫=⨯--+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得20018400400y x x ⎛⎫=++⎪⎝⎭,(4,50)x ∈.(2)200x x +≥=,当且仅当200x x =时取等号,即(4,50)x =,所以当x =时,总造价最低为18400+元.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.【答案】(1)2()22f x x x =++(2)见解析.【解析】【详解】(1)设2()f x ax bx c =++,(0)2f c \==,(1)()23f x f x x +-=+ ,()()()221123a x b x c ax bx c x \++++-++=+,即223ax a b x ++=+,223a a b ì=ï\í+=ïî,1,2a b ∴==,2()22f x x x ∴=++;(2)由(1)知()[]2()222,1,3h x x t x x =+-+Î,()h x ∴的对称轴为1x t =-,当11t -≤,即2t ≤时,()h x 在[1,3]单调递增,()min ()152h x h t \==-,当113t <-<,即24t <<时,()h x 在()1,1t -递减,在()1,3t -递增,()2min ()121h x h t t t \=-=-++,当13t -³,即4t ≥时,()h x 在[1,3]单调递减,()min ()3176h x h t \==-,综上:当2t ≤时,min ()52h x t =-;当24t <<时,2min ()21h x t t =-++;当4t ≥时,min ()176h x t =-.。

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

高一数学上期第一次月考试题

高一数学上期第一次月考试题

甘谷第一中学2021-2021学年高一数学上学期第一次月考试题一、选择题:(本大题一一共12小题,每一小题5分,一共60分). 1. {}{}|24,|3A x x B x x =-<<=>,那么A B =〔 〕A. {}|24x x -<<B. {}|3x x >C. {}|34x x <<D. {}|23x x -<< 2. 以下说法正确的选项是( ).的n 次方根是正数 n 次方根是负数 n 次方根是0 D.是无理数3.满足关系{}1{1,2,3,4}B ⊆⊆的集合B 的个数 〔〕个个个个4.方程260x px -+=的解集为M,方程260x x q +-=的解集为N,且M ∩N={2},那么p q +等于〔 〕A.21B.85. 在以下四组函数中,()()f xg x 与表示同一函数的是 ( )A. ()()211,1x f x x g x x -=-=+ B. ()()()01,1f x g x x ==+ C.()()2,f x x g x x ==4)(,22)(2-=-⋅+=x x g x x x f 6. 函数123()f x x x =--的定义域是〔 〕A.[)23, B.()3,+∞ C.[)()233,,+∞ D.()()233,,+∞7. 假设函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,那么)3(-f 的值是〔 〕A .5B .-1C .-7D .28.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{2}M N =,那么a 值是( )或者-2 B. 0或者1 C.0或者-2 D. 0或者1或者-29. 设集合}|{,}21|{a x x B x x A <=<≤-=,假设A ∩B ≠∅,那么a 的取值范围是〔 〕A .1-≥aB .2>aC .1->aD .21≤<-a10. 函数y =x 2-2x +3在闭区间[0,m]上有最大值3,最小值2,那么m 的取值范围是( )A .[1,+∞) B.[0,2] C .(-∞,2] D .[1,2]11. 假设()f x 是偶函数,且对任意x 1,x 2∈),0(+∞ (x 1≠x 2),都有f(x 2)-f(x 1)x 2-x 1<0,那么以下关系式中成立的是〔 〕A .)43()32()21(f f f >->B .)32()43()21(f f f >->C .)32()21()43(f f f >->D .)21()32()43(f f f >>-12.函数,1()(32)2,1ax f x xa x x ⎧-≤-⎪=⎨⎪-+>-⎩,在〔—∞, +∞〕上为增函数,那么实数a 的取值范围是( )A .30,2⎛⎤ ⎥⎝⎦B .30,2⎛⎫ ⎪⎝⎭C .31,2⎡⎫⎪⎢⎣⎭D .31,2⎡⎤⎢⎥⎣⎦第二卷〔一共90分〕二.填空题(此题一共4个小题,每一小题5分,一共20分) 13. 集合{(,)|2},{(,)|4},A x y x y N x y x y MN =+==-==则_____________.14. 假设函数1)1(2-=+x x f ,那么)2(f =_____ _____ 15. 假设函数)(x f 的定义域为[-1,2],那么函数)23(x f -的定义域是 . 16.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的选项是〔只要求写出命题的序号〕①假设(1)(1),(2)(2)f f f f -=-=,那么()y f x =是D 上的偶函数;②假设对于]2,2[-∈x ,都有0)()(=+-x f x f ,那么()y f x =是D 上的奇函数;③假设函数)(x f y =在D 上具有单调性且)1()0(f f >那么()y f x =是D 上的递减函数; ④假设(1)(0)(1)(2)f f f f -<<<,那么()y f x =是D 上的递增函数。

高一(上)第一次月考数学试卷(完整资料).doc

高一(上)第一次月考数学试卷(完整资料).doc

【最新整理,下载后即可编辑】高一(上)第一次月考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={A∈A|A>−1},则()A.A∉AB.√2∉AC.√2∈AD.{√2}⊆A2.已知集合A到A的映射A:A→A=2A+1,那么集合A中元素2在A中对应的元素是()A.2B.5C.6D.83.设集合A={A|1<A<2},A={A|A<A},若A⊆A,则A的范围是()A.A≥2B.A≥1C.A≤1D.A≤24.函数A=√2A−1的定义域是()A.(12, +∞) B.[12, +∞) C.(−∞, 12) D.(−∞, 12]5.全集A={0, 1, 3, 5, 6, 8},集合A={1, 5, 8 },A={2},则集合(∁A A)∪A=()A. {0, 2, 3, 6}B.{0, 3, 6}C.{2, 1, 5, 8}D.A6.已知集合A={A|−1≤A<3},A={A|2<A≤5},则A∪A=()A.(2, 3)B.[−1, 5]C.(−1, 5)D.(−1, 5]7.下列函数是奇函数的是( ) A.A =A B.A =2A 2−3C.A =√AD.A =A 2,A ∈[0, 1]8.化简:√(A −4)2+A =( ) A.4 B.2A −4 C.2A −4或4 D.4−2A9.集合A ={A |−2≤A ≤2},A ={A |0≤A ≤2},给出下列四个图形,其中能表示以A 为定义域,A 为值域的函数关系的是( ) A.B.C.D.10.已知A (A )=A (A )+2,且A (A )为奇函数,若A (2)=3,则A (−2)=( ) A.0 B.−3 C.1 D.311.A (A )={A 2,A >0A 0,A <0,A =0,则A {A [A (−3)]}等于( )A.0B.AC.A 2D.912.已知函数A (A )是 A 上的增函数,A (0, −1),A (3, 1)是其图象上的两点,那么|A (A )|<1的解集是( ) A.(−3, 0) B.(0, 3) C.(−∞, −1]∪[3, +∞) D.(−∞, 0]∪[1, +∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知A (A )={A +5(A >1)2A 2+1(A ≤1),则A [A (1)]=________.14.已知A (A −1)=A 2,则A (A )=________.15.定义在A 上的奇函数A (A ),当A >0时,A (A )=2;则奇函数A (A )的值域是________.16.关于下列命题:①若函数A =2A +1的定义域是{A |A ≤0},则它的值域是{A |A ≤1};②若函数A =1A的定义域是{A |A >2},则它的值域是{A |A ≤12}; ③若函数A =A 2的值域是{A |0≤A ≤4},则它的定义域一定是{A |−2≤A ≤2};④若函数A =A +1A的定义域是{A |A <0},则它的值域是{A |A ≤−2}.其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A ={1, 2, 3, 4, 5, 6, 7, 8},A ={A |A 2−3A +2=0},A ={A |1≤A ≤5, A ∈A },A ={A |2<A <9, A ∈A }(1)求A∪(A∩A);(2)求(∁A A)∪(∁A A)18.设A={A|A2−AA+A2−19=0},A={A|A2−5A+ 6=0},A={A|A2+2A−8=0}.(1)若A=A,求实数A的值;(2)若A⊊A∩A,A∩A=A,求实数A的值.19.已知函数A(A)=A+1A(1)判断函数的奇偶性,并加以证明;(2)用定义证明A(A)在(0, 1)上是减函数;(3)函数A(A)在(−1, 0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).20.已知函数A(A)是定义在A上的偶函数,且当A≤0时,A(A)=A2+2A.(1)现已画出函数A(A)在A轴左侧的图象,如图所示,请补出完整函数A(A)的图象,并根据图象写出函数A(A)的增区间;(2)写出函数A(A)的解析式和值域.21.设函数A(A)=AA2+AA+1(A≠0, A∈A),若A(−1)=0,且对任意实数A(A∈A)不等式A(A)≥0恒成立.(1)求实数A、A的值;(2)当A∈[−2, 2]时,A(A)=A(A)−AA是增函数,求实数A的取值范围.22.已知A(A)是定义在A上的函数,若对于任意的A,A∈A,都有A(A+A)=A(A)+A(A),且A>0,有A(A)>0.(1)求证:A(0)=0;(2)判断函数的奇偶性;(3)判断函数A(A)在A上的单调性,并证明你的结论.答案1. 【答案】B【解析】根据题意,易得集合A的元素为全体大于−1的有理数,据此分析选项,综合可得答案.【解答】解:∵集合A={A∈A|A>−1},∴集合A中的元素是大于−1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于A,√2不是有理数,故A正确,A错,A错;故选:A.2. 【答案】B【解析】由已知集合A到A的映射A:A→A=2A+1中的A与2A+1的对应关系,可得到答案.【解答】解:∵集合A到A的映射A:A→A=2A+1,∴2→A=2×2+1=5.∴集合A中元素2在A中对应的元素是5.故选:A.3. 【答案】A【解析】根据两个集合间的包含关系,考查端点值的大小可得2≤A.【解答】解:∵集合A={A|1<A<2},A={A|A<A},A⊆A,∴2≤A,故选:A.4. 【答案】B【解析】原函数只含一个根式,只需根式内部的代数式大于等于0即可.【解答】解:要使函数有意义,则需2A−1≥0,即A≥12,所以原函数的定义域为[12, +∞).故选:A.5. 【答案】A【解析】利用补集的定义求出(A A A),再利用并集的定义求出(A A A)∪A.【解答】解:∵A={0, 1, 3, 5, 6, 8},A={ 1, 5, 8 },∴(A A A)={0, 3, 6}∵A={2},∴(A A A)∪A={0, 2, 3, 6}故选:A6. 【答案】B【解析】分别把两集合的解集表示在数轴上,根据数轴求出两集合的并集即可.【解答】解:把集合A={A|−1≤A<3},A={A|2<A≤5},表示在数轴上:则A∪A=[−1, 5].故选A7. 【答案】A【解析】由条件利用函数的奇偶性的定义,得出结论.【解答】解:∵函数A=A(A)=A的定义域为A,且满足A(−A)=−A=−A(A),故函数A(A)是奇函数;∵函数A=A(A)=2A2−3的定义域为A,且满足A(−A)= 2(−A)2−3=2A2−3=A(A),故函数A(A)是偶函数;∵函数A=√A的定义域为[0, +∞),不关于原点对称,故函数为非奇非偶函数;∵函数A=A2,A∈[0, 1]的定义域不关于原点对称,故函数为非奇非偶函数,故选:A.8. 【答案】A【解析】由A<4,得√(A−4)2=4−A,由此能求出原式的值.【解答】解:√(A−4)2+A=4−A+A=4.故选:A.9. 【答案】B【解析】本题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.【解答】解:由题意可知:A={A|−2≤A≤2},A={A|0≤A≤2},对在集合A中(0, 2]内的元素没有像,所以不对;对不符合一对一或多对一的原则,故不对;对在值域当中有的元素没有原像,所以不对;而符合函数的定义.故选:A.10. 【答案】C【解析】由已知可知A(2)=A(2)+2=3,可求A(2),然后把A=−2代入A(−2)=A(−2)+2=−A(2)+2可求【解答】解:∵A(A)=A(A)+2,A(2)=3,∴A(2)=A(2)+2=3∴A(2)=1∵A(A)为奇函数则A(−2)=A(−2)+2=−A(2)+2=1故选:A11. 【答案】C【解析】应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.【解答】解:由题可知:∵−3<0,∴A(−3)=0,∴A[A(−3)]=A(0)=A>0,∴A{A[A(−3)]}=A(A)=A2故选A12. 【答案】B【解析】|A(A)|<1等价于−1<A(A)<1,根据A(0, −1),A(3, 1)是其图象上的两点,可得A(0)<A(A)<A(3),利用函数A(A)是A上的增函数,可得结论.【解答】解:|A(A)|<1等价于−1<A(A)<1,∵A(0, −1),A(3, 1)是其图象上的两点,∴A (0)<A (A )<A (3)∵函数A (A )是A 上的增函数, ∴0<A <3∴|A (A )|<1的解集是(0, 3) 故选:A . 13. 【答案】8【解析】先求A (1)的值,判断出将1代入解析式2A 2+1;再求A (3),判断出将3代入解析式A +5即可. 【解答】解:∵A (1)=2+1=3 ∴A [A (1)]=A (3)=3+5=8 故答案为:814. 【答案】(A +1)2【解析】可用换元法求解该类函数的解析式,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2即A (A )=(A +1)2【解答】解:由A (A −1)=A 2,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2 ∴A (A )=(A +1)2 故答案为:(A +1)2. 15. 【答案】{−2, 0, 2}【解析】根据函数是在A 上的奇函数A (A ),求出A (0);再根据A >0时的解析式,求出A <0的解析式,从而求出函数在A 上的解析式,即可求出奇函数A (A )的值域. 【解答】解:∵定义在A 上的奇函数A (A ), ∴A (−A )=−A (A ),A (0)=0设A <0,则−A >0时,A (−A )=−A (A )=−2∴A (A )={2A >00A =0−2A <0∴奇函数A (A )的值域是:{−2, 0, 2} 故答案为:{−2, 0, 2} 16. 【答案】②③【解析】逐项分析.①根据一次函数的单调性易得;②根据反比例函数的图象和性质易知其值域应为(0, 12);③可举反例说明;④利用均值不等式可得.【解答】解:①当A ≤0时,2A +1≤1,故①正确; ②由反比例函数的图象和性质知,当A >2时,0<1A<12,故②错误;③当函数定义域为[0, 2]时,函数值域也为[0, 4],故③错误; ④当A <0时,A =A +1A=−[(−A )+1−A].因为(−A )+1−A≥2√(−A )⋅1−A=2,所以A ≤−2,故④正确.综上可知:②③错误. 故答案为:②③.17. 【答案】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.【解析】(1)先用列举法表示A 、A 、A 三个集合,利用交集和并集的定义求出A ∩A ,进而求出A ∪(A ∩A ).; (2)先利用补集的定义求出(∁A A )和(∁A A ),再利用并集的定义求出(∁A A )∪(∁A A ).【解答】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.18. 【答案】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.【解析】(1)先根据A =A ,化简集合A ,根据集合相等的定义,结合二次方程根的定义建立等量关系,解之即可;; (2)先求出集合A 和集合A ,然后根据A ∩A ≠A ,A ∩A =A ,则只有3∈A ,代入方程A 2−AA +A 2−19=0求出A 的值,最后分别验证A 的值是否符合题意,从而求出A 的值.【解答】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0 得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.19. 【答案】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0, ∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.【解析】(1)用函数奇偶性定义证明,要注意定义域.; (2)先任取两个变量,且界定大小,再作差变形看符号,; (3)由函数图象判断即可.【解答】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0,∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.20. 【答案】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}【解析】(1)因为函数为偶函数,故图象关于A 轴对称,由此补出完整函数A (A )的图象即可,再由图象直接可写出A (A )的增区间.; (2)可由图象利用待定系数法求出A >0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.【解答】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}21. 【答案】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1, ∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…【解析】(1)利用A (−1)=0,且对任意实数A (A ∈A )不等式A (A )≥0恒成立,列出方程组,求解即可.; (2)求出函数的对称轴,利用函数的单调性列出不等式,求解即可.【解答】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1,∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…22. 【答案】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A (A 1−A 2)=A (A 1)−A (A 2)>0,∴A (A )在A 上是增函数.【解析】(1)直接令A =A =0,代入A (A +A )=A (A )+A (A )即可;; (2)令A =−A ,所以有A (0)=A (A )+A (−A ),即证明为奇函数;; (3)直接利用函数的单调性定义证明即可;【解答】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A(A1−A2)=A(A1)−A(A2)>0,∴A(A)在A上是增函数.。

山东省济南市平阴一中2021届高三数学第一学期1月模拟试题【含答案】

山东省济南市平阴一中2021届高三数学第一学期1月模拟试题【含答案】

山东省济南市平阴一中2021届高三数学第一学期1月模拟试题【含答案】一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( )A .}{22x x -<<B .}42{x x -<<-C .}{43x x -<<D .}{23x x <<2.复数z 满足{|||||2,,0}z z c z c a z C a c -++=∈>>,则z 对应点的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线3.已知0.2-0.32log 0.220.2a b c ===,,,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.“cos 0θ>”是“θ为第一或第四象限角”的( ) A. 充分不必要条件 B. 既不充分也不必要条件 C. 充要条件D. 必要不充分条件5.著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休。

”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数图象的特征,如函数f (x )=在[,]-ππ的图像大致为( )A .B .C .D .6.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如24519=+.在不超过24的素数中,随机选取两个不同的数,其和等于24的概率是( ) A .112 B .114 C .111 D .1137.已知非零向量a ,b 满足||2||=a b ,且(+)a b ⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π68.已知数列{}n a 的首项11,a =函数31()cos3n n n f x x a a π+=+--为奇函数,记n S 为数列{}n a 的前n 项之和,则2021S 的值是( ) 2023.2A B.1011 C.1008D.336二、多项选择题:本题共4小题,每小题5分,共20分。

2024届山东省平阴县第一中学高一数学第一学期期末考试模拟试题含解析

2024届山东省平阴县第一中学高一数学第一学期期末考试模拟试题含解析

5
5
D.对任意 x 0,1, x sin x tan x 0恒成立
9.设
,
0,
2

cos
6
5 13
, sin
3
3 5
,则
cos(
)


63
A.
65 33
C.
65
10.函数
B. 63 65
D. 33 65
( ,且
)的图象恒过定点 ,且点 在角 的终边上,则
A.
B.
()
C.
2
x
2 3x 1
1

当 x 增大时, g x 增大,即 g x 在 R 上递增,
由 f a 2 f b 2 0 ,可得 f a 2 1 f b 1 0 ,即 g a 2 g b 0 ,
∴ g a 2 g b g b ,
∴ a 2 b,即 a b 2 0 .
故选:B.
cos
24 25

0,
,故
2
,
,所以
cos
sin
0
,故
C
错;对

D,因为
x
0,1
0,
2
,所以
tan
x
x
sin
x
0
,所以
x
sin
x
tan
x
0
,故
D
对,综上,选
D
点睛:对于锐角 x ,恒有 tan x x sin x 成立
9、A
【解析】先计算得到
sin
6
12 13

cos
3
13.直线 l 过点 P(-1,2)且到点 A(2,3)和点 B(-4,5)的距离相等,则直线 l 的方程为____________

高一数学上学期第一次月考试题附答案


已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0

D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素

2019-2020学年山东省济南市平阴县第一中学高一上学期12月月考数学试题(解析版)

2019-2020学年山东省济南市平阴县第一中学高一上学期12月月考数学试题一、单选题 1.已知集合,则( )A .B .C .D .【答案】B 【解析】依题意,,故.2.设x ∈R ,则“12x <<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】先解不等式,再根据两个解集包含关系得结果. 【详解】21121,13x x x -<∴-<-<<<Q ,又()1,2n ()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A. 【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3.cos780°= A .3B .3C .12 D .12-【答案】C【解析】直接使用余弦诱导公式0cos(360)cos ()k k Z αα⋅+=∈. 【详解】∵cos780°=cos (720°+60°)=cos60°=12,∴cos780°=12.故选C . 【点睛】本题考查了余弦的诱导公式、特殊角的三角函数值,考查了数学的化归思想.4.设函数241,0()log ,0x x f x x x ⎧-≤=⎨>⎩,则12f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .34-B .-1C .12-D.2【答案】A 【解析】将12x =代入()2log f x x =可求得12f ⎛⎫⎪⎝⎭;将所求式子变为()1f -,代入()41x f x =-可求得结果.【详解】211log 122f ⎛⎫==- ⎪⎝⎭Q ()11314124f f f -⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦故选:A 【点睛】本题考查分段函数值的求解问题,关键是能够将自变量代入对应的函数解析式,属于基础题.5.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B【解析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题. 6.函数1()ln 23f x x x =+-的零点所在区间为( )A .(2,)eB .(3,4)C .(,3)eD .(1,2)【答案】C【解析】根据零点存在定理,即可判断零点所在的区间. 【详解】函数1()ln 23f x x x =+- 则11()ln 21033f e e e e =+-=-<1(3)ln 332ln 3103f =+⨯-=->根据零点存在定理可知,在(,3)e 内必有零点. 而函数1()ln 23f x x x =+-单调递增且连续,仅有一个零点.所以零点只能在(,3)e 内. 故选:C 【点睛】本题考查了函数零点的判断,零点存在定理的简单应用,属于基础题. 7.已知扇形的弧长是4,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .2C .4D .1或4【答案】C【解析】因为扇形的弧长为4,面积为2,所以扇形的半径为:12×4×r=2,解得:r=1, 则扇形的圆心角的弧度数为41=4.故选C .8.已知01x <<,则1221x x+-的最小值为( ). A .9 B .92C .5D .52【答案】B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件. 【详解】()111122522221121x x x x x x x x-+=+=++---.01x <<Q ,0x ∴>且10x ->,()112221x x x x -+=-≥, 当且仅当()11221x x x x-=-,即13x =时,()11221x x x x -+-取得最小值2. 1221x x ∴+-的最小值为59222+=. 故选B . 【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题. 9.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sinα>0,则α是第一、二象限的角;④若α是第二象限的角,且P(x,y)是其终边上一点,则cosα=其中正确的个数为 ( ) A .0 B .1C .2D .3【答案】B【解析】①终边相同的角的同名三角函数的值相等——正确;②终边不同的角的同名三角函数的值不等——错误,如π3πsinsin 44=;③α终边可能在y 轴上,故错误. ④余.综上所述,有1个正确,选B .二、多选题10.下列命题正确的是( ) A .偶函数的图象一定与y 轴相交; B .任取0x >,均有1123xx⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;C .在同一坐标系中,2log y x =与12log y x =的图象关于x 轴对称;D .1y x=在(,0)(0,)-∞+∞U 上是减函数. 【答案】BC【解析】由反例可确定A 错误;根据指数函数图象可确定B 正确;根据122loglog x x=-可知C 正确;根据单调递减区间的定义可知D 错误. 【详解】A 中,1y x=为偶函数,但与y 轴无交点,A 错误; B 中,在同一坐标系中画出()12xf x ⎛⎫= ⎪⎝⎭与()13xg x ⎛⎫= ⎪⎝⎭的图象,如下图所示:由图象可知,当0x >时,1123x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,B 正确;C 中,122log log x x y =-=与2log y x =关于x 轴对称,C 正确;D 中,当11x =-,21x =时,211120x x -=>,不满足单调递减的定义; 1y x=的单调递减区间应为:(),0-∞和()0,∞+,D 错误. 故选:BC 【点睛】本题考查函数性质相关命题的辨析,涉及到函数奇偶性、单调性、函数之间的对称关系以及指数函数图象的相关知识.11.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=; ②对于定义域上的任意12,x x ,当12x x >时,恒有1212()()0f x f x x x ->-,则称函数()f x 为“理想函数”。

高一上册数学第一次月考试卷及答案

高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。

1个B。

2个C。

3个D。

4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。

0B。

1C。

2D。

36.函数 f(x)=x^2-4x+3 的递减区间是()A。

(-∞,1]B。

[1,2]C。

[2,+∞)D。

[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。

A∩BB。

A∪BC。

A-BD。

B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。

山东省2021年高一上学期数学第一次月考试卷(II)卷(精编)

山东省2021年高一上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一上·上海期中) 若A⊆B,A⊆C,B={0,1,2,3,4,5,6},C={0,2,4,6,8,10},则这样的A的个数为()A . 4B . 15C . 16D . 322. (2分) (2017高一上·嘉兴月考) 函数的值域为()A .B .C .D .3. (2分) (2018高一下·濮阳期末) 已知集合,,则下列结论正确的是()A .B .C .D .4. (2分) (2019高一上·武功月考) 已知 , , ,则下列结论正确的是()A .B .C .D .5. (2分)已知xy≠0,且=﹣2xy,则有()A . xy<0B . xy>0C . x>0,y>0D . x<0,y<06. (2分)若定义域为D的函数f(x)满足:①f(x)在D内是单调函数;②存在[a,b]⊆D,使得f(x)在[a,b]上的值域为[,],则称函数f(x)为“半值函数”.已知函h(x)=logc(cx+t)(c>0,c≠1)是“半值函数”则实数t的取值范围为()A . (0,+∞)B . (﹣∞,)C . (,+∞)D . (0,)7. (2分)若直线始终平分圆的周长,则的最小值为()A . 1B . 5D .8. (2分)(2019·达州模拟) 若是上的减函数,则实数a的取值范围是A .B .C .D .9. (2分) (2018高三上·寿光期末) 下列函数中,图象是轴对称图形且在区间上单调递减的是()A .B .C .D .10. (2分)已知函数f(x)= ,若对任意的x∈R,不等式f(x)≤2m2﹣ m恒成立,则实数m的取值范围是()A .B .C . [1,+∞)11. (2分) (2020高一上·黄陵期末) 函数()A . 是奇函数,在区间上单调递增B . 是奇函数,在区间上单调递减C . 是偶函数,在区间上单调递增D . 是偶函数,在区间上单调递减12. (2分)函数y=|x﹣3|的单调递减区间为()A . (﹣∞,+∞)B . [3,+∞)C . (﹣∞,3]D . [0,+∞)二、填空题 (共4题;共4分)13. (1分) (2019高一上·上海月考) 设集合,,若,则 ________.14. (1分) (2019高二下·上海期末) 己知关于的不等式对恒成立,则实数的取值范围是________.15. (1分)(2014·山东理) 已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)= 关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.16. (1分)已知,则f(x)与g(x)图象交点的横坐标之和为________三、解答题 (共6题;共60分)17. (10分) (2016高一上·赣州期中) 已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.(1)若a=﹣1,求A∪B,(∁RA)∩B.(2)若A∩B=∅,求a的取值范围.18. (5分)实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)(a﹣1)2+(b﹣2)2的值域.(2)的取值范围.19. (10分) (2016高一下·西安期中) 求下列函数的定义域.(1) y=(2) y= .20. (10分) (2019高一上·金华月考) 知且,.(1)求的解析式;(2)求的值域21. (10分) (2017高二下·黄冈期末) 已知函数g(x)= ,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.22. (15分) (2016高一上·成都期中) 已知函数f(x)=kx(k≠0),且满足f(x+1)•f(x)=x2+x,(1)求函数f(x)的解析式;(2)若函数f(x)为R上的增函数,h(x)= (f(x)≠1),问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值,若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省平阴县第一中学2016-2017学年高一数学上学期第一次月考试题试卷说明:本试卷满分150分,考试时间为120分钟第Ⅰ卷(选择题 共60分)注意事项:用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

一、选择题(每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项)1、已知集合{}3,2,1=A ,{}4,3,2=B ,则B A ⋂=( ) A.{}2B.{}4C.{}3,2D.{}4,3,2,12、若集合}21|{},20|{<≤=<<=x x B x x A ,则B A ⋃=( )A.},0|{≤x xB.}2|{≥x xC.},21|{<<x xD.}20|{<<x x 3、下列函数为偶函数的是( )A. 1+=x yB. 2x y = C. x x y +=2D. 3x y =4、函数()312-+-=x x x f 的定义域是( ) A .[)+∞,2B .[)2,3∪()+∞3,C .()2,3∪()+∞3,D .{}3,≠∈x R x x5、下列四组函数中,表示同一个函数的是( )A. 1(1)()|1|,()1(1)x x f x x g x x x +≥-⎧=+=⎨--<-⎩B. ()()21,11x f x g x x x -==-+C.()()2f xg x ==D.()(),f x x g x ==6、已知集合{|0,}A x x x R =≤∈,{,1}B a =,若A B φ≠ ,则实数a 的取值范围是( ) A .0a ≥ B . 0a ≤ C. 1a ≤ D .1a <7、若集合{}2(2)210A x k x kx =+++=有且仅有1个元素,则实数k 的值是( ) A.±2或-1 B.-2或-1 C.2或-1 D.-28、已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么实数a 的值是( )A .1B .-1C .1或-1D .0,1或-19、若函数2()2(1)2f x x a x =+-+在区间(,1]-∞内递减,那么实数a 的取值范围为( ) A.2a ≤ B.0a ≤ C.2a ≥ D.0a ≥10、已知函数是定义在)(x f [)+∞,0的增函数,则满足1(21)()3f x f -<的x 取值范围是( )A.(∞-,23)B.[13,23)C.(12,∞+)D.[12,23)11、如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴的直线)0(:a t t x l ≤≤=,经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数)(x f y =的大致图象如图,那么平面图形的形状不可能是( )12、若函数()f x 是定义在R 上的偶函数,在(,0]-∞上是增函数,且(3)0f =,则使得()0f x >的x 的取值范围是( )A.(,3)-∞-B.(3,)+∞C. (,3)(3,)-∞-+∞D.(3,3)-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13、某班共30人,其中15人喜爱兵乓球运动,10人喜爱篮球运动,8人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为 ;14、已知()f x 是定义在R 上的奇函数,当[)∞+∈,0x 时,x x x f 2)(2+=,则 )1-(=f ; 15、一次函数)(x f 是减函数,且满足[]14)(-=x x f f ,则 )(=x f ; 16、给出以下四个命题:①若函数)(x f 的定义域为]2,0[,则函数)2(x f 的定义域为]4,0[; ②函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ ; ③已知集合{}{}1,0,1,,-==Q b a P ,则映射Q P f →:中,满足()0=b f 的映射共有3个; ④若()()()f x y f x f y +=,且(1)2f =,(2)(4)(2014)(2016)2016(1)(3)(2013)(2015)f f f f f f f f ++++= . 其中正确的命题有 .(写出所有正确命题的序号)温馨提示:请将填空题答案写在答题纸上!三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17、(本小题满分12分)已知全集U R =,{}|42A x x =-≤<,{}|13B x x =-<≤,5|02P x x x ⎧⎫=≤≥⎨⎬⎩⎭或, 求: A B ; ()U C B P ; ()()U A B C P .18、(本小题满分12分)已知集合},,1{b a A =,},,{2ab a a B =,若B A =,求b a +的值.19、(本小题满分12(1)判断错误!未找到引用源。

的奇偶性,并证明你的结论;(2)利用单调性的定义证明:函数错误!未找到引用源。

在),2[+∞内是增函数.20、(本小题满分12分)已知函数x xx f +=1)(.(1)求)2(f ,)21(f ,)3(f 、)31(f 的值;(2)由(1)中求得的结果,你能发现)(x f 与)1(x f 有什么关系?并证明你的发现;(3)求)20161()31()21(2016)3(2)1(f f f f f f f ++++++++ )()(的值.21、(本小题满分12分)已知()f x 是定义在R 上的奇函数,当0x ≤时,()(4)f x x x =+. (1)求0x >时,函数()f x 的解析式; (2)画出函数()f x 的图象,并写出单调区间.22、(本小题满分10分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。

当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/秒;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (1) 当0200x ≤≤时,求函数()v x 的表达式;(2) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =∙可以达到最大,并求出最大值.(精确到1辆/小时).平阴一中2016级阶段性检测 数学试题参考答案2016.10一、选择题: CDBBA,BADBD,CD二、填空题:12,-3,-2+1x ,③④ 三、解答题:17、解:由于{}5|13,|02B x x P x x x ⎧⎫=-<≤=≤≥⎨⎬⎩⎭或,可得, {}|13U C B x x x =≤->或,5|02U C P x x ⎧⎫=<<⎨⎬⎩⎭———————————4分所以,{}|12A B x x =-<< ,5()|02U C B P x x x ⎧⎫=≤≥⎨⎬⎩⎭或 {}()()|02U A B C P x x =<< ——————————————————12分 18、解:由题意得①21a b ab ⎧=⎨=⎩或②21abb a =⎧⎨=⎩------------------------------6分由①得1a =±,当1a =时,{1,1,}A b =,不符合,舍--------------------8分 当1a =-时,0b =,{1,1,0}A =-,{1,1,0}B =-,符合题意------------10分 由②得1a =,舍,所以1a b +=--------------------------------------12分 19、解:(1)()f x 奇函数,定义域为{|0}x x ≠22()()()f x x x f x x x-=--=-+=-,所以()f x 为奇函数;---------------5分 (2)证明:设2£x 1<x 2,012>-=∆x x x -----------------------------6分211212112212)2)((22)()(x x x x x x x x x x x f x f y --=--+=-=∆----------------9分 因为2£x 1<x 2, 所以x 2-x 1>0,x 1x 2>2所以 0>∆y , 所以函数错误!未找到引用源。

在),2[+∞内是增函数.----------------12分 20、解:(1)32)2(=f ,31)21(=f ,43)3(=f 、41)31(=f ------------4分(2)由以上结果发现:1)1()(=+x f x f ,11111111)1()(=+++=+++=+xx x xx x x x f x f ------8分(3)))()(20161()31()21(2016)3(2)1(f f f f f f f ++++++++24031201521=+=-------------------------------------------------------------------------------------------12分21、解:(1)设0x >,则0x -<,()(4)f x x x ∴-=--+,因为)(x f 为奇函数,所以()(4)f x x x ∴-=--+,()(4)f x x x ∴=-+,即当0x >时,()(4)f x x x =--------6分分(2)图象略-----------------------8分;(3) 单调区间:(,2],[2,2],[2,)-∞--+∞-----------------------------------12分 22、解:(1)由题意:当020x ≤≤时,()60;v x =--------------------1分当20200x <≤时,设().v x ax b =+,再由已知得2000,2060,a b a b +=⎧⎨+=⎩解得1,3200.3a b ⎧=-⎪⎪⎨⎪=⎪⎩故函数()v x 的表达式为60,020,()1(200),20200.3x v x x x ≤≤⎧⎪=⎨-<≤⎪⎩----------------------4分(2)依题意并由(1)可得60,020,()1(200),20200.3x x f x x x x ≤≤⎧⎪=⎨-<≤⎪⎩当020x ≤≤时,当20x =时,其最大值为60201200;⨯=---------------------6分当20200x <≤时,211(200)10000()(200).3323x x f x x x +-⎡⎤=-≤=⎢⎥⎣⎦当且仅当200,x x =-即100x =时,等号成立.所以,当100x =时,()f x 在区间[]20,200上取得最大值10000.3-----------8分综上,当100x =时,()f x 在区间[]0,200上取得最大值-100003333,3≈-------9分即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。

相关文档
最新文档