中考数学基础训练20

合集下载

人教版九年级数学 中考数学 基础训练

人教版九年级数学 中考数学 基础训练

人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

(完整版)初中数学中考基础训练天天练(共20套含答案)01

(完整版)初中数学中考基础训练天天练(共20套含答案)01

ECNU初中数学中考基础训练(1)时间:30 分钟 你实际使用分钟班级姓名学号一、精心选一选 1.图(1)所示几何体的左.视.图.是( B )成绩LEXLex Li图(1)ABCD2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排 3 块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008 北京”或“北京 2008”的概率是( C )A. 1 6B. 1 4C. 1 3D. 1 23.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为 6.1104 千米和 6.10104 千米,这两组数据之间( A )A.有差别-4B.无差别4C.差别是 0.001104 千米3 2D.差别是 100 千米14.如图,把直线 l 向上平移 2 个单位得到直线 l′,则 l′-4-4的表达式为(D)A. y 1 x 1 2B. y 1 x 1 2C. y 1 x 1 D. y 1 x 1225.汽车以 72 千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4 秒后听到回响,这时第1页共3页ECNULEX汽车离山谷多远?已知空气中声音的传播速度约为 340 米/秒.设听到回响时,汽车离山谷 x 米,根据题意,列出方程为( A )A. 2x 420 4340B. 2x 472 4340C. 2x 472 4340D. 2x 420 43406.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( C )A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多D.无法确定图(1)图(2)7.如图,等腰梯形ABCD第6题 下底与上底的差恰好等于腰长,DE∥AB.则∠DEC等于(B)A. 75° B. 60° C. 45° D. 30°第7题第8题8.如图是一台 54 英寸的大背投彩电放置在墙角的俯视图.设∠DAO ,彩电后背 AD 平行于前沿 BC ,且与 BC 的距离为 60cm ,若 AO 100cm ,则墙角 O 到前沿 BC 的距离 OE 是( A )A. 60 100sin cmB. 60 100cos cmC. 60 100tan cmD.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了 10 包,测得它们实际质量的方差分别为 S甲2 11.05,S乙2 7.96,S丙2 16.32.可以确定 乙质量最稳定.打包机的10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若 A第2页共3页ECNULEX点从水平位置顺时针旋转了 30 ,那么 B 点从水平位置顺时针旋转了__30____度.第 10 题第 11 题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC 538′,AB 0.5 米,则这棵大树的直径约为_____ 0.5____米.12.如图,一次函数y1x 1 与反比例函数y22 x的图象交于点 A(2,1),B(1, 2) ,则使 y1 y2 的 x 的取值范围是x 2 或 0 x 1.三、开心用一用3x 1 813.(6分)解不等式组 1 2(x5)≤3并把解集在数轴上表示出来.解:解不等式 3x 1 8 ,得 x 3.2-22-2第 12 题解不等式 1 (x 5) ≤ 3,得 x ≤1. 2原不等式组的解集为 x 3.14.如图,数轴上点 A 表示 2 ,点 A 关于原点的对称点为 B ,设点 B 所表示的数为 x ,求 0x 2 2x 的值.解:Q 点 A 表示的数是 2 ,且点 B 与点 A 关于原点对称, 点 B 表示的数是 2 ,即 x 2. 3 分 (x 2)0 2x ( 2 2)0 2 ( 2) 1 2 1. 6 分第3页共3页。

初三中考数学复习 全等三角形 专项基础训练题 含答案

初三中考数学复习   全等三角形  专项基础训练题 含答案

初三中考数学复习全等三角形专项基础训练题含答案2019 初三中考数学复习全等三角形专项基础训练题1.如图,下列图形中被虚线分成的两部分不是全等图形的是( )2. 如图,△AOC≌△BOD,点C,D是对应点,下列结论错误的是( )A.∠A与∠B是对应角 B.∠AOC与∠BOD是对应角C.OC与OB是对应边 D.OC与OD是对应边3. 如图,图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°4. 如图,点 D,E 分别在线段 AB,AC上,CD 与 BE 相交于点 O.已知 AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5. 如图,△ABD≌△CDB,且AB,CD是对应边,下面四个结论中不正确的是( ) A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AB=CD且AD=BC6. 如图,四边形ABCD中,AC垂直平分BD,垂足为点E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7. 如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连结CD.下列结论错误的是( )A.AD=CD B.∠A=∠DCEC.∠ADE=∠D CB D.∠A=2∠DCB8. 如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法13. DC=BC(或∠DAC=∠BAC,或∠D=∠B=90°)14. 证明:(1) ∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°.又∵BC=EF,AC=DF,∴△ABC≌△DEF (SAS).(2) 由(1)得△ABC≌△DEF.∴∠B=∠DEF.∴AB∥DE.15. 证明:先用“SAS”证△ACF≌△ADF,得∠ACF=∠ADF,再证∠B=∠ACF,∴∠ADF=∠B.。

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形一、选择题(本大题共10道小题)1. AD是△ABC的角平分线,自D点向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE =∠ADF2. 两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等3. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等4. 如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( )A.∠B=∠EB.∠BAD=∠EACC.∠BAC=∠EADD.BC=ED5. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是( )A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC6. 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27. 如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°8. 如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( ).A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OD9. 平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°10. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题11. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是12. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.13. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=______14. 如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.15.如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.16. 如图所示,∠AOB=60°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DCO=________.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 18. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题19. 如图,已知AB DC AC DB==,.求证:12∠=∠.20. 已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.21. 如图,木工师傅常用角尺来作任意一个角的平分线,请你设计一个方案,只用角尺来作∠AOB的平分线,并说明理由.22. 已知:如图所示,BF与CE相交于点D,BD=CD,BF⊥AC于点F,CE⊥AB于点E,求证:点D 在∠BAC的平分线上.23.如图,两根旗杆AC、BD间相距12m,某人从A点沿AB走向B,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1/m s,求这个人运动了多长时间?24. 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC 的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.25.如图①,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,试证明BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.26. 在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.。

初三数学二次函数经典习题

初三数学二次函数经典习题

初三数学二次函数综合练习卷一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = .2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .8. 如果抛物线c bx ax y ++=2的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-= C . 22y ax -=- D .2210x y -+=12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下223x y -=B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线122+--=m mx x y 的图象过原点,则m 为( )A .0B .1C .-1D .±114.把二次函数122--=x x y 配方成为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m 16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、23(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、23(1)2y x =-+ 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+ B 、25y x =- C 、22y x x=-+ D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.二次函数单元检测 (B ) ___ ____一、新课标基础训练1.下列二次函数的图象的开口大小,从大到小排列依次是( ) ①y=13x 2;②y=23x 2+3;③y=-12(x-3)2-2;④y=-32x 2+5x-1. A .④②③① B .①③②④ C .④②①③ D .②③①④2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式( )A .y=3(x+5)2-5;B .y=3(x-1)2-5;C .y=3(x-1)2-3;D .y=3(x+5)2-33.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( ) A .5元 B .10元 C .15元 D .20元4.若直线y=ax+b (ab ≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( ) A .一 B .二 C .三 D .四5.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<146.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±12二、新课标能力训练7.如图,用2m 长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m 2.8.如图,有一个抛物线型拱桥,其最大高度为16m , •跨度为•40m ,• 现把它的示意图放在平面直角坐标系 中••,••则此抛物线的函数关系式为__________.9、已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?10、观察表格:2(1)求a ,b ,c 的值,并在表内空格处填入正确的数.(2)画出函数y=ax 2+bx+c 的图象,由图象确定,当x 取什么实数时,ax 2+bx+c>0.11、如图(2),已知平行四边形ABCD 的周长为8cm ,∠B =30。

2020中考数学冲刺练习-第02讲 新定义理解问题-

2020中考数学冲刺练习-第02讲 新定义理解问题-

2020数学中考冲刺专项练习【难点突破】着眼思路,方法点拨, 疑难突破;新定义问题:是指题目提供一定的材料,或介绍一个新概念,或给出一种解法等,在理解材料的基础上,获得探索解决问题的方法,从而加以运用,解决问题. 这类问题一般由“阅读材料”和“提出问题”两个部分组成.解决此类题的步骤: ①理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;②重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况;③类比新定义中的概念、原理、方法,解决题中需要解决的问题。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

类型1:方法模拟型,该类题目是指通过阅读所给材料,将得到的信息通过观察、分析、归纳、类比,作出合理的推断,大胆的猜测,从中获取新的思想、方法或解题途径,进而运用归纳与类比的方法来解答题目中所提出的问题.类型2:新知识学习型,这类题目就是由阅读材料给出一个新的定义、运算等,涉及的知识可能是以后要学到的数学知识,也有可能是其他学科的相关内容,然后利用所提供的新知识解决所给问题.解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决.类型3:信息处理型,这类题目主要是根据提供的表格,从中获得信息,并结合题意进行解答,这就需要我们将表格内容转化为数学信息或者已知条件。

类型4:阅读操作型,这类题目就是由阅读材料给出一个新的定义、运算等,涉及的知识可能是以后要学到的数学知识,也有可能是其他学科的相关内容,然后利用所提供的新知识解决所给问题.解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决.【名师原创】原创检测,关注素养,提炼主题;【原创1】2018年某省积极推进乡村规划和特色小城镇建设,各市地将结合本地实际,因地制宜培育一到三个设施完善、特色鲜明的典型示范镇,全面推进特色小城镇建设。

中考数学专题练习:反比例函数(含答案)

中考数学专题练习:反比例函数(含答案)1.(·海南)已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于( )A.二、三象限B.一、三象限C.三、四象限D.二、四象限2.(·哈尔滨)已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为( )A.-1 B.0 C.1 D.23.(·湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(-2,-1)4.(·临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是( )A.x<-1或x>1B.-1<x<0或x>1 C.-1<x<0或0<x<1 D.x<-1或0<x<15.(·无锡)已知点P(a,m)、Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定成立的是( ) A .m +n<0B .m +n>0C .m<nD .m>n6.(原创)如图是反比例函数y =kx图象的一支,则一次函数y =-kx +k 的图象大致是( )7.(·怀化)函数y =kx -3与y =kx(k≠0)在同一坐标系内的图象可能是( )8.(·安庆一模)对于反比例函数y =2x ,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小9.(·郴州) 如图,A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.(·嘉兴) 如图,点C 在反比例函数y =kx (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A 、B,且AB =BC,△AOB 的面积为1.则k 的值为( )A .1B .2C .3D .411.(·台州)如图,点 A,B 在反比例函数y =1x (x>0)的图象上,点 C,D 在反比例函数y =kx (k>0)的图象上, AC∥BD∥y 轴. 已知点 A,B 的横坐标分别为 1,2,△OAC 与△ABD 的面积之和为32,则 k 的值为( )A .4B .3C .2D. 3212.(·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C,D.若点C 的横坐标为5,BE=3DE,则k 的值为( )A.52B.3 C.154D.513.(·南京)已知反比例函数y=kx的图象经过点(-3,-1),则k=________.14.(·云南省卷)已知点P(a,b)在反比例函数y=2x的图象上,则ab=________.15.(·宜宾)已知:点P(m,n)在直线 y=-x+2上,也在双曲线 y =-1x上,则m2+n2的值为________.16.(·随州)如图,一次函数y=x-2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=13,则k的值为________.17.(·泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B的坐标为(-6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.18.(·杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时). (1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?19.(·山西)如图,一次函数y 1=k 1x +b(k 1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y 2=k 2x (k 2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.20.(·甘肃省卷)如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.21.(·绵阳)如图,一次函数y=-12x+52的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点的坐标.22.(·改编)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2014 2015 2016 2017投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件) 7.2 6 4.5 4(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其表达式;(2)按照这种变化规律,若2018年已投入资金5万元. ①预计生产成本每件比2017年降低多少万元?②若打算在2018年把每件产品成本降低到3.2万元,则还需要投入资金多少万元?(结果精确到0.01万元).1.(·瑶海区二模)如图,已知点A 是反比例函数y =1x (x>0)的图象上的一个动点,连接OA,OB⊥OA ,且OB =2OA.那么经过点B 的反比例函数图象的表达式为( )A .y =-2xB .y =2xC .y =-4xD .y =4x2.(·宿迁)如图,在平面直角坐标系中,反比例函数y=2x(x>0)的图象与正比例函数y=kx,y=1kx(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是________.3.(·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.4.(·杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.参考答案【基础训练】1.D 2.D 3.A 4.D 5.D 6.A 7.B 8.C 9.B 10.D 11.B 12.C13.3 14.2 15.6 16.317.解:(1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点, ∴E(-3,4),A(-6,8).∵反比例函数的图象过点E(-3,4), ∴m=-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b,∴⎩⎨⎧-6k +b =8,-3k +b =4,解得⎩⎨⎧k =-43,b =0,∴y=-43x ;(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7.∴BF=1.设E 点坐标为(a,4),则F 点坐标为(a -3,1). ∵E ,F 两点在y =mx的图象上,∴4a=a -3,解得a =-1.∴E(-1,4),∴m=-4,∴y=-4x .18.解:(1)根据题意,得vt =100 (t>0),所以v =100t (t>0);(2)由题意知,v =100t (0<t ≤5),而100>0,所以当t>0 时,v 随着t 的增大而减小,当0<t≤5时,v≥1005=20,所以平均每小时至少要卸货20吨.19.解:(1)∵一次函数y 1=k 1x +b(k 1≠0)的图象经过点C(-4,-2),D(2,4),∴⎩⎨⎧-2=-4k 1+b 4=2k 1+b ,解得:⎩⎨⎧k1=1b =2,∴一次函数的表达式为:y 1=x +2.∵反比例函数y 2=k 2x (k 2≠0)的图象经过点D(2,4),∴4=k 22,即k 2=8,∴反比例函数的表达式为:y 2=8x ;(2)令y 1=x +2中y 1>0,即x +2>0,解得x >-2,∴当x >-2时,y 1>0;(3)由图象可知:当x <-4或0<x <2时,y 1<y 2.20.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴ A(-1,3).把A(-1,3)代入反比例函数y =k x ,得k =-3,∴ 反比例函数的表达式为y =-3x ;(2)联立两个函数表达式得 ⎩⎨⎧y =x +4,y =-3x , 解得⎩⎨⎧x =-1,y =3,⎩⎨⎧x =-3,y =1.∴ 点B 的坐标为B(-3,1).当y =x +4=0时,得x =-4.∴ 点C(-4,0).设点P 的坐标为(x,0).∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1.即|x +4|=2,解得 x 1=-6,x 2=-2.∴ 点P(-6,0)或(-2,0).21.解:(1)∵△AOM 的面积为1,∴12||k =1,∵k>0,∴k=2.∴y=2x ;(2)如解图,作点A 关于y 轴的对称点C,连接BC 交y 轴于P 点.∵A ,B 是两个函数图象的交点,第21题解图∴⎩⎪⎨⎪⎧y =2x ,y =-12x +52,解得:⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=4,y 2=12.∴A(1,2),B(4,12).∴C(-1,2).设y BC =kx +b,则⎩⎨⎧-k +b =2,4k +b =12, 解得⎩⎪⎨⎪⎧k =-310,b =1710,∴y=-310x +1710,∴P(0,1710),∴PA+PB =BC =52+(32)2=1092.22.解:(1)∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x 与y 的乘积为定值18,∴反比例函数能表示其变化规律,其表达式为y =18x ;(2)①当x =5时,y =3.6.4-3.6=0.4(万元),∴生产成本每件比2017年降低0.4万元.②当y =3.2时,3.2=18x ,x =5.625≈5.63,5.63-5=0.63(万元).∴还需投入0.63万元.【拔高训练】1.C 2.23.解:(1)∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1,∴k=4.(2)① 3个.(1,0),(2,0),(3,0).② a.如解图1,当直线过(4,0)时:14×4+b =0,解得b =-1, b .如解图2,当直线过(5,0)时:14×5+b =0,解得b =-54,c .如解图3,当直线过(1,2)时,14×1+b =2,解得b =74, d .如解图4,当直线过(1,3)时14×1+b =3,解得b =114,∴综上所述:-54≤b<-1或74<b≤114. 4.解:(1)将A(1,3),B(-1,-1)的坐标分别代入y =kx +b,得⎩⎨⎧k +b =3,-k +b =-1,解得⎩⎨⎧k =2,b =1, 故一次函数的表达式为y =2x +1.(2)∵点(2a +2,a 2)在该一次函数图象上,∴a 2=2(2a +2)+1,∴a 2-4a -5=0,解得a1=5,a2=-1.(3)由题意知,y1-y2=(2x1+1)-(2x2+1)=2(x1-x2).∴m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,∴m+1≥1>0,∴反比例函数y=m+1x的图象在第一、三象限.。

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。

2020年九年级中考数学复习等腰三角形练习题

等腰三角形练习基础训练1.若等腰三角形的顶角为70°,则它的底角的度数为()A.30°B.40°C.50°D.55°2.[2019·天水]如图,等边三角形OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)3.[2018·福建B卷]如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°4.[2018·雅安]如图,在△ABC中,AB=AC,∠C=72°,BC=,以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.2C.D.5.[2018·凉山州]如图在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB长为半径作弧,两弧相交于M,N两点;②作直线MN,交BC于D,连接AD.若AD=AC,∠B=25°,则∠C等于()A.70°B.60°C.50°D.40°6.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是( )A.60°B.55°C.50°D.40°第7题图7.(2019·天水)如图,等边△OAB的边长为2,则点B的坐标为( ) A.(1,1) B.(1,3)C.(3,1) D.(3,3)8.如图,在△ABC中,AC=BC<A B.若∠1,∠2分别为∠ABC,∠ACB的外角,则下列角度关系何者正确( )A.∠1<∠2 B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°第8题图第9题图9.(2019·宁夏)如图,在△ABC中,AC=BC,点D和点E分别在边AB和AC上,且AD=AE,连接DE,过点A的直线GH与DE平行.若∠C=40°,则∠GAD的度数为( )A.40° B.45°C.55°D.70°10.(2019·衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O处相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是( )A.60° B.65°C.75°D.80°11.如图,一副三角尺叠在一起,最小锐角的顶点D恰好放在等腰直角三角形的斜边AB 上,BC 与DE 交于点M .如果∠ADF =100°,则∠BMD 的度数为( )A .85°B .95°C .75°D .65°12. 如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则∠ACE 的度数是( )第12题图A. 20°B. 35°C. 40°D. 70°13. (2019内江)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或1614. 如图所示,△ABC 中,AB =AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,若∠BDE =140°,则∠DEF =( )A. 55°B. 60°C. 65°D. 70°第14题图15. (2019贵阳)如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM交AB 于点E .若AE =2,BE =1,则EC 的长度是( )第15题图A. 2B. 3C. 3D. 516. (2018陕西)如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A. 43 2B. 2 2C. 832 D.3 2第16题图17.(2019·毕节)如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的大小为 °.第17题图 第18题图18.(2019·镇江)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1= °.19.(2019·绥化)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A = °.20.(2019·武威)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .21.[2019·宜宾]如图,△ABC 和△CDE 都是等边三角形,且点A ,C ,E 在同一直线上,AD 与BE ,BC 分别交于点F ,M ,BE 与CD 交于点N.下列结论正确的是 (写出所有正确结论的序号).①AM=BN ;②△ABF ≌△DNF ;③∠FMC+∠FNC=180°;④=+.22.[2018·嘉兴] 如图,在△ABC 中,AB=AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE=DF.求证:△ABC是等边三角形.23.[2019·无锡]如图,在△ABC中,AB=AC,点D,E分别在AB,AC上,BD=CE,BE,CD相交于点O.求证:(1)△DBC≌△ECB;(2)OB=OC.24.如图,△ABC是等边三角形,△BDC是等腰三角形,∠BDC=120°,以D为顶点作∠MDN,DM,DN 分别交AB,AC边于M,N两点,且∠MDN=60°,连接MN.试探究BM,MN,CN之间的数量关系,并加以证明.25.(2019·重庆B卷)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.26.(2019·重庆A卷)如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.27.(2019·杭州)如图,在△ABC中,AC<AB<BC.(1)如图1,已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)如图2,以点B为圆心,线段AB长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.图1 图228.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.29.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到点C(D不与点B,C重合),连接AD,作∠ADE=30°,DE交线段AC于点E.设∠BAD=x°,∠AED=y°.(1)当BD=AD时,求∠DAE的度数;(2)求y与x之间的关系式;(3)当BD=CE时,求x的值.备用图提升训练1. 如图,△CDE与△CAB是以C为顶点的等腰三角形,其中CD=CE,CA=CB,且∠DCE =∠ACB=120°,A,D,E三点在同一条直线上,连接BE,若CE=2,BE=3,则AE的长为________.第3题图2. 数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.答案:等腰三角形练习基础训练1.D2.B3.A[解析]∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵AD ⊥BC ,∴BD=CD ,AD 是BC 的垂直平分线. ∴BE=CE.∴∠EBC=∠ECB=45°. ∴∠ECA=60°-45°=15°.4.C [解析]在△ABC 中,AB=AC ,∠C=72°,所以∠ABC=72°,∠A=36°.因为BC=BD ,所以∠BDC=72°.所以∠ABD=36°.所以AD=BD=BC=.故选C .5.C [解析]由作图可知MN 为线段AB 的垂直平分线,∴AD=BD ,∠DAB=∠B=25°.∵∠CDA 为△ABD 的一个外角,∴∠CDA=∠DAB +∠B=50°. ∵AD=AC ,∴∠C=∠CDA=50°.故选C .6.B 7.B8.C 9.C 10.D11.A 12. B13. A 【解析】方程x 2-8x +15=0的两个根为3,5.但长度为3,3,6的三条线段不能构成三角形,故该三角形的三边为5,5,6,即周长为16.14. C 【解析】∵DE ⊥AC ,∠BDE =140°,∴∠A =50°,又∵AB =AC ,∴∠C =180°-50°2=65°,∵EF ⊥BC ,∴∠DEF =∠C =65°. 15. D 【解析】由尺规作图步骤可知,CM 为AB 的垂线,即△AEC 为直角三角形,∵△ABC 是等腰三角形,∴AC =AB =AE +BE =3,在Rt △AEC 中,CE =AC 2-AE 2= 5.16. C 【解析】∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ACD 中,∵∠C =45°,AC =8,∴AD =AC ·sin45°=8×22=42,∵∠ABC =60°,∴∠BAD =90°-60°=30°,∵BE 平分∠ABD ,∴∠ABE =∠DBE =30°,∴∠BAD =∠ABE ,∴AE =BE ,在Rt △BDE 中,∵∠DBE =30°,∴DE =12BE =12AE ,∵AE +DE =AD ,∴AE +12AE =42,∴AE =83 2.17. 34 18.40 19.36 20. 85或14.21.①③④ [解析]①∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACB +∠BCD=∠ECD +∠BCD , 即∠BCE=∠ACD ,在△BCE 和△ACD 中,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∠CBE=∠CAD,在△DMC和△ENC中,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,AD-DM=BE-EN,即AM=BN.②∵∠ABC=60°=∠BCD,∴AB∥CD,∴∠BAF=∠CDF.∵∠AFB=∠DFN,∴△ABF∽△DNF,找不出全等的条件.③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,∴∠AFB+∠ABC+∠BAC=180°,∴∠AFB=∠ACB=60°,∴∠MFN=120°.∵∠MCN=60°,∴∠FMC+∠FNC=180°.④∵CM=CN,∠MCN=60°,∴△MCN是等边三角形,∴∠MNC=60°.∵∠DCE=60°,∴MN∥AE,∴==.∵CD=CE,MN=CN,∴=,∴=1-,两边同时除以MN,得=,∴=.故答案为①③④. 22.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.23.证明:(1)∵AB=AC,∴∠ECB=∠DBC.在△DBC与△ECB中,∴△DBC≌△ECB(SAS).(2)由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.24.解:BM+CN=NM.证明:如图,延长AC至E,使CE=BM,连接DE.∵△BDC是等腰三角形,△ABC是等边三角形,∠BDC=120°, ∴∠BCD=∠CBD=30°,则∠ABD=∠ACD=90°,∴∠ABD=∠DCE=90°.在△DCE和△DBM中,BM=CE,∠DBM=∠DCE,BD=DC,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,DM=DE.又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC-∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°.在△DMN和△DEN中,DM=DE,∠MDN=∠NDE,DN=DN,∴△DMN≌△DEN(SAS),∴MN=NE,∴BM+CN=NM.25.(1)解:∵AB=AC,AD⊥BC于点D,∠C=42°,∴∠B=∠C=42°,∠ADB=90°.∴∠BAD=90°-42°=48°.(2)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵EF∥AC,∴∠F=∠CAD.∴∠BAD=∠F.∴AE=FE.26.(1)解:∵AB=AC,∴∠C=∠ABC.∵∠C=36°,∴∠ABC=36°.∵BD=CD,AB=AC,∴AD⊥BC.∴∠ADB=90°.∴∠BAD=90°-36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.∵EF∥BC,∴∠FEB=∠CBE.∴∠FBE=∠FEB.∴FB=FE.27.(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB.∴∠B=∠BAP.∵∠APC=∠B+∠BAP,∴∠APC=2∠B.(2)解:根据题意可知BA=BQ,∴∠BAQ=∠BQA.∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B.∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°.∴∠B=36°.28.证明:(1)如解图,连接DE.∵CD是AB边上的高,∴∠ADC=∠BDC=90°.∵BE是AC边上的中线,∴AE=CE.∴DE=CE.又∵BD=CE,∴BD=DE.∴点D在BE的垂直平分线上.(2)∵DE=AE,∴∠A=∠ADE.∵BD=DE,∴∠DBE=∠DEB.又∵∠ADE=∠DBE+∠DEB,∴∠A=∠ADE=2∠ABE.又∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.29.解:(1)当BD=AD时,∠B=∠BAD=30°.∵AB=AC,∴∠BAC=120°.∴∠DAE=∠BAC-∠BAD=120°-30°=90°.(2)由题意可知,∠BAD+∠DAE=120°,即x°+∠DAE=120°.又∵∠AED+∠DAE=180°-∠ADE=150°,即y°+∠DAE=150°.两式相减,得y-x=30,即y=x+30.(3)由题意可知,∠B+∠BAD=∠ADE+∠EDC, 且∠B=∠ADE=30°,∴∠BAD =∠CDE .又∵∠B =∠C ,BD =CE ,∴△ABD ≌△DCE (AAS).∴CD =BA =AC .∴△ACD 为等腰三角形,且∠C =30°.∴∠DAE =75°.∴x =∠BAC -∠DAE =120°-75°=45°.提升训练1. 3+2 3 【解析】如解图,过点C 作CM ⊥AE 于点M ,∵∠DCE =∠ACB =120°,∴∠BCE +∠DCB =∠ACD +∠DCB =120°,∴∠BCE =∠ACD ,在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS),∴AD =BE =3,∵CD =CE =2,CM ⊥DE ,∠DCE =120°,∴在Rt △CME 中,∠ECM =12∠DCE =12×120°=60°,∴ME =CE ·sin60°=2×32=3,∴DE =2ME =23,∴AE =AD +DE =3+2 3.第3题解图2 解:(1)当∠A 为顶角,则∠B =50°;当∠A 为底角,若∠B 为顶角,则∠B =20°;若∠B 为底角,则∠B =80°,∴∠B =50°或20°或80°.(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x <90时,若∠A 为顶角,则∠B =(180-x 2)°, 若∠A 为底角,则∠B =x °或∠B =(180-2x )°,当180-x2≠180-2x且180-x2≠x且180-2x≠x,即x≠60时,∠B有三个不同的度数.综上①②,当0<x<90且x≠60时,∠B有三个不同的度数.。

初中数学中考基础训练天天练(共20套含答案)15

初中数学中考基础训练(15)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.下列运算正确的是()A.()11a a--=--B.()23624a a-=C.()222a b a b-=-D.3252a a a+=2.如图,由几个小正方体组成的立体图形的左视图是()3.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上4.如图,AB CD∥,下列结论中正确的是()A.B.C.D.A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为()A.112k-<<-B.102k <<C.01k <<D.112k <<6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形C.既是轴对称图形又是中心对称图形D.没有对称性7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为()A.a b c >> B.c b a >>C.b c a >>D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x =B.()211851580x -= C.()211851580x -=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条B.2条 C.3条D.4条第9题10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为()A.1小时B.0.9小时C.0.5小时D.1.5小时11.如图,I是ABC△的内切圆,D,E,F为三个切点,若52DEF∠,则A∠的度数为()A.76B.68C.52D.3812.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入12345输出122531041752620151050 0.5 1.0 1.5 2.0 时间(小人数(人)第10题第11题图当输入数据是8时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式.15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为. 16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面m .(精确到0.01m )甲乙第14题第17题三、用心用一用18.用配方法解方程:2210x x --=.答案: 一、选择题13.1m + 14.()()22a b a b a b -=+- 15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=.移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-.11x ∴=,212x =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学基础训练20
时刻:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.如图1,在平面直角坐标系中,点E 的坐标是( ) A.(12), B.(21), C.(12)-, D.(12)-, 2.在ABC △中,90C ∠=,34AC BC ==,,则sin A 的值是( ) A.
4
3
B.
45
C.
34
D.35
3.如图2,Rt Rt ABC DEF △≌△,则E ∠的度数为( ) A.30 B.45 C.60 D.90
4.下列各式运算结果为8x 的是( ) A.44x x ·
B.44()x
C.16
2
x x ÷
D.4
4
x x +
5.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情形,则李老师最关注小伟数学成绩的( ) A.平均数 B.众数 C.中位数 D.方差 6.如图3,数轴上点N 表示的数可能是( )
7.如图4,点A B C D E F G H K ,,,,,,,,差不多上78⨯方格纸中的格点,为使DEM ABC △∽△,则 点M 应是F G H K ,,,四点中的( ) A.F
B.G
C.H
D.K
8.图5能折叠成的长方体是( )
0 1 2 3
4
1-
N
图3
C 60
图2
图4
二、细心填一填
9.2-的绝对值等于 .
10.某水井水位最低时低于水平面5米,记为5-米,最高时低于水平面1米,则水井水位h 米中h 的取值范畴是 . 11.已知两圆的圆心距12O O 为3,1O 的半径为1,
2O 的半径为2,则1O 与2O 的位置关系为 . 12.如图6,点P 是O 外一点,PA 切O 于点A , 60O ∠=,则P ∠度数为 .
13.大连某小区预备在每两幢楼房之间,开创面积为300平方米的 一块长方形绿地,同时长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .
14.如图7,双曲线k
y x
=与直线y mx =相交于A B ,两点,
B 点坐标为(23)--,,则A 点坐标为 .
15.图8是二次函数221y ax x a =-+-的图象, 则a 的值是 .
三、解答题 16.已知方程
1
11
x =-的解是k ,求关于x 的方程20x kx +=的解. 答案:
一、选择题 1.A; 2.B; 3.C;
4.A;
5.D;
6.B;
7.C;
8.D. 二、填空题
A
P
O
图6 图8
y
x
O 图7
A y
x
O
B
图5
A. B. C. D.
9.2; 10.51h --≤≤;11.外切;12.30;13.(10)300x x +=; 14.(23),;15.1.
三、解答题
16.解:1
11
x =-.
方程两边同时乘以(1)x -,得11x =-.
解得2x =.
经检验,2x =是原方程的解,因此原方程的解为2x =. 即2k =.
把2k =代入20x kx +=,得220x x +=. 解得1202x x ==-,.。

相关文档
最新文档