2010中考数学试题分类汇编--概率

合集下载

2010中考数学试题分类汇编-分式与分式方程

2010中考数学试题分类汇编-分式与分式方程

2010年中考数学试题分类汇编 分式5. (2010年浙江省东阳县)使分式12-x x有意义,则x 的取值范围是( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义【答案】D16.(2)(2010年山东省青岛市)化简:22142a a a+--. 【关键词】分式计算 【答案】(2)解:原式 = ()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

【关键词】分式运算【答案】解:原式21)2)(2(2++-+-=a a a a222121+=+++=a a a当2=a 时,原式52232=+=2、(2010浙江省喜嘉兴市)若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12 C .x =12D .x =2【关键词】分式分子、分母特点【答案】D17.(2010山东德州)先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x . 【关键词】分式、分母有理化 【答案】解:原式=11)1()1(2)1)(1(22-+++÷-+-x x x x x x =11)1(2)1()1)(1(22-+++⋅-+-x x x x x x =11)1(22-+--x x x =)1(2-x x.当12+=x 时,原式=422+.(2010年广东省广州市)若分式51-x 有意义,则实数x 的取值范围是_______. 【关键词】分式的意义 【答案】5≠x2.(2010年重庆)先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x . 【答案】解:原式=)2()2)(2(442+-+÷-+x x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.19.(2010江苏泰州,19(2),8分)计算:(2))212(112aa a a a a +-+÷--.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.【关键词】分式的加减乘除混合运算1.(2010年浙江省绍兴市)化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x【答案】B2.(2010年宁德市)化简:=---ba bb a a _____________. 【答案】121.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.(2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式 分式有意义【答案】D3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x 当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=224+)=225. (2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式有意义的条件 【答案】D15. (2010年安徽中考) 先化简,再求值:aa a a a -+-÷--2244)111(,其中1-=a【关键词】分式的运算 【答案】解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 当a=-1时,原式=112123a a -==---1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)命题点分类集训命题点1 事件的分类【命题规律】1.事件的分类主要考查事件的判断,确定事件分为必然事件(概率为1)和不可能事件(概率为0),随机事件发生概率介于 0和1 之间.2.考查形式:①下列事件是…事件的是;②下列说法正确的是;③…事件是….【命题预测】事件的分类是研究概率知识的基础,值得关注.1.在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是( )A . 不确定事件B . 不可能事件C . 可能性大的事件D . 必然事件1. D 【解析】在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,是一定发生的事件,因而是必然事件,故选D.2.下列事件中,是必然事件是( )A . 两条线段可以组成一个三角形B . 400人中有两个人的生日在同一天C . 早上的太阳从西方升起D . 打开电视机,它正在播放动画片2. B3.下列说法中,正确的是( )A . 不可能事件发生的概率为0B . 随机事件发生的概率为12C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3. A正面朝上的次数不确定命题点2 一步概率计算【命题规律】1.主要考查概率计算公式P (A )=mn (m 表示满足事件A 的可能结果数,n 表示所有可能结果数)的应用,只需一步便可解决.2.解决此类问题,首先找准所有可能发生的结果数,再找准事件A 发生的可能结果数,最后应用概率公式直接运算,注意事件A 的可能结果数要不重不漏,避免出错.【命题趋势】一步概率计算结合一些简单的游戏设计进行计算,是常考的基础概率计算. 4.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A . 110B . 19C . 13D . 124. A 【解析】随机选取一个数字,共有10种等可能结果,能打开密码锁的结果只有一种,所以一次就能打开密码锁的概率是110.5.已知袋中有若干个球,其中只有2个红球,它们除颜色外其他都相同,若随机摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A . 2B . 4C . 6D . 85. D 【解析】由概率的意义可知:袋中球的总数=红球的个数÷摸到红球的概率,即袋中球的总个数是2÷14=8(个).6.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是________.6. 34 【解析】由题意知,C ,D ,F 三点可与A ,B 构成等腰三角形,E 点不可以,则概率为34.第6题图 第7题图7.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是________.7. 35 【解析】∵黑色地砖有2块,白色地砖有3块,且小球停在每块地砖上的可能性相同,∴小球停在白色地砖上的概率为35.8.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.8. 45 【解析】从五个图形中任取一个,则共有5种等可能的结果,取到既是轴对称图形又是中心对称图形的有4种,故其概率为45.命题点3 树状图或列表法计算概率【命题规律】1.这类题的考查与实际生活比较贴近,命题背景一般有:①摸球游戏(分两次摸球或从两个袋子中分别摸球);②掷骰子游戏(两次求点数之和等);③抽卡片游戏;④和其他知识相结合如物理电路图.2.试题解法有固定的模式:主要是利用画树状图或列表法将所有等可能结果不重不漏地列举出来,使所有等可能结果清晰呈现,进而根据题设条件选择满足要求的事件的可能结果,最后再运用概率公式求解即可.【命题趋势】用树状图或列表法计算概率主要考查两步以上概率计算的方法,是概率计算命题的一大趋势.9.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A . 25B . 23C . 35D . 3109. C 【解析】画树状图分析如下:红1、红2、白1、白2、白3,由树状图可知,共有20种均等可能的结果,其中取到一红一白的结果有12种,所以P (一红一白)=1220=35.故选C. 10.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A . 12B . 14C . 310D . 1610. B 【解析】列表如下:第一次第二次 积1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 4 4 8 12 16 20 24 5 5 10 15 20 25 30 661218243036共有36种等可能情况,其中积为奇数的有9种,所以P (积为奇数)=936=14.11.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是________. 11. 15【解析】画树状图如解图:共有60种等可能结果,符合要求的结果是12种,故概率为1260=15.12.从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是________. 12. 16【解析】画树状图如下:第由树状图可知共有12种等可能的结果,其中k =mn 为正的有2种,当k =mn 是正数时,正比例函数y =kx 的图象经过第一、第三象限.∴P =212=16.13.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.13. 解:(1)用树状图表示选手A 获得三位评委评定的各种可能的结果,如解图:由树形图可知,选手A 一共能获得8种等可能的结果,这些结果的可能性相等. (2)由(1)中树状图可知,符合晋级要求的结果4种, ∴P(A 晋级)=48=12.14.A 、B 两组卡片共5张,A 中三张分别写有数字2、4、6,B 中两张分别写有3、5.它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?14. 解:(1)P(抽到数字为2)=13.(2)游戏规则不公平,理由如下.画树状图表示所有可能结果,如解图:由图知共有6种等可能结果,其中两数之积为3的倍数的有4种. ∴P(甲获胜)=46=23,P(乙获胜)=26=13∴游戏规则不公平.15.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示) (2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.15. 解:(1)列表法如下:A B C D A AB AC AD B BA BC BD C CA CB CD DDADBDC或画树状图如下:(2)在A 中,22+32≠42;在B 中,32+42=52;在C 中,62+82=102;在D 中52+122=132,则A 中正整数不是勾股数,B ,C ,D 中的正整数是勾股数. ∴P(抽到的两张卡片上的数都是勾股数)=612=12.命题点4 统计与概率结合【命题规律】此类题将概率和统计结合,一般为2~3问,第1问通常考查统计知识,最后1问涉及列表或树状图法计算概率,有时还会涉及到游戏的公平性.【命题预测】统计与概率都是与日常生活结合紧密,联系实验生活,是全国命题趋势之一,值得关注. 16.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)求此次调查中接受调查的人数; (2)求此次调查中结果为非常满意的人数; (3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或画树状图的方法求出选择的市民均来自甲区的概率. 16. 解:(1)由图知,满意20人,占调查人数的40%.∴此次调查中接受调查的人数为:20÷40%=50(人). (2)∵非常满意的人数占调查人数的36%, ∴非常满意的人数为:50×36%=18(人). (3)画树状图如下:∴市民均来自甲区的概率为:212=16.中考冲刺集训一、选择题1.在英文单词“parallel”(平行)中任意选择一个字母“a”的概率为( )A . 12B . 38C . 14D . 182.下列说法正确的是( )A . 为了审核书稿中的错别字,选择抽样调查B . 为了了解春节联欢晚会的收视率,选择全面调查C . “射击运动员射击一次,命中靶心”是随机事件D . “经过有交通信号灯的路口,遇到红灯”是必然事件3.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A . 16 B . 14 C . 13 D . 124.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5.随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )A . 310B . 320C . 720D . 7105.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A . 613 B . 513 C . 413 D . 313二、填空题6.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记.掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.7.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图,在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是________.8.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是________.9.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.三、解答题10.已知反比例函数y =kx 与一次函数y =x +2的图象交于点A(-3,m).(1)求反比例函数的解析式;(2)如果点M 的横、纵坐标都是不大于3的正整数,求点M 在反比例函数图象上的概率.11.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数. (1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.12.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.13.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如下尚不完整的统计图表.评估成绩n(分) 评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.答案与解析:1. C2. C3. C 【解析】任意抛掷一次,朝上的面的点数有6种等可能的结果,其中满足|x -4|=2的有2和6两种,所以所求概率为26=13.4. A 【解析】从这5张卡片中,随机抽取3张,不同的抽法有:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,其中抽到的三个数字作为边长能构成三角形的有(2,3,4),(2,4,5),(3,4,5),共3种,则P (能构成三角形)=310.5. B 【解析】∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5种情况,如解图所示,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是513.第5题解图6. 13 【解析】抛一枚质地均匀的正方体骰子,向上的一面有1,2,3,4,5,6这6种均等的结果,其中是3的倍数只有3和6两个,∴P(3的倍数)=26=13.7. 12 【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12.8. 49 【解析】本题主要考查了古典概型中的概率问题.做此类型题目注意放回和不放回的区别,列表或画树状图都可解决此类问题.本题列表如下:红黄 黄由上表可知:4种,所以两次摸出球都是黄球的概率为49.9. 12 【解析】先将各点分别代入反比例函数解析式中,即y =1-1=-1≠1,y =12≠2,y =123=32,y =1-5=-15,所以(23,32),(-5,-15)这两个点在反比例函数y =1x 的图象上,因此,所求的概率为24=12.10. 解:(1)把A(-3,m)代入y =x +2中,得m =-3+2=-1, ∴A(-3,-1),把A(-3,-1)代入y =kx 中,得k =3,∴反比例函数的解析式为y =3x .(2)由题意列表如下:由上可知,共有9与(3,1)两种结果, ∴点M 在反比例函数图象上的概率P =29.11. 解:(1)所有可能的两位数用列表法列举如下表:(2)7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.12. 解:(1)12.(2)画树状图如解图,第12题解图或列表如下:甲 乙4 5 6 7 4 (4,5) (4,6) (4,7) 5 (5,4) (5,6) (5,7) 6(6,4)(6,5)(6,7)7 (7,4) (7,5) (7,6)由树状图或列表法可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:甲 9 9 9 10 10 10 0 0 0 0 0 0 乙109910910(7分)比较甲、乙两人的“最终点数”,可得P (乙获胜)=512.13. 解:(1)由统计图表知,评定为C 等级的有15家,占总评估连锁店数的60%, 则m =15÷60%=25.(2)由题意知B 等级的频数为25-(2+15+6)=2, 则B 等级所在扇形的圆心角大小为 225×360°=28.8°=28°48′. (3)评估成绩不少于80分的为A 、B 两个等级的连锁店.A 等级有两家,分别用A 1、A 2表示;B 等级有两家,分别用B 1、B 2表示,画树状图如下:第13题解图由树状图可知,任选2家共有12种等可能的情况,其中至少有一家是A 等级的情况有10种. 所以,从评估成绩不少于80分的连锁店中任选2家,其中至少有一家是A 等级的概率是P =1012=56.。

2010年江苏中考数学试题(含答案)

2010年江苏中考数学试题(含答案)

二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。

考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。

2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。

3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题2分,共16分。

在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。

(免费)2010年部分省市中考数学试题分类汇编 综合型问题(含答案)

(免费)2010年部分省市中考数学试题分类汇编 综合型问题(含答案)

2010年部分省市中考数学试题分类汇编综合型问题20、(2010年浙江省东阳县)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值; (3)延长BC 至F ,连接FD ,使BDF ∆的面积等于 求EDF ∠的度数.【关键词】圆、相似三角形、三角形函数问题【答案】(1)∵点A 是弧BC 的中点 ∴∠ABC=∠ADB 又∵∠BAE=∠BAE ∴△ABE∽△ABD(2)∵△ABE∽△ABD ∴AB2=2×6=12 ∴AB=23在Rt△ADB中,tan∠ADB=33632=(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形, ∠EDF=60°20.(2010年山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 【关键词】不等式与方程问题 【答案】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········· 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. (2010年安徽省B 卷)23.(本小题满分12分)如图, Rt ABC △内接于O ⊙,AC BC BAC =∠,的平分线AD 与O ⊙交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD G ,是CD 的中点,连结OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =; (3)若3(2OG DE = ,求O ⊙的面积.【关键词】圆 等腰三角形 三角形全等 三角形相似 勾股定理【答案】(1)猜想:OG CD ⊥. 证明:如图,连结OC 、OD . ∵OC OD =,G 是CD 的中点,∴由等腰三角形的性质,有OG CD ⊥.(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. 而∠CAE =∠CBF (同弧所对的圆周角相等). 在Rt △ACE 和Rt △BCF 中, ∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF , ∴Rt △ACE ≌Rt △BCF (ASA ) ∴ AE BF =.(3)解:如图,过点O 作BD 的垂线,垂足为H .则H 为BD 的中点.∴OH =12AD ,即AD =2OH . 又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG . 在Rt △BDE 和Rt △ADB 中, ∵∠DBE =∠DAC =∠BAD , ∴Rt △BDE ∽Rt △ADB∴BD DE AD DB=,即2BD AD DE =·AA∴226(2BD AD DE OG DE ===·· 又BD FD =,∴2BF BD =.∴22424(2BF BD == … ① 设AC x =,则BC x =,.∵AD 是∠BAC 的平分线, ∴FAD BAD ∠=∠.在Rt △ABD 和Rt △AFD 中, ∵∠ADB =∠ADF =90°,AD =AD ,∠F AD =∠BAD , ∴Rt △ABD ≌Rt △AFD (ASA ). ∴AF =AB,BD =FD . ∴CF =AF -AC1)x x -= 在Rt △BCF 中,由勾股定理,得2222221)]2(2BF BC CF x x x =+=+= …②由①、②,得22(224(2x =. ∴212x =.解得x =-.∴AB ===∴⊙O∴π6πO S =⋅2⊙=(2010年安徽省B 卷)24.(本小题满分12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【关键词】二次函数解析式 对称点 相似三角形 三角形面积【答案】(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.把1x =-代入得43y =-∴P 点的坐标为413⎛⎫--⎪⎝⎭, (3)S 存在最大值 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴332OE m =-,连结OPOAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ∵304-<∴当1m =时,34S =最大(2010年福建省晋江市)已知:如图,把矩形OCBA 放置于直角坐标系中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC 的长度后得到DAO ∆.(1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标;②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.【关键词】二次函数、相似三角形、最值问题答案:解:(1)依题意得:⎪⎭⎫ ⎝⎛-2,23D ;(2) ① ∵3=OC ,2=BC , ∴()2,3B .∵抛物线经过原点,∴设抛物线的解析式为bx ax y +=2()0≠a又抛物线经过点()2,3B 与点⎪⎭⎫⎝⎛-2,23D∴⎪⎩⎪⎨⎧=-=+22349,239b a b a 解得:⎪⎪⎩⎪⎪⎨⎧-==32,94b a ∴抛物线的解析式为x x y 32942-=. ∵点P 在抛物线上, ∴设点⎪⎭⎫ ⎝⎛-x x x P 3294,2. 1)若PQO ∆∽DAO ∆,则AO QO DA PQ =, 22332942x xx =-,解得:01=x (舍去)或16512=x ,∴点⎪⎭⎫⎝⎛64153,1651P . 2)若OQP ∆∽DAO ∆,则AO PQ DA OQ =, 23294232xx x -=,解得:01=x (舍去)或292=x ,∴点⎪⎭⎫⎝⎛6,29P . ②存在点T ,使得TO TB -的值最大. 抛物线x x y 32942-=的对称轴为直线43=x ,设抛物线与x 轴的另一个交点为E ,则点⎪⎭⎫⎝⎛0,23E . ∵点O 、点E 关于直线43=x 对称, ∴TE TO =要使得TB TO -的值最大,即是使得TB TE -的值最大,根据三角形两边之差小于第三边可知,当T 、E 、B 三点在同一直线上时,TB TE -的值最大.设过B 、E 两点的直线解析式为b kx y +=()0≠k ,∴⎪⎩⎪⎨⎧=+=+023,23b k b k 解得:⎪⎩⎪⎨⎧-==2,34b k∴直线BE 的解析式为234-=x y . 当43=x 时,124334-=-⨯=y . ∴存在一点⎪⎭⎫⎝⎛-1,43T 使得TO TB -最大.2. (2010年福建省晋江市)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.(2)∵ABC ∆与DEC ∆都是等边三角形∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴BCE DCB DCB ACD ∠+∠=∠+∠ ∴BCE ACD ∠=∠CAB 备用图(1) AB C备用图(2)∴ACD ∆≌BCE ∆()SAS∴BE AD =,∴1=BEAD. (3)①当点D 在线段AM 上(不与点A 重合)时,由(2)可知ACD ∆≌BCE ∆,则︒=∠=∠30CAD CBE ,作BE CH ⊥于点H ,则HQ PQ 2=,连结CQ ,则5=CQ .在CBH Rt ∆中,︒=∠30CBH ,8==AB BC ,则421830sin =⨯=︒⋅=BC CH . 在CHQ Rt ∆中,由勾股定理得:3452222=-=-=CH CQ HQ ,则②当点D 在线段AM 的延长线上时,∵ABC ∆与DEC ∆都是等边三角形 ∴BC AC =,CE CD =,︒=∠=∠60DCE ACB ∴DCB ACB =∠+∠∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴=∠=∠CAD CBE ③当点D 在线段MA ∵ABC ∆与DEC ∆∴BC AC =,CD =∴=∠+∠ACE ACD ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴CAD CBE ∠=∠∵︒=∠30CAM∴︒=∠=∠150CAD CBE ∴︒=∠30CBQ . 同理可得:6=PQ . 综上,PQ 的长是6.1.(2010年浙江省东阳市)如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 。

2010年中考数学真题分类汇编专题十六

2010年中考数学真题分类汇编专题十六

2010年中考数学真题分类汇编专题十六·一次函数的应用一、选择题:本大题共12个小题.每小题4分;共48分.1.的绝对值是()A.B.C.D.2.如图,,点在的延长线上,若,则的度数为()A.B.C.D.3.点关于原点对称的点的坐标是()A.B.C.D.4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A. B. C. D. 15.不等式组的解集用数轴表示为()6.若分式的值为,则的值为(A)A.B.C.D.或7.与如图所示的三视图对应的几何体是( )8.如图,与的边分别相交于两点,且.若,则AC等于().A. 1B.C.D. 29.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC=2,点D的坐标为(2,0),则直线BD的函数表达式为()A. B. C. D.10.如图,已知AD是△ABC的外接圆的直径,AD =13 cm,,则AC的长等于()A.5 cm B.6 cmC.10 cm D.12 c m11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A. 1B. 2C. 3D. 412.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A. 2个B. 3个C. 4个D. 5二、填空题:本大题共5个小题.每小题3分;共15分.13.分解因式: 2x2-18= .14.已知反比例函数的图象在第二、四象限,则取值范围是__________.15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是.宇宙中一块陨石落在地球上,落在陆地的概率是_________16.若,则下列函数①,②,③,④中,的值随的值增大而增大的函数是_______________(填上序号即可)17.如图,已知,点在边上,四边形是矩形.请你只用无刻度的直尺在图中画出的平分线(请保留画图痕迹).三、解答题:7个小题,57分.18.(本小题满分7分)(1)化简(2 )解方程:.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。

初三数学概率试题

初三数学概率试题

初三数学概率试题一、选择题1、下列哪个事件发生的可能性最小? ( )A.通过长期努力学习,小明的成绩有所提高B.明天会有暴风雨C.在太阳上看到一个黑点D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最小的是:B.明天会有暴风雨。

解释:选项A、C、D都是有可能发生的事件,而选项B中的“明天会有暴风雨”不是必然会发生的事件,它只是一种可能发生的情况,因此可能性最小。

2、以下哪个事件发生的可能性最大? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最大的是:C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球。

解释:选项C中,袋子里有10个红球,因此随机抽取一个球,恰好是红球的可能性最大。

而选项A中,找到两片完全相同的叶子是不可能的;选项B中,太阳上看到一个黑点也是不可能的;选项D中,袋子里蓝球的个数少,抽到蓝球的可能性也较小。

因此,选项C发生的可能性最大。

3、下列哪个事件发生的可能性最小? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球发生可能性最小的是:D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球。

解释:选项A中虽然找到两片完全相同的叶子是不可能的,但是这并不是一个随机事件;选项B中太阳上看到一个黑点也是不可能的;选项C中随机抽取一个球恰好是红球的可能性较大;而选项D中随机抽取两个球都是蓝球的可能性非常小。

因此选项D发生的可能性最小。

随着全球的教育改革,数学教育在中考中占据了越来越重要的地位。

2010年中考数学模拟试题分类汇编——阅读、规律、代数式

2010年中考数学模拟试题分类汇编——阅读、规律、代数式

阅读、规律、代数式一、选择题1.(济宁师专附中一模)观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为 ( )表一A .20、29、30B .18、30、26C .18、20、26D .18、30、28 答案:D2. (2010浙江永嘉)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,…,其中第10个式子是 ( ) A .1019ab+ B .1019ab- C .1017ab- D .1021ab-答案:B3.(2010年 中考模拟2)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402) 答案:D表四二、填空题1.(2010年广州中考数学模拟试题一)在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+n.1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k=∑-20071k k =∑+2007!2006!=______.答:02.(2010年河南省南阳市中考模拟数学试题)图中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则y 与n 之间的函数关系是_______.答:y=4n3.(2010年江西省统一考试样卷)如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是______. 答案:16;4.(2010年山东宁阳一模)数学的美无处不在,数学家们研究发现弹拔琴弦发出声音的音调高低取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够成整数的比则发生的声音就比较和谐,如三根弦长之比为15:12:10把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声,do 、mi 、so 研究15,12,10这三个数的倒数发现:121101151121-=-,我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(x >5),则x 的值为________. 答案:15第2题…………5.( 2010年山东菏泽全真模拟1)如图,在一条街道的两边各有1排房子,每排都有5间.如果标号为G 的房子被涂成灰色,要求每一排中相邻的房子不能同色,两排中直接相对的房子也不能是同种颜色,则剩下的7间房子中 有 间的颜色不能被除数涂成灰色.答案:6.6.(2010年吉林中考模拟题)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则图⑨中共有 个正方形.答案:257.(2010年河南中考模拟题3)观察下列各式:21×2=21+2,32×3=32+3,43×4=43+4,54×5=54+5……想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为 . 答案:1n n+×(n+1)=1n n++(n+1)8.(2010年河南中考模拟题1)一组按规律排列的式子:1 3 6 10其中第7个数是 ,第n 个数是 (n 为正整数). 答案:28,()21+n n9.(2010年河南中考模拟题1)将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成ab c d,定义a b cdad bc =-,上述记号就叫做2阶行列式.若1111x x xx +--+6=,则x =__________. 答案:X=1±610.(2010年河南中考模拟题2)电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC 边上的点P 0 ,BP 0=4,第一步跳蚤跳到AC 边上的点P 1 ,CP 1=CP 0;第二步跳蚤从P 1跳到AB 边上的点P 2,且AP 2=AP 1;第三步跳蚤从P 2跳回到BC边上的点P3,且BP3=BP2;……跳蚤按上述规定跳下去,第2009次落点为P 2009,则点P 2009与点A 之间的距离为 。

中考数学试题-概率试题及答案

中考数学试题-概率试题及答案

中考试题专题之29-概率试题及答案一、选择题 1、(呼和浩特)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A .13B .16C .12D .14【关键词】列举法,树形图 【答案】 2、(青海)将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为a b c 、、,则a b c 、、正好是直角三角形三边长的概率是( ) A .1216B .172C .112D .136概率的应用 【关键词】 【答案】D 3、(黄石市)为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是( ) A .35B .25C .45D .15【关键词】频率估计概率;概率的应用 【答案】A一、填空题1、(枣庄市)13.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是 . 【关键词】概率 【答案】2、(佳木斯)甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中。

随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏 (填“公平”或“不公平”)3、(赤峰市)如右图,是由四个直角边分别是3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是4、(青海)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 个. 【关键词】概率综合题13【答案】245、(龙岩)在3 □2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.【关键词】概率的应用【答案】.6、(广东省)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n __________.【关键词】概率的应用;解分式方程【答案】87、(邵阳市)晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010中考数学试题分类汇编--概率(2010哈尔滨)1。

一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全相同•搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是().C11 1 3(A)(B)(C)(D )—8 6 4 4(2010珠海)中央电视台举办的第14届“蓝色经典•天之蓝”杯青年歌手大奖赛,由部队文工团的 A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的 D (解放军)和地方文工团的 E (云南)、F (新疆)组成非种子队•现从种子队A B、C与非种子队 D E、F中各抽取一个队进行首场比赛•(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A B C、D、E、F表示);⑵求首场比赛出场的两个队都是部队文工团的概率P.解:(1)由题意画树状图如下:D E F D E F D E F所有可能情况是:(A,D)、(A,E)、(A,F)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)(2)所有可能出场的等可能性结果有9个,其中首场比赛出场两个队都是部队文工团的结果有3个,3 1所以P(两个队都是部队文工团)=9 320.(本小题满分8分)现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢•这个游戏规则对双方公平吗?请利用树状图或列表法说明理由解:树状图如下图:或列表如下表:、、妹妹234姐姐111X仁1 1 X 2=2 1 X 3=3 1 X 4=4(2010红河自治州)33X 1=3 3 X 2=63X 3=93X 4=12由上述树状图或表格知1:所有可能出现的结果共有 16种.P (姐姐赢)=12 341P (妹妹赢)=—16 416 4所以此游戏对双方不公平,姐姐赢的可能性大(2010年镇江市)15 •有A , B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了 “细”、“致”的字样,B 袋中的两只球上分别写了 “信”、“心”的字样,从每只口袋里 各摸出一只球,刚好能组成“细心”字样的概率是(B )1123A • -B • -C .D •-3434(2010遵义市)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是 一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂 上阴影,能构成这个正方体的表面展开图的概率是4 3 2 1 A ・E ・C ・D ・ —7777答案:A(2010台州市)6.下列说法中正确的是数据1, 1 , 2, 2, 3的众数是3;D •想了解台州市城镇居民人均年收入水平,宜采用抽样调查. 答案:D(2010 遵义市)21 • ( 8分)在一个不透明的盒子里,装有三个分别写有数字 -1、0、1的乒乓球(形状、大小 一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取 出一个乒乓球,记下数字•(1) 请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率; (2) 求两次取出乒乓球上的数字之积等于 0的概率.解:(1)树状图为: 开始第一次/l\ /K 第二次-1 o I -I a 1共9种情况,两次数字相同的有 3种.3 1P (两次数字相同)=——9 3(▲)“打开电视,正在播放《新闻联播》1 ”是必然事件;某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖; 100 (6题图)DE F(2) (2分)数字之积为0有5种情况,5•P (两数之积为0 )=-9(玉溪市2010) 21 •阅读对话,解答问题.(1)分别用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出( a ,b )的所有取值;31•-P (_0)花蔦2010) 9.下列说法正确的是( D 买一张福利彩票一定中奖,是必然事件. 买一张福利彩票一定中奖,是不可能事件.抛掷一个正方体骰子,点数为奇数的概率是 一组数据:1 , 7 3, 5, 3的众数是3.(2010年无锡)21.(本题满分6分)小刚参观上海世博会,由于仅有一天的时间,他上午从 A —中国馆、B —日本馆、C —美国馆中任意选择一处参观,下午从 D —韩国馆、E —英国馆、F —德国馆中任意选择一处参观•本试卷由无锡市天一实验学校金杨建录制(1)(2) 答案解:求在(a ,b )中使关于 x 的一元二次方程x -ax 2^0有实数根的概率.解: (1) (a,b )对应的表格为:a b1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1) (3,2) (3,3) 4(4,1)(4,2)(4,3)(2)有实数根,•••使 a 2-8b > 0 的(a,b )有(3,1), (4,1) ,(4,2).).10分(桂林 A . B .D —韩国馆、EQQ : 623300747 .转载请注明! 请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可) 求小刚上午和下午恰好都参观亚洲国家展馆的概率. (1)树状图:25(树状图或列表正确) ............................... (3分)•••小刚所有可能选择参观的方式有: (A , D ), (A , E ), (A , F ), ( B , D ),( B , E ) , ( B , F ) , ( C , D ), (C ,E ), (C , F ). ............ ( 4 分)(2)小刚上午和下午都选择参观亚洲国家展馆的可能有(A , D ), (B , D )两种, 2•小刚上午和下午恰好都参观亚洲国家展馆的概率=- .................... (6分)9(2010年兰州)23.(本题满分6分)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥 两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1, 2,3, 5的四张牌给小莉,将数字为 4, 6, 7, 8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从 各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为 奇数,则哥哥去.(1 )请用数状图或列表的方法求小莉去上海看世博会的概率;(2 )哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则......................... 2分_ 3和为偶数的概率为168所以小莉去上海看世博会的概率为公平的.(2010年连云港)13.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为 _______________9答案—23.(本题满分6分)(1) 所有可能的结果如有表:一共有16种结果,每种结果出现的 可能性相同.⑵由(1)列表的结果可知:小莉去的概率为 不公平,对哥哥有利. 游戏规则改为:若和为偶数则小莉得 5 分, 8,哥哥去的概率为 8,所以游戏 .................................................. 4分 若和为奇数则哥哥得 3分,则游戏是 答案(2010年连云港)21.(本题满分8分)从甲地到乙地有A2两条路线,从乙地到丙地有B i、三条路线,从丙地到丁地有C i、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少?答案用树状图分析如下:B2、B3MGAiBiCjA i ByCix j t'j心EGAACy■ d ■4 1 1所以P(选到B2的路线)=一= 答:他恰好选到坐B2路线的概率是-12 3 3(2010宁波市)7 .从1〜9这九个自然数中作任取一个,是2的倍数的概率是BC. 4 55. (2010年金华)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为(▲)C6页,B.1C.-D.—1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张•求抽出的两张 纸片上的数字之积小于 6的概率. 11 解:(1) 4 116或16. (2010年怀化市)在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别标有 5这5个数字,从中任摸一个球,球面数字是奇数的概率是 _____________ .3 答案:3516. (2010年郴州市)小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球 3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在 0.7附近波动,据此可以估计黑球的个数约是 ___________ .答案:210014. (2010年济宁市)某校举行以“保护环境,从我做起”为主题的演讲比赛•经预赛,七、八年级各有名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是_.1答案:1621. ( 2010湖北省咸宁市) 某联欢会上有一个有奖游戏,规则如下:有 5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸 就有奖,没有笑脸就没有奖.(1 )小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是 ________ .(2 )小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞 同他的观点吗?请用树形图或列表法进行分析说明. 221 . ( 1) (或填 0.4).••••5(2) P (小于 6)=8163分B 1、1、 2、 3、 4、(用树状图或列表法求解)4 2 4124634或用列表法2 3 8 122694 12(2)解:不赞同他的观点. 用A1、A2分别代表两张笑脸,B2B3分别代表三张哭脸,根据题意列表如下:、(也可画树形图表示)由表格可以看出,可能的结果有20种,其中得奖的结果有14种,因此小明得奖的概率 147 2因为1- < 5 2,所以小明得奖的概率不是小芳的两倍• (2010年眉山)8.下列说法不正确的是A •某种彩票中奖的概率是 —,买1000张该种彩票一定会中奖1000 B •了解一批电视机的使用寿命适合用抽样调查C •若甲组数据的标准差 S 甲=0.31,乙组数据的标准差 S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 答案:A(2010年眉山)22.有一个不透明口袋,装有分别标有数字1, 2, 3, 4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1, 2, 3的卡片.小敏从口袋中任意摸出一个小球,小颖从这 3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1) 请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2) 小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢•你认为该游 戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.答案:22.解:(1)列表如下:总结果有12种,其中积为6的有2种,p (积为 6)=— 12游戏规则可改为:若积为 3的倍数,小敏赢,否则,小颖赢. ............ (8 分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分. (2010年成都)23•有背面完全相同,正面上分别标有两个连续自然数k,k 1 (其中k =0,1,2」||,19 )的卡片20张•小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的 各位数字之和(例如:若取到标有 9, 10的卡片,则卡片上两个数的各位数字之和为 9 1 ^10)不小于14的概率为 ___________________ .1答案:丄4北京5•从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出20 10 (4分)(2)游戏不公平,因为积为偶数的有 8种情况,而积为奇数的有 4种情况.(6分)13 11 的数是3的倍数的概率是 (A ) - (B ) (C ) - (D ) 5 10 3 2毕节15.在盒子里放有三张分别写有整式a 1、a 2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是 (B ).12 13 A.B.C. D.-3364毕节25.(本题12分)阅读对人成长的影响是很大的•希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图•请你根据统计图表提供的信息解答下列问题: (1 )这次随机调查了 _________ 名学生;(3分) (2) 把统计表和条形统计图补充完整; (6分)(3) 随机调查一名学生,恰好是最喜欢文学类图书的概率是多少?(3分)25. (1) 300; 3 分2) 9分(3) 0.32.12 分16. (10湖南怀化)在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别标有3这5个数字,从中任摸一个球,球面数字是奇数的概率是 ___________ .-522. (10重庆潼南县)清明节”前夕,我县某校决定从八年级(一)班、 (二)班中选一个班去杨闇公烈士 陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质种类频率科普0.15岩术文学0.59具他81种类频率科警450 150 26文学960 591、2、3、4、5地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.(1)解:法一:(2)公平•理由为:P(和为偶数)=—=-。

相关文档
最新文档