减震用橡胶材料及其应用
橡胶阻尼材料

橡胶阻尼材料橡胶阻尼材料是一种具有良好减震和隔音效果的材料,广泛应用于建筑、交通工具、机械设备等领域。
它的主要作用是通过吸收振动能量,减少共振噪音的传播,保护结构和设备,提高工作环境的舒适度。
本文将从材料特性、应用领域和未来发展趋势等方面对橡胶阻尼材料进行介绍。
橡胶阻尼材料的特性。
橡胶阻尼材料具有良好的弹性和抗拉性能,能够在受力后迅速恢复原状,具有较高的抗震和减震效果。
同时,橡胶材料还具有良好的耐磨性和耐老化性能,能够在恶劣环境下长期稳定工作。
这些特性使得橡胶阻尼材料在工程领域得到广泛应用,成为减震隔音的理想材料之一。
橡胶阻尼材料的应用领域。
橡胶阻尼材料在建筑领域主要用于减少结构振动和噪音传播,提高建筑物的抗震性能和舒适度。
在交通工具领域,橡胶阻尼材料被广泛应用于汽车、火车、飞机等交通工具的减震隔音系统中,有效降低了车辆噪音和振动对乘客的影响。
此外,橡胶阻尼材料还被用于机械设备、电子设备等领域,起到减少共振噪音、保护设备和提高设备稳定性的作用。
橡胶阻尼材料的未来发展趋势。
随着科技的不断进步,橡胶阻尼材料的性能和应用领域将得到进一步拓展。
未来,橡胶阻尼材料将更加注重环保和可持续发展,开发出更加耐高温、耐腐蚀、抗老化的新型材料,以满足不同领域的需求。
同时,随着智能化技术的发展,橡胶阻尼材料将与传感器、控制系统等结合,实现智能化减震隔音效果,为人们创造更加安静、舒适的生活和工作环境。
总结。
橡胶阻尼材料是一种具有良好减震和隔音效果的材料,具有广泛的应用前景。
它的特性决定了它在建筑、交通工具、机械设备等领域的重要作用,未来将会在性能和应用领域上得到进一步拓展和提升。
相信随着科技的不断发展,橡胶阻尼材料将会发挥越来越重要的作用,为人们的生活和工作环境带来更多便利和舒适。
橡胶减震原理

橡胶减震原理
橡胶减震器是一种常见的减震装置,它利用橡胶材料的弹性变形来吸收和减轻外部震动和冲击,从而保护机械设备和结构。
橡胶减震器的原理是基于橡胶材料的弹性变形和能量吸收特性,通过这些特性来实现减震效果。
首先,橡胶材料具有很好的弹性,当外部受到震动或冲击时,橡胶材料会发生弹性变形,吸收和分散能量,从而减轻震动和冲击对机械设备和结构的影响。
这种弹性变形的特性使得橡胶减震器能够有效地减少震动和冲击对设备和结构的损坏,延长其使用寿命。
其次,橡胶材料还具有良好的能量吸收特性,当外部能量作用于橡胶材料时,橡胶会将能量转化为内部分子的运动和变形,从而将能量吸收和消耗掉。
这种能量吸收特性使得橡胶减震器能够有效地降低外部震动和冲击的传递,保护设备和结构免受损坏。
此外,橡胶减震器还具有一定的柔性和可塑性,它可以根据外部震动和冲击的大小和方向进行弹性变形和位移,从而适应不同条件下的减震要求。
这种柔性和可塑性使得橡胶减震器能够在不同工况下发挥良好的减震效果,保护设备和结构的安全稳定运行。
综上所述,橡胶减震器利用橡胶材料的弹性变形和能量吸收特性,通过吸收和分散外部震动和冲击的能量,从而实现减震效果,保护机械设备和结构免受损坏。
橡胶减震器在工程实践中应用广泛,其原理简单而有效,为各种设备和结构的减震保护提供了重要的技术支持。
橡胶减震垫技术特性及应用研究

橡胶减震垫技术特性及应用研究
橡胶减震垫是一种常见的减震降噪材料,其优异的高低温性能、耐磨性、抗老化能力
以及优良的减震效果得到了广泛应用。
本文主要介绍橡胶减震垫的技术特性和应用研究。
1. 高低温性能良好。
橡胶减震垫具有优异的高低温性能,能够在-50℃到150℃的范
围内保持良好的弹性和力学性能。
这使得橡胶减震垫可以在各种恶劣的环境条件下使用。
2. 耐磨性好。
橡胶减震垫采用的橡胶材料具有良好的耐磨性能,可以有效地抵御各
种磨损和损坏,从而提高了使用寿命。
4. 减震效果显著。
橡胶减震垫具有优良的减震效果,能够有效地减少机器设备和建
筑物的震动和噪音,从而改善工作环境和减少环境污染。
1. 机械制造领域。
橡胶减震垫广泛应用于机械制造领域,如机床、压力机、冲床、
汽车、轮船等,可以有效地减少机械设备的震动和噪音,提高生产效率和产品质量。
2. 建筑工程领域。
橡胶减震垫还广泛应用于建筑工程领域,如大型桥梁、高层建筑、路面铺设等,可以有效地减少建筑物的震动和噪音,提高建筑物的抗震能力和安全性。
4. 医疗卫生领域。
橡胶减震垫还应用于医疗卫生领域,如手术室、医院病房等,可
以有效地减少设备产生的震动和噪音,提高医疗设备的使用效果和医疗环境的舒适度。
综上所述,橡胶减震垫具有优异的技术特性和广泛的应用前景,是一种重要的减震降
噪材料,对改善生产环境和提高生产效率具有重要意义。
建筑结构中橡胶材料的应用研究与实践

建筑结构中橡胶材料的应用研究与实践橡胶材料在建筑结构领域中的应用已经取得了显著的进展。
随着建筑行业对于结构性能和环境要求的提高,传统的建筑材料已经不能完全满足这些需求。
橡胶材料因其优异的特性,如高延展性、耐腐蚀性、吸振减震性和耐候性,成为了一种理想的替代材料。
本文将分析橡胶材料在建筑结构中的应用研究与实践,并探讨其未来的发展趋势。
一、橡胶材料在建筑结构中的应用1.橡胶减震支座在地震区域,建筑物的减震与抗震设计尤为重要。
橡胶减震支座是一种常见的减震设备,能够有效地减少地震带来的损害。
橡胶减震支座采用橡胶材料作为垫片,可在地震发生时吸收地震能量,从而降低建筑物的震动强度。
同时,橡胶减震支座还能够提供更好的结构稳定性和舒适性,减少结构和人员受到的震动影响。
2.橡胶隔声材料在城市中心的高密度建筑群中,噪音污染成为了一个不容忽视的问题。
橡胶材料因其吸声性能和弹性特点,被广泛应用于建筑隔音的领域。
橡胶隔声材料能够有效地隔绝噪音,并提供更加安静和舒适的室内环境。
同时,橡胶材料还能够减少声音的传播,降低建筑物之间的相互干扰。
3.橡胶防水材料建筑物的防水性能对于保护建筑结构的安全和长久使用至关重要。
橡胶材料具有优异的耐水性和耐候性,在建筑防水领域中有着广泛的应用。
橡胶防水材料具有很好的弹性和耐久性,能够有效地防止水分渗透,避免建筑结构受潮和损坏。
二、橡胶材料应用的研究与实践1.橡胶材料的性能评估橡胶材料的性能评估是橡胶材料应用研究的基础。
研究人员通过对橡胶材料的力学性能、化学性能、热性能和耐老化性能等进行测试和分析,评估橡胶材料的适用性和可靠性。
同时,结合实际工程应用,对橡胶材料的性能进行验证,确保其在实际应用中能够发挥预期效果。
2.橡胶材料的生产与加工技术橡胶材料的生产与加工技术对于其应用效果和成本控制具有重要影响。
研究人员通过优化橡胶材料的配方和工艺参数,提升橡胶材料的性能,并寻求更加高效和可持续的生产加工方法。
橡胶减震器的作用相关介绍

橡胶减震器的作用相关介绍橡胶减震器是一种常见的机电附件,广泛应用于各行各业的机械设备中,主要用于减少机器工作时产生的震动和噪音,保护机器和工作人员。
本文将从橡胶减震器的原理、结构和应用三个方面详细介绍其作用和功能。
一、橡胶减震器的原理橡胶减震器主要运用了橡胶材料的减振和消声特性,利用弹性体材料对振动的吸收与消散,有效地降低了机器振动带来的危害。
在减震器中,橡胶被包裹在金属上,形成了一种类似于弹簧的结构,减少了振动的传播和放大。
二、橡胶减震器的结构橡胶减震器的结构包括橡胶和金属的复合结构、杆头和杆尾两头安装结构以及固定螺母等部件。
其中,橡胶和金属的复合结构产生的空气隙可有效阻挡高频振动的传播,避免各种机动车辆、机械、铁路车辆等在行驶过程中由于地面不平整产生的高频振动而引起的噪音。
而杆头和杆尾的安装结构可以减少机器的振动幅度,使机器的动态性能更稳定。
三、橡胶减震器的应用橡胶减震器广泛应用于各类机械设备中,比如变压器、水泵、起重机、电动机等。
在其实际应用过程中,橡胶减震器主要发挥以下几个作用:1.减少设备振动和噪音橡胶减震器能够有效地消除机器的振动和噪音,使机器运转更加平稳,减少了工作环境对机器造成的损害。
2.保护设备和工作人员安全橡胶减震器在机器运转时能够减少振动的传递,从而减少机器零部件的损坏和机器维修的次数。
同时,减震器也能保护工作人员不受振动的影响,提高工作效率和生产安全。
3.提高机器性能橡胶减震器的使用能够减少机器出现共振的概率和程度,提高机器的响应速度和控制精度,保证机器的稳定性和可靠性。
综上所述,橡胶减震器在各行各业中起到了至关重要的作用,特别是在高速和高载荷工况下,在机器保护、工作效率和生产安全方面都具有显著的优势。
因此,在选择机械设备和安全措施时,必须对使用橡胶减震器进行充分考虑。
橡胶减震器种类优点及应用领域

2. 1橡胶减震器的特点及其优点橡胶的特点是既有高弹态乂有高黏态,橡胶的弹性是由其卷曲分子构象爱你过的变化产生的,橡胶分子间互相作用会妨碍分子链的运动,有表现出黏性特点,以致应力与应变往往处于不平衡状态。
橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力,使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。
橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。
除此外, 橡胶还具有滞后和内摩擦特性,他们通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热就越明显,减震效果越明显。
综上所述,用橡胶制成的橡胶减震器也具有良好的减震效果。
橡胶减震器的优点:(1) 可以自由确定形状,通过调整橡胶配方组分来控制硬度,可满足对各个方向刚度和强度的要求;(2) 内部摩擦大,减震效果好,有利于越过共振区,衰减高频振动和噪声;(3) 弹性模量比金届小得多,可产生较大弹性形变;(4) 没有滑动部分,易于保养;(5) 质量小,安装和拆卸方便。
(6) 冲击刚度高于静刚度和动刚度,有利于冲击变形。
2 . 2橡胶减震器主要种类介绍橡胶减震器按其功能分类大致如下:(1) 支承各种装置的狭义的橡胶减震器;(2) 以吸收冲击为目的的橡胶缓冲器;(3) 作为机械作动部件使用的橡胶弹簧;(4) 消除特定振动频率振动的动减震器;(5) 橡胶联轴节也包括于橡胶减震器范畴。
橡胶减震器按形状狭义分类如下:(1) 压缩型此类为主要用于压缩方向的橡胶减震器。
其优点是负荷承受力大,但压缩方向的弹性系数不可选择太低。
(2) 剪切型此类是主要用于剪切方向的橡胶减震器。
其负荷承受力较小,但具有弹性系数可选择得很小这一优点。
(3) 复合型是用于压缩与剪切组合方向的橡胶减震器,具有压缩型和剪切型的中间特征。
(4) 圆筒型该型橡胶减震器可用于轴垂直向、轴向、扭曲、撬曲等各向的减振。
用于轴垂直向的与压缩型橡胶碱振器相似,其负荷承受力一般较大,但弹性系数不可选择得太小。
橡胶减震原理

橡胶减震原理橡胶减震是一种常用于工程和建筑领域的减震方法,通过橡胶材料的特性来降低结构或设备在地震、风荷载或其他外力作用下的振动幅度。
本文将介绍橡胶减震原理及其应用。
橡胶材料的特性橡胶是一种具有高弹性和可变形能力的弹性材料,具有以下几个主要特性:1.高度可变形:橡胶具有极高的伸缩变形能力,它能够在受力时进行变形,吸收和分散能量,从而减小结构或设备的振动幅度。
2.高粘弹性:橡胶具有被动的粘性行为,在受力时能够产生粘滞效应,使能量转化为热能,减少振动造成的损耗。
3.耐久性:橡胶具有较长的使用寿命和稳定的性能,对环境和温度的变化具有较好的适应性。
由于这些特性,橡胶成为一种理想的减震材料,能够有效地减小结构或设备在外力作用下的振动。
橡胶减震器的结构橡胶减震器通常由一个或多个橡胶垫片组成,垫片通常呈圆形、方形或矩形。
垫片的底部和顶部通常由金属板材组成,以提供与结构或设备的接触。
垫片中通常包含有压缩变形的空间,当受到外力时,橡胶垫片能够压缩或拉伸,吸收和分散能量,从而减少振动的传递。
除了单个垫片的减震器外,还有一些复合结构的减震器,如橡胶隔震支座和橡胶隔振器。
橡胶隔震支座通常由若干个橡胶垫片和金属嵌板组成,用于支撑和减震桥梁、建筑物等结构。
橡胶隔振器通常由若干个橡胶弹簧组成,用于隔振机械设备和电子设备。
橡胶减震原理橡胶减震器的减震效果主要通过以下几个方面实现:1.形变能量吸收:当外力作用于橡胶垫片时,垫片会发生压缩或拉伸变形,将能量转化为弹性形变能,从而减小结构或设备的振动幅度。
2.能量消耗和分散:橡胶材料具有粘弹性特点,可以吸收并消耗能量,将部分能量转化为热能,从而减少能量在结构或设备中的传递,降低振动幅度。
3.频率分离:橡胶减震器具有不同的刚度和阻尼特性,可以分离不同频率的振动,将高频振动转化为热能,减少对结构或设备的影响。
4.震级适应性:橡胶减震器能够根据外力的大小和方向自动调整减震效果,具有较好的适应性和可塑性。
减震橡胶知识及应用

减震橡胶知识及应用一.绪论现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,人们一直致力于振动的产生,控制和消除的研究,所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了.但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向.减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震,但当时还没有有效的橡胶粘接技术,橡胶在减震领域的应用没有获得成功,随着橡胶粘接技术的的发展和运用,于1932年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能,随后越来越多的金属和橡胶粘接的零件应用于差速器、后轴等汽车驱动系统,20世纪50年代起越来越多的发动机悬置得以应用,早在1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展,现在人们正在研究可转换装置和主动装置在工程上的实际应用.二.减震橡胶基础理论1.减震基础当沿重心轴方向对橡胶装置进行碰撞会产生一定频率的振动,如果系统内没有外力作用,激发振动将逐步衰减,衰减的速度取决于橡胶材料的减幅,根据牛顿定律将得到下面公式: 质量+阻力+弹力=0若忽略减幅不计,可以得到橡胶的固有频率如下:f0=1/2πc/mf0 :固有频率; c:弹簧刚度; m:质量当碰撞力远离重心橡胶装置系统会在三个轴中产生扭转振动,各自的角频率为:ωD = c v /JωD:角频率; c v:扭转刚度; J:惯量机悬置有三个直移和三个转动的自由度,六个固有频率需抵制共振使激振力减少到一定程度,该装置系统主要是减少重心处的振动使之趋向于零,使不同方向的激振不再相互影响.该装置系统的设计目标是根据客户的开发设想决定悬置布置的位置和悬置的刚度,使得所有的固有频率远不等于干扰频率,最初的装置主要是决定临时的位置和刚度,最后安装到车上时要考虑到发动机装置子系统的相互作用,现在人们已能通过有限元分析软件系统建立汽车整车模型,并通过计算机模拟进行悬置的优化设计,设计时需考虑找到使舒适性和减少噪音的最好的折中方法,使得零件可以抵挡所有外力并使力的传递达到袄最小化,同时还需满足零件的最大运动和外界环境的要求.3.减震橡胶概要3.1减震橡胶的作用:代替金属弹簧起到消振,吸振作用.其主要的性能要求在静刚度、动刚度、耐久性能上.3.2减震橡胶的特点:(与金属弹簧相比胶)①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥有不同的性能.②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞后性(受力过程中橡胶的变形滞后于橡胶的应力).③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数.3.3减震橡胶的工作原理:①吸收振动: 此类减震橡胶件主要是用于发动机与车身之间的连接,此状态下发动机是振动源, 减震橡胶的作用是吸收发动机产生的振动,避免传递到车身上,同时也减轻发动机自身的振动.②消减振动: 此类减震橡胶件主要是用于底盘与车身之间的连接,此状态下底盘车轮是振动源, 减震橡胶的作用是将路面与车轮产生的振动通过高阻尼作用迅速消减,防止振动通过底盘传递到车身.4.减震橡胶的性能特征4.1静刚度围不同所得到的静刚度值是不同的,即(F2-F1)/(X2-X1)≠(F3-F2)/(X3-X2)而金属弹簧在任意位移范围内其所受载荷变化量与其位移变化量的比值是一定的,即(F2-F1)/(X2-X1)=(F3-F2)/(X3-X2)将金属弹簧和减震橡胶同时压缩到极限后,金属弹簧的压力会一直保持不变,而减震橡胶的压力会随着时间的推移出现压力松弛的现象,如图5所示,减震橡胶的这种压力松弛的特性使它具有比金属弹簧更好的消振作用.4.1.2静刚度的计算方法:减震橡胶的静刚度是与产品的形状和橡胶的自身特性有关,静刚度方柱的形状系数为:S=AL/AF=(a*b)/(2(a+b)*h)圆柱的形状系数为:S=AL/AF=π(d/2)2/π*d*h=d/4h中空圆柱的形状系数为:S=AL/AF=(π(d1/2)2-π(d2/2)2)/( π*d1*h+π*d2*h)= (d1 -d2)/4hb.计算表征弹性率(微小变形):方柱的表征弹性率:1/3≤a/b≤3时: Eap/G=3+6.58S2Gap/G=1/((3+6.580S2)(1+1/48 S2)1/3≥a/b或a/b≥3时: Eap/G=4+3.29 S2Gap/G=1/((4+3.29 S2)(1+1/36 S2)圆柱和中空圆柱的表征弹性率: Eap/G=3+4.935 S2Gap/G=1/((3+4.935 S2)(1+1/36 S2)Eap:表征纵向弹性率; Gap:表征剪切弹性率; G:静态剪切弹性率; S:形状系数;c. 计算静刚度:形状a: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*L/ log(r2/r1)轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*L/ log(r2/r1)形状b: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1) 轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1)c.计算25%时的定拉伸应力σε=Fε/Aσε: 25%定拉伸应力; Fε:25%的定拉伸时的负荷; A:试验片的截面积;d.静态剪切弹性率G的计算:Gε=σε/(α-1/α2) ε=25%时Gε: 25%定拉伸的静态剪切弹性率; α=1+ε=1.25计算时取4个数据的平均值,有效数值保留小数点后两位.0000σ0cosδ*coswt是与变形同相位的应力分量σ0 sinδ* coswt是与变形相位差为90°的应力分量求两个方向应力分量与变形量峰值的比值为:G1=σ0cosδ*coswt/ r0G2=σ0sinδ* coswt/ r0G1:存储弹性模量或动态弹性模量G2:损耗弹性模量在振动学中通常将损耗弹性模量G2与存储弹性模量G1的比值称之为损耗系数τ=G2/G1=(σ0sinδ* coswt/ r0)/(σ0cosδ*coswt/ r0)=tgδ因损耗弹性模量G2=c(阻尼系数)*2π*f(振动频率),因此得出:τ=c*2π*f/G1 或G1= c*2π*f/ tgδ从上式可以看出:a.减震橡胶的损耗系数与橡胶自身的阻尼系数成正比,与振动频率成正比.b.减震橡胶的动刚度是橡胶自身特性,当橡胶自身的阻尼系数确定时,动刚度与振动频率成正比.c. 当橡胶自身的阻尼系数确定时,随着振动频率的增减, 损耗系数和动刚度同时增减但增减的幅度并不一致.4.3动倍率:4.3.1动倍率的定义指减震橡胶在一定的位移范围内所测定的动刚度与静刚度的比值,即:Kd/Ks因Kd∽G1*S2 ,Ks∽G*S2 因此: Kd/Ks∽G1/GG1:存储弹性模量; G:静态剪切弹性模量从上式可以看出:动倍率与产品形状无关,是橡胶材料自身的特性.对于发动机用减震橡胶而言,减震机理是吸收振动,要求动倍率越小越好,从动倍率的定义可以看出,若想减小动倍率需从两个方面入手:①增大静刚度②减小动刚度.如增大静刚度可以使减震橡胶在静态时的支承作用增强,而减小动刚度可以减小振动的传递率,防止将发动机倍率才具有可比性和实际意义.4.4损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ.通常所说的损耗系数就是橡胶应力与橡胶变形的相位角δ的正切,即损耗系数τ=tgδ.4.5扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转角之间的比值.4.6耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动频率下,经往复振动n 次后产品完好或将产品往复振动直至破坏时的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标.三.减震橡胶制品常用材料1.弹性体材料1.1减震橡胶用弹性体材料的选用:做为减震橡胶用的弹性体材料一般主要有以下几种:NR,SBR,BR,NBR,CR,EPDM,IIR,RUP等,其选用原则为:一般常用减震橡胶材料为: NR,SBR,BR(发动机悬置,衬套等)有耐油性要求的减震橡胶材料为:NBR(油管支架等)有耐候性要求的减震橡胶材料为:CR(球销衬套)有耐热性要求的减震橡胶材料为:EPDM(排气管吊件)阻尼性要求大的减震橡胶材料为:IIR(因其加工工艺性差,一般不采用)RUP一般用于减震支柱中的复原缓冲块.1.2弹性体材料对减震特性的影响从橡胶配方上考虑,影响橡胶的减震特性的主要因素是:生胶的选用;弹黑的选用和配合量;油的种类的选用.下面以NR/SBR/BR系为例介绍橡胶配方与减震特性的关系:①改变静刚度:生胶选用时改变SBR和BR的并用量对静刚度没有影响;碳黑选用时粒径小的碳黑可以提高静刚度,增大碳黑的配合量可以提高静刚度;油的选用时使用芳香烃油比使用环烷烃油的配方有利于提高静刚度;②改变动刚度:生胶选用时减少SBR的并用量有利于降低动刚度, 改变BR的并用量对动刚度没有影响,碳黑选用时粒径大的碳黑可以降低动刚度,减少碳黑的配合量有利于降低动刚度;油的选用时选用环烷烃油比使用芳香烃油有利于降低动刚度;③改变动倍率: 生胶选用时减少SBR的并用量有利于降低动倍率, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径大的碳黑可以降低动倍率,减少碳黑的配合量有利于降低动倍率;油的选用时使用环烷烃油比使用芳香烃油有利于降低动倍率;④改变损耗系数:生胶选用时增加SBR的并用量有利于提高损耗系数, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径小的碳黑可以提高损耗系数,增加碳黑的配合量有利于提高损耗系数;;⑤耐久性:生胶选用时增加先增后减的变化趋势; 增加BR的并用量耐久性会出现;因此SBR和BR的并用量应适当,碳黑选用时粒径小的碳黑可以提高耐久性,增加碳黑的配合量耐久性:出现后减的变化趋势,2.刚性骨架实际应用时减震橡胶基本都是带有刚性骨架的零件,同时这些刚性骨架都对减震橡胶的减震性能有一定的影响,它们起到联接和支撑作用.常用的刚性骨架材料有:钢,铝合金,工程塑料等.2.1钢因其具有高强度而被广泛用于减震橡胶中,常用的结构形式有①板材冲压(热轧板,冷轧板);②冷拔管材③铸造件④锻压件等多种形式2.2铝合金因其有较轻的比重而在汽车上得到越来越多的应用, 常用的结构形式有①板材冲压;②冷拔管材③铸造件④锻压件等多种形式2.3因工程塑料的聚合体具有较轻的比重但其强度硬度较低,对温度的依赖性很强,高的热膨涨和低的热传导性,在使用时一般需对原材料进行处理,加入填料和加固物,减震橡胶中常用的塑料PA66加20%-40%的玻璃纤维,一般常用于衬套和副车架支承的外套管.四汽车常用减震橡胶制品介绍:1.发动机悬置类:发动机悬置是用于发动机与车身的联接,对发动机起到支承作用,在这个系统中发动机是产生振动的振动源,而车身防振对象,这就要求发动机悬置能够有效地吸收振动,避免将振动传递到车身,提高乘车的舒适性,为满足这一性能就要求发动机悬置具有足够的静刚度的同时应尽量减小动刚度.2.驱动系统用减震件:驱动系统是指将发动机的动力传递到车轮的机构总成,主要有离合器变速器传动轴减速器差速器驱动桥和车轮组成,该系统主要的振动形式是扭振,该系统用减震件主要有用于传动轴的中心轴承,该产品的使用可避免传动轴过长造成固有频率降低而导致传动轴断裂,一般要求该产品的径向静刚度尽量小;3.操纵系统用减震件:操纵系统是指将方向盘的角变位传递到车轮的机构总成,该系统主要的振动形式是扭转,最常用的减震件是各类衬套,其主要受到径向冲击力和轴向的扭转和偏摆一般要求该类产品的耐久性能好;4.悬挂系统用减震件:悬挂系统主要作用是承受车体重量, 防止车轮的上下振动传递到车身,提高汽车的乘坐舒适性,同时能传递动力制动力和操纵时的侧向力,该系统使用的减震件特别多,如:前减上支架,后桥后弹性联接件,橡胶座分组件,防压垫,减震垫,弹簧垫,防撞垫,温定杆衬套,拉杆轴套,各类板簧衬套,各类摆臂衬套及各类缓冲块,现减震部生产的大部分产品是属于该系统的.五.汽车用典型减震橡胶制品结构设计基础1.发动机悬置1.1普通标准结构发动机悬置的工作状况如下:发动机是通过发动机悬置与车身相连接,发动机与车身之间发动机是振动源车身是防振对象,这就要求发动机悬置的性能为:能够有效地吸收振动,降低振动的传导率,避免将发动机的振动传递到车身,发动机工作时振动频率与振幅有如下关系,在低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置则要求在发动机低频振动区域有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在发动机高频振动区域有较小的动刚度, 以便能够更好地吸收发动机的振动降低振动的传导率.通过近几十年的研究开发,一些形状结构被确定为基础设计,实际使用的发动机悬置大部分是在这些结构基础上的改型和调整.如图13-1所示,发动机的前悬置大多采用这种压缩/剪切结构,一般情况三点支撑的发动机都是采用前端两点后端一点的支撑形式,且两发动机前悬置采用倾斜一定的角度对装,在工作中同时受到压缩和剪切载荷的作用.而发动机的后悬置大多采用如图13-2所示这种楔形座结构,这种楔形对称结构的悬置在工作中易受到压缩和剪切变形,同时当弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置的三个方向的刚度可以由空间尺寸和角度来决定,为各方向的刚度调整提供了方便. 图13-3所示的是一种衬套式的发动机悬置,这种结构都是由内外金属套管和橡胶硫化成型在一图13 发动机悬置常用标准结构型式以上这些发动机悬置都是属于常规的普通结构形式,对于在发动机的减震性能上都存在一定的局限性,对发动机悬置要求的性能是:高频时低的动刚度,低频时高的阻尼系数,实际上这是一对相互的矛盾体,因为悬置的动刚度和损耗系数都是橡胶自身的固有特性且都是随振动频率的增大而增大,在提高其损耗系数时动刚度也会随之增大,因此作为一般的减震橡胶已无法满足发动机悬置的这一特殊要求.1.2 液压悬置阻尼系数的这一特殊要求,采用了液体封入的结构形式,最早的液压悬置是德国大众于1979年开发的奥迪车用发动机液压悬置,现在这种液体封入技术已广范应用于汽车发动机悬置上. 发动机液压悬置从开始应用到汽车上至今主要经过了以下几个发展阶段.1.2.1单通道结构液压悬置发动机液压悬置发展的最初形式是如图14所示的单通道结构液压悬置,在液体封入前前,其性能与一般减震橡胶相似,当液体封入后, 液压悬置在低频振动区受到外力作用时,主体受压变形,压力传递到液体上,迫使液体从主液室向从液室流动,液体在通过通道时受到流动阻力,从而产生很大的损耗系数,使液压悬置在低频时具有较好的减震效果,当外加的振动频率等于液体的自身固有频率时,产生的损耗系数达到最大值.液体的自身固有频率与液封的结构及液体的性能有关:ωn: 液体的固有频率S0: 流道的截面积K1: 主体的动刚度K2: 液室部的动刚度ρ: 液体密度L0: 流道的长度液压悬置设计时应考虑到使液体的固有频率调整到与防震对象的频率一致,使得液封具有最佳的防振效果.1.2.2双通道结构液压悬置当外界施加的振动频率超过液体的固有频率后,液压悬置的动刚度有增大的趋势,这时动刚度就不能满足使用的要求,需要对液压悬置的结构进行改良,改良方法如图15所示,在开设低频通道的同时增设可动板结构(或叫解偶膜).发动机在各个不同的工作状态其振动频率与振幅情况分布如下:汽车行驶时: 振动频率在10HZ左右,振幅在±0.5mm至±1mm;发动机空转时: 振动频率在20HZ至40HZ,振幅在±0.1mm左右;发动机产生噪音时: 振动频率在50—200HZ,振幅在0.1mm以下;当汽车在正常行驶时振动频率低振幅较大,可动板的移动量大,能够把可动板附近的高频通道封住,此时液体只在低频通道中产生流动,由于通道的阻力产生较大的阻尼系数,有利于阻止发动机的振动传递到车身,提高减震效果.的滞后性,致使液体无法跟随外加振动而流动,在低频通道中不会产生液体的流动,此时因振幅较小,可动板的移动量小,不能将可动板附近的高频通道封住,可动板运动时带动周围的液体运动,使得液压悬置的动刚度降低,从而改善液压悬置在高频时的减震性能.1.2.3双通道带翼板结构液压悬置当外界施加的频率超过50HZ时,可动板振动的滞后性也使它无法跟随外界的振动而振动时,可动板的结构效应达到极限,动刚度又会有增大的趋势,此时如图16所示,在主体上增加翼板使液压悬置在可动板的结构效应达到极限后,翼板能始终跟随主体振动而振动,能对液室中1.3.1可转换装置随着人们对汽车乘坐舒适性的的要求的不断提高,开始出现了可转换装置的悬置,实现动刚度和阻尼的要求可以转换,图17就介绍了一种可转化装置的悬置,在传统的液压悬置的主体和主液室间增加了一个附加膜,当发动机处在怠速空转时,附加膜和主体间的空气对降低小振幅的动刚度有一定的效果,当汽车行驶时,真空泵将空气全部吸出,附加膜直接和主体连在一起,整个装置就成了一个传统结构的液压悬置,实现在低频下的高阻尼作用.这样就可以随着发动机的信号,通过真空泵的开关,实现降低动刚度和增大阻尼间的随意切换.图17 可转换装置液压悬置结构图1.3.2主动装置人们在新开发的产品中,有一种叫主动装置的悬置,这就意味着在运动中的零件可以对相关参数如阻尼和动刚度进行控制,以适合实际的行驶状态,主动意味着在短时间内这些参数可以调整. 图18就介绍了一种主动装置的悬置,在该结构中将通道壁设计成电极装置,通过对电极施加高电压,使得通道内的粘度增强,从而实现悬置从高弹性低阻尼的装态转变到高阻尼的装态,在这种主动装置中使用的液体主要是可导电硅油树脂,硅酸盐的悬浮液,但这些液体的长期稳定性不佳,在静置装态会出现沉定,这些沉定物不能在振动状态下分散,导致了液体不能5.1.1橡胶的角部及橡胶与金属连接处应有R过渡,在所有影响耐久性的位置都应考虑R过渡,避免应力集中提高产品的耐久性;5.1.2结构上不能有模具难以加工的以及生产困难的部位;5.1.3在骨架与橡胶的过渡处应考虑有适当的强制飞边,可以提高粘接性能避免粘合剂流出而污染模具;5.1.4骨架与橡胶模具的配合性是否良好,骨架的尺寸精度应合理;5.1.5形状上能否保证橡胶在成型时的压力,避免橡胶流出而造成粘接不良;5.1.6保证模具内部最小厚度尺寸在2mm 以上,以免模具因强度不足而变形;5.1.7产品的必要尺寸是否标注清楚;5.1.8衬套类产品的后道加工方法是否明确;5.2材料上:5.2.1骨架的材料及热处理方法是否明确;骨架的强度要求是否明确;5.2.2橡胶材料是否明确;5.3性能特性上:5.3.1相关部件的使用场合,尺寸及安装条件是否明确㈩5.3.2动静刚度的测定条件范围是否明确;5.3.3动静刚度的公差范围是否合理,减震橡胶一般为:±15%;5.3.4在各方向上都有刚度要求时应明确主方向,主方向的刚度应明确公差,其他方向刚度公差应放宽;5.3.5耐久试验条件是否明确(方向,载荷/位移,频率,耐久次数等)5.3.6现有试验设备的能力是否满足;六.减震橡胶制品生产技术1.橡胶混炼为提高产品使用性能,改进工艺和降低成本,常在生胶中加各种配合剂,在炼胶机上将各种配合剂加入生胶制成混炼胶的过程称为混炼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减震用橡胶材料及其应用随着现代工业的飞速发展,震动和噪音已经成为各个领域的严重问题:它会降低操作精度,影响产品质量;缩短产品寿命,使得高精仪器不能正常工作;危及安全性,使设备或构建物早期破坏;污染环境及影响人身健康,诸如地震之类的震动甚至还给人类的生命财产造成极大的损害。
因此,研究和掌握震动控制与噪音控制技术已是各国工业发展面临的重大课题。
消除震动和噪音的最根本和最好方法是减少或者消除震动源的震动,但实际上要想完全消除震动源的震动是不可能的,因此必须采取其他控制震动的方法。
实际应用中最广泛、最有效的方法是使用各种减震制品,尤其是橡胶减震制品。
它能够有效地隔离震动与激发源,还可以缓和震动体的震动,因此被广泛地应用于各种机动车辆、飞机、船舰等的动力机械及风机、水泵等辅助设备和仪器的震动隔离。
近年来,一些大型建筑物和桥梁等也采用了隔离地震的层压橡胶垫支撑建筑物。
对于结构震动和结构噪音的阻尼处理,也广泛地使用特殊的橡胶材料,称为黏弹性高阻尼材料。
1 橡胶的减震作用及减震橡胶材料橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象的变化产生的,橡胶分子间相互作用会妨碍分子链的运动,又表现出黏性特点,以致应力与应变往往处于不平衡状态。
橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力;使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。
橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。
橡胶的滞后和内摩擦特性通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热越显著,减震效果越明显。
橡胶材料损耗因子的大小不仅与橡胶本身的结构有关,而且与温度和频率有关。
在常温下,天然橡胶(NR)和顺丁橡胶(BR)的损耗因子较小,丁苯橡胶(SBR)、氯丁橡胶(CR)、乙丙橡胶(EPR)、聚氨酯橡胶(PU)和硅橡胶的损耗因子居中,丁基橡胶(HR)和丁腈橡胶(NBR)的损耗因子最大。
用作减震目的的橡胶材料一般分5种,即NR,SBR,BR为普通橡胶材料;NBR用于耐油硫化胶;CR用于耐天候硫化胶;IIR用于高阻尼硫化胶;EPR用于耐热硫化胶。
NR虽然损耗因子较小,但其综合性能最好,具有优异的弹性,耐疲劳性好,生热低,蠕变小,与金属件黏合性能好,耐寒性、电绝缘性和加工性能也好,因此NR被广泛地用作减震目的,要求耐低温或耐天候性能时,可与BR或CR并用或共混改性。
Nishiue等采用NR、BR及碳原子数大于4的含有-OH基团有机酸的金属盐制成的减震器具有较好的耐久性能,在70℃×22h和40℃×148h条件下的压缩永久变形分别为17.0%和11.7%。
由于EPDM耐天候、耐臭氧老化、电绝缘性、耐热和耐寒等性能优异,近年来受到广泛关注。
最近,日本三井化学公司与鬼怒川橡胶公司通过采用高相对分子质量的EPDM与低相对分子质量的EPDM并用,合作开发出一种新型耐热减震橡胶材料,并获得了日本专利。
该减震橡胶的各项测试表明,其减震性能与NR相同,但其耐热性、低温柔软性要比NR等其他橡胶好。
Iizumi 采用EPDM制成用于汽车部件上的减震器用橡胶材料,具有很好的耐热性,在190℃×5h 热老化后,材料仍具有很好的层间黏合性能。
对低温动态性能要求苛刻的减震橡胶,往往采用硅橡胶;当要求高阻尼时可采用IIR或卤化IIR;PU具有优良的耐磨性、耐屈挠性和对烃类燃料及大部分有机溶剂的抵抗能力,同时具有很高的物理性能、良好的电绝缘性、黏合性和耐老化性能。
PU在减震隔音方面也得到了广泛应用,如Adachi等采用PU制得减震和隔音良好的橡胶片层,应用到地板、天花板及弯曲板后,效果良好。
2 减震橡胶制品的发展与应用橡胶减震制品一般又称为橡胶减震器。
橡胶减震器的种类很多,从其受震动力的情况来看,可分为压缩型、剪切型、扭振型、冲击型和混合型等。
随着科技的发展,橡胶减震器的种类也越来越多,用途也越来越广,以下从橡胶减震器的应用领域对其发展和应用前景进行概述。
2.1 汽车用橡胶减震器随着社会经济的发展,国内外汽车的改型换代相当频繁,汽车工业正面临一个迅速变革的时期,发展的特点是在保证驾驶安全性、乘坐舒适性、行驶高速性以及豪华性的前提下,进一步提高汽车的使用寿命。
减震制品用于控制汽车的震动和噪声及改善其操纵稳定性,一般置于汽车发动机机架、压杆装置、悬挂轴衬、中心轴承托架、颠簸限制器和扭振减震器等部位,以改善汽车的安全性和舒适性。
减震制品可分为支架类、轴衬类、缓冲类和阻尼类四大类,主要要求减震性、耐热性和耐疲劳性好。
汽车减震橡胶制品包括发动机支座、悬挂构件、橡胶弹簧、橡胶空气弹簧和碰撞橡胶防护件等。
近年来,为提高汽车的安全性、舒适性和操作性,汽车用减震橡胶制品的品种和数量不断增多,如一辆轿车上减震橡胶制品的数量已达50-60件。
发动机及传动操作系统用橡胶减震器用来隔绝震源的震动。
传动部分的减震采用多边联轴节、阻尼离合器。
前、后悬挂装置上使用的减震器不仅要承担车体重量,还要使车体不致传递车轮的上下振动,抑制簧下质量的不规则运动,传递动力和制动力。
橡胶缓冲器是车体的重要减震器之一,其结构形式是2块金属板之间夹有橡胶层,利用橡胶的剪切变形达到缓冲的目的。
近期又开发出充氮气、与减震器油共存的筒式缓冲器,特点是提高缓冲器的载荷能力(最高达20 MPa),减震效果好,且延长其使用寿命。
汽车用橡胶减震器采用的橡胶材料以NR和SBR为主。
为改进减震制品的耐热性,已开始用IR,IIR,CR,EPDM 等作主体材料。
热塑性弹性体也将用于部分减震制品,如车身与底盘的减震器等。
如浙江海门橡胶厂采用NR/CR并用研制出了轿车底盘弹簧座减震器,效果良好。
2.2 铁路机车及铁路轨枕垫用橡胶减震制据统计,国内铁路和机车使用的各种橡胶材料和部件约有1万多种,消耗橡胶约10 kt/a。
随着铁路机车车速的提高,对线路的动力作用急剧增加,引起线路、轮箍及机车行走部分的元件产生剧烈的磨损,铁路机车各部位对抗震性的要求越来越高,橡胶减震器应用越来越普及,因而减震橡胶制品在机车上的应用品种和数量越来越多。
铁路机车上的减震橡胶制品主要有中央支承橡胶堆体、轴箱拉杆橡胶弹簧体、旁承橡胶堆、电机悬挂橡胶垫、弹性车轮、弹性齿轮、橡胶空气弹簧、传动装置的弓形橡胶块和橡胶球铰、车钩橡胶缓冲器等。
应用于机车上的橡胶减震器,其主要作用是承受压缩应力、剪切应力和扭转力矩,以及同时承受2种或2种以上的应力复合作用。
随着我国铁路建设的飞速发展,铁路轨枕也由枕木逐渐改换为混凝土轨枕。
改换后虽然轨枕的使用寿命延长,轨道框架结构的稳定性提高,但轨道的弹性显著下降,造成了轨道对轮轨冲击的缓冲性变劣。
为提高混凝土轨枕的缓冲性能,减少轨枕对道床的冲击力,增加绝缘性,目前国内外均采用弹性高聚物来解决混凝土轨枕轨道的弹性问题。
橡胶轨枕垫就是用于钢轨和混凝土轨枕之间或枕下的弹性垫(此外还有软土橡胶轨枕垫、层压木轨和塑料轨枕垫等),橡胶轨枕垫以其独特的弹性和良好的绝缘性能而被广泛地应用于铁路线上。
根据用途不同,混凝土轨枕橡胶垫板一般分为枕上(钢轨下)垫板和枕下垫2种类型。
橡胶轨枕垫由于长期裸露在大气中和置于枕底下使用,不断经受机车经过时的震动和冲击,因此要求具有良好的耐自然老化、耐热、耐寒以及良好的弹性和缓冲、吸震性能,此外还要具有较好的耐磨、电绝缘、抗压及抗剪切等性能。
在配方设计时最重要的是要考虑材料的耐久性和成本的低廉。
常用的主体材料有NR,SBR,BR,CR,EPDM等。
2.3 桥梁用橡胶减震器在桥梁工程中,梁式桥桥跨的两端需设置支座。
支座的主要作用是把桥跨结构上的全部载荷(包括恒载和活载)可靠地传递到桥墩上,并承受桥跨结构因载荷作用所发生的端部水平变位、转角等变形;其次是适应因温度和湿度的变化而引起的胀缩。
桥梁支座有固定与活动支座2种,前者是为固定桥跨结构在桥墩上的位置,可使桥跨结构的端点自由转动而不能移动;后者不仅使端部支点能自由转动而且要求能自由移动,承受桥跨结构因温度变化、混凝土收缩及载荷等因素引起的伸缩变位。
国外20世纪50年代末开始使用橡胶支座,至60年代世界上已有许多国家应用。
桥梁橡胶支座与其他刚性支座相比,不仅工作性能可靠,而且具有结构简单、材料来源充足、加工制造容易等优点。
由于橡胶支座能适应宽桥、曲线桥和斜交桥的上部结构在各个方向的变形,故目前不仅在中小跨径公路桥梁、城市桥梁及铁路桥梁上得到广泛应用,而且在大跨径的桥梁上也大量使用。
目前在桥梁工程上广泛使用的是普通板式、聚四氟乙烯板式和盒式橡胶支座3种类型。
桥梁橡胶支座对橡胶主体材料的选择原则,是在满足工程性能要求的前提下,结合使用环境条件的要求,基本上选用NR、CR、EPDM、IIR和氯化IIR等。
桥梁橡胶支座制造工艺多用模压。
生产过程是橡胶经塑炼后与配合剂按配方制成混炼胶,经停放、回炼和压延出片,剪成一定规格的半成品胶片。
半成品装模后在平板硫化机上加压硫化。
硫化过程要注意避免成品厚薄不均及钢板的移动。
在桥梁橡胶支座中,铅芯橡胶支座是在普通减震阻尼橡胶支座中部竖直地灌铅制成。
灌铅的目的一是提高支座的吸能效果,确保支座有适度的阻尼;二是增加支座的早期刚度,对控制风反应和抵抗地基的微震动有利。
由这种橡胶支座组成的隔震系统作为主导产品,已广泛应用于国外的大中型桥梁,并取得了良好的效果。
高阻尼橡胶支座是采用高阻尼橡胶材料制造的。
高阻尼橡胶可以通过在NR或合成橡胶中掺入石墨得到,根据石墨的掺入量可调节材料的阻尼特性。
和铅芯减震阻尼橡胶支座一样,高阻尼减震橡胶支座同时具备隔震器和阻尼器两方面的功能,可在隔震系统中独立使用。
2.4 建筑工程用橡胶减震器由于地震等无法避免的自然灾害,建造抗强烈地震的建筑物和构筑物是建筑工程领域的重要课题。
同时,日益增长的交通密度导致更大的震动传递和噪音污染,土木建筑的震动和噪音的隔离也成为亟待解决的问题。
自1966年美国率先在阿巴尼大厦中使用隔震橡胶支座后,日本、法国、新西兰和我国也相继在一些重要建筑物中使用隔震橡胶支座。
在目前建成的基础隔震建筑物中,80%以上的建筑物采用叠层橡胶隔震支座系统抗震。
叠层橡胶支座不仅在桥梁建设工程中广泛应用,而且已用于建筑物的底座,用来隔绝震源、地震防护和水域建筑物的隔震。
实践证明,这些使用隔震橡胶支座的建筑物能经受强烈的地震考验,如在1994年1月的美国洛杉矶大地震和1995年1月的日本神户大地震中,采用叠层隔震橡胶支座系统的建筑物都显示出优异的抗震效果,不仅建筑物未倒,而且内部的设施也未被破坏。
因此,近年来叠层隔震橡胶支座在国内外的应用更为广泛。
目前,我国已有数百栋建筑物使用叠层隔震橡胶支座。