第一章化工原理.

合集下载

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

化工原理第一章流体流动

化工原理第一章流体流动
x y轴 p 0(3)
y
(ppdz)dxdy z
Z轴方向上力的平衡有:
pdxdy ( p p dz)dxdy gdxdydz 0
z
即: p dxdydz gdxdydz 0
z
即: p g 0 (1)
z
pdxdy,
Z轴方向上力的平衡有:
大小相等,方向相反的压力。
(2)作用于静止流体内部任意点上所有不同方位的
静压强在数值上相等。
3、压强的不同单位表示法及其之间的换算关系
(1)SI制中,压强的单位Pa,帕斯卡;N/m2 (2)习惯上:atm(标准大气压),某流体柱高度(米), bar(巴),kgf/cm2等 1atm=101.325kPa=1.033kgf/ cm2 =1.01325bar =760mmHg=10.33m=1.01325105Pa
注:101.325kPa是北纬45度海平面,15°C的测定值
工程上:为了适用和换算方便,常将1 kgf/ cm2称为 1个工程大气压,即1at=1 kgf/ cm2 =735.6mmHg=10mH2O=0.9807bar=9.807 104Pa
4.不同的方法表示的压强
(1) 绝对压强:以绝对零压作起点计算的压强, 称为绝对压强,它是流体的真实压强。 (2) 表压强:压强表上的读数,表示被测流 体的绝对压强比大气压高出的数值,称为表压强。
何空隙。 即认为流体充满其所占的空间,从而把流体视 为
连续介质,这样就摆脱了复杂的分子运动,从宏 观角度来研究流体的流动规律。 注意:在高度真空下的气体,就不能再视为连续 介质。
第一节 流体静力学基本方程式
流体静力学:研究流体在外力作用下达到

平衡的规律。

化工原理第一章主要内容

化工原理第一章主要内容

Δp f
=
32μlu d2
哈根(Hagen)-泊谡叶(Poiseuille)方程
(三)圆管内湍流流动的速度分布
1
u
=
umax
⎜⎛1 ⎝

r R
⎟⎞ n ⎠
um = 0.82umax
四、边界层的概念
(一)边界层及其形成 边界层: 流速小于主体流速的 99%的区域 。 (二)边界层的发展 1、流体在平板上的流动 2、流体在圆形直管进口段内的流动 3、边界层的分离 边界层分离的两个必要因素: 逆压梯度 dp/dx >0 ; 壁面附近存在粘性摩擦阻力 边界层分离易发生在流体通道扩大处
管进口ξ=0.5
定义:将局部阻力折算成某一长度相同直径直管所产生的阻力,该相当长度称为当量长度。
w' = λ le ⋅ u2
f
d2
h' = λ le ⋅ u2 f d 2g
Δp' = λ le ⋅ ρu2
f
d2
le 为当量长度
六、管路流动总阻力损失的计算
总阻力损失 = 直管阻力 + 局部阻力 不同管径段组成的管路总阻力损失应将各等径段的阻力损失加和
τ = (μ + ε ) du dy
第四节 管内流动的阻力损失
流体具有粘性——流动阻力产生的根源(内因)
管壁或其他形状的固体壁面——流动阻力产生的条件(外因)
管路阻力:直管阻力+局部阻力
Σhf=hf+hf’
阻力的几种表达形式及之间的相互关系:
Wf:单位质量流体所损失的机械能,J/kg ;hf:单位重量流体所损失的机械能 ,m
ρm = ρ1ϕ1 + ρ2ϕ2 + ...... + ρnϕn

化工原理第一章(流体的流动现象)

化工原理第一章(流体的流动现象)

ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。

化工原理第一章第一节

化工原理第一章第一节
解:忽略吹气管出口端到U 型管两侧的气体流动阻 力造成的压强差,则:
pap 1, pbp2
p a 油 g H 1 h 水 g H h (表)
pb 油gH1 (表)
p1p2 Hg gR
油 g h 水 g H h H g gR
h 水HHgR 水油
10 01.001360.0067 10 08020
——流体阻力产生的依据
F u A y
F u A
y
剪应力:单位面积上的内摩擦力,以τ表示。
F u A y
适用于u与y成直线关系
du
dy
——牛顿黏性定律
式中:
du : 速度梯度 dy
:比例系数,它的值随流体的不同而不同,流
体的黏性愈大,其值愈大,称为黏性系数或动力黏度,简 称黏度。
1 80k0g/m ,3 水层高度h2=0.6m,密度为 2 100k0g/3m
1)判断下列两关系是否成立
pA=pA’,pB=pB’。
2)计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同一水平面上
pA pA'
因B,B’虽在同一水平面上,但不是连通着的同一种液
根据流体静力学方程可以导出:
p 1p 2A C gR
——微差压差计两点间压差计算公式
例:用3种压差计测量气体的微小压差
p10P0a
试问:1)用普通压差计,以苯为指示液,其读数R为多少?
2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? 3)若用微差压差计,其中加入苯和水两种指示液,扩大 室截面积远远大于U型管截面积,此时读数R〃为多少? R〃为R的多少倍?
1.1.2 流体的压缩性

化工原理第一章 流体流动

化工原理第一章 流体流动

§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m

xwA
A

xwB
B

xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体

化工原理第一章_流体流动


非标准状态下气体的密度: 混合气体的密度,可用平均摩尔质量Mm代替M。 式中yi ---各组分的摩尔分数(体积分数或压强分数)
比体积
• 单位质量流体的体积称为流体的比体积,用v表示, 单位:m3/kg
• v=V/m=1/ρ
5 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简 称压强。流体的压强具有点特性。工程上习惯上将压强 称之为压力。
R
a
b
0
2. 倒置 U 型管压差计
用于测量液体的压差,指示剂密度 0 小于被测液体密度 , U 型管内位于同 一水平面上的 a、b 两点在相连通的同一 静止流体内,两点处静压强相等
p1 p2 R 0 g
由指示液高度差 R 计算压差
若 >>0
p1 p2 Rg
0
a
b
R
p1 p2
3. 微差压差计
p1 p2 R 01 02 g
对一定的压差 p,R 值的大小与 所用的指示剂密度有关,密度差越小, R 值就越大,读数精度也越高。
p1 p2
02
a
b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液柱高度 , 控制器内压力不变或者防止气体泄漏。
为了控制器内气体压力不超过给定的数值,常常使用安全液 封装置(或称水封装置),其目的是确保设备的安全,若气体压 力超过给定值,气体则从液封装置排出。
传递定律(巴斯葛原理):当液面上方有变化时,必 将引起液体内部各点压力发生同样大小的变化。
液面上方的压强大小相等地传遍整个液体。
静力学基本方程式的应用
1.普通 U 型管压差计
U 型管内位于同一水平面上 的 a、b 两点在相连通的同一静 止流体内,两点处静压强相等

化工原理第一章(管内流体流动的基本方程式)

1 2 3a
附图
2011-10-25
3b
解: 管1的内径为 则水在管1中的流速为:
d1 = 89 − 2× 4 = 81m m
4qV 9×10−3 u1 = 2 = = 1.75m /s 2 πd1 0.785× 0.081
管2的内径为:
d2 = 108 − 2× 4 = 100m m
则水在管2中的流速为:
d1 2 81 2 u2 = u1 ( ) = 1.75× ( ) = 1.15m /s d2 100
2011-10-25
管3a及3b的内径为:
d3 = 57 − 2×3.5 = 50m m
又水在分支管路3a、3b中的流量相等,则有:
u2 A2 = 2u3 A3
即水在管3a和3b中的流速为:
u2 d2 2 1.15 100 2 u3 = ( ) = ( ) = 2.30m /s 2 d3 2 50
2011-10-25
流体在截面处所具有的压力
F = pA
流体通过截面所走的距离为
V = 流体通过截面的静压能 = Fl pA⋅ = pV (J ) A V = pv(J / kg) 单位质量流体所具有的静压能 = p m
单位质量流体本身所具有的总能量为 :
l =V / A
1 2 U + gz + u + pv(J / kg) 2
qm qV ρ w= = = uρ A A
2011-10-25
流量与流速的关系为:
qV=uA qm=uAρ
质量流速:单位时间内流体流过管道单位面积的质量流量 用w表示,单位为kg/(m2.s)。 数学表达式为: = qm w 对于圆形管道,
qV ρ = = uρ A A

化工原理总结(第一章)ppt课件


)hf
u2
.
(3)de4 润 流 湿 通 周 截 边 面 长 积、uqAv A A: 真 4 1实 d面 e2 积
圆形套管的环隙:de d2d1
.
l le)u2
d
2
le d
( 1 ) 管 管 进 出 口 口 : : 外 外 侧 侧 1 0 .5 u 2 u 1 0 、 0 、 内 内 侧 侧 0 0 u u 1 2 u u
Re2000层流=6R4ehf u
(2)Re
du
Re4000湍流一 完般 全湍 湍流 流 =fRd(ed
③有效功率: Pe、 轴功率: P
pf hf gHf
WgH、Pe
qmW、
.
Pe P
④应用要点: •确定上、下游截面及截面的选取; •位能基准面的选取; •单位的选取:即压力应同为绝压或表压; •外加能量(泵):W(J/kg)、Pe=qmW、η=Pe/P;
.
6、阻力损失
h fhf h , f (
第一章 流体流动
1、流体定义: 由无数流体质点所组成的连续介质
2、流体参数
① 流体的静压强
p P A
单位:N/m2或Pa、atm、mmHg、mH2O或
以流体柱高度表示 p gh
基准:P表 = P绝 -P大、P真=P大-P绝 = - P表
.
② 密度
(1)流体的密度: m f (p,T)
V
(2)气体的密度:
A A1 2 dd1 22
.
5、流体的机械能衡算式:
z1g12u12
p1
Wz2g12u22
p2
hf
(J/kg)
z121gu12 pg1 Hz221gu22pg2 Hf (J/N=m)

化工原理第一章流体力学


反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:质量守恒;m1=m2(ρ1A1u1= ρ1A1u1 ),质量流量
二、选择题 1.流体在圆管内流动时,若为湍流时,平均流速与管中心的最大流速的关 系为( ) A. Um=1/2 • Umax B. Um=0.8 • Umax C. Um=3/2 • Umax
答案:B
2.为提高微差压强计的测量精度,要求指示液的密度差( )。 A. 大 B. 中等 C. 越小越好 D. 越大越好
答案: 64/Re; Re; ε/d
13.孔板流量计和转子流量计的最主要区别在于:前者是恒_____,变_____; 后者是恒_________,变_________。
答案:截面;压差;压差;截面
14.若流体在圆形直管中作层流流动,其速度分布呈_______型曲线,其管 中心最大流速是平均流速的____倍,摩擦系数λ与Re的关系为_________。
答案:层流内层
20.液体在等直径的管中作稳态流动,其流速沿管长______,由于有摩擦 阻力损失,静压强沿管长_______。
答案:不变; 降低
21.稳态流动是指流动系统中,任一截面上流体的流速、压强、密度等物 理量仅随_____________________。
答案:位置而变,而均不随时间变。
22. 连续性方程是根据______定律得出的,其表达式_______,连续性方 程表明了在稳态流动系统中,流体流经各截面的_______不变。
答案:抛物线; 2倍; λ=64/Re
15.流体做层流流动时,管内平均流速是最大流速的____倍,湍流时,管内 平均流速是最大流速的______倍。
答案: 0.5; 约0.8
16.流体在管路中作连续稳态流动时,任意两截面流速与管径的关系为 ______________,所以,流速随着管径的减小而________。
答案:没有粘性、没有摩擦阻力、液体不可压缩;具有粘性、有摩擦力、液体可压缩
5.牛顿粘性定律表达式为______________,其比例系数 (粘度) 的物理 意义是_____________________。
答案:τ=F/A=μdu/dy;在单位接触面积上,速度梯度为1时,流体层间的内摩擦力。
6. 流体流动的型态用_____来判断,当________时为湍流,当________时为层 流,当______时为过渡流。
答案:u1/u2=d22 /d12 答案:流体具有粘性 增大
17.流体流动时产生摩擦阻力的根本原因是__________________。 18.化工中的“三传以反”指的是_______、 ______、_______、 _______ 。
答案.动量传递、热量传递、质量传递、化学反应
19.流体沿壁面流动时,有显著速度梯度的区域称为_____________。
答案:减少, 减少, 增加。
9.粘度随温度变化而变化,液体的粘度随温度升高而________,气体的 粘度则随温度升高而________。
答案: 减少 增大
10. U形管压强计是基于_________原理的测压装置,用U形管压强计测压 时,当压强计一端与大气相通时,读数R表示的是________或________。
答案:C
3. 一个工程大气压等于( )Pa,( )Kgf.cm-2。 A. 1.013×105 B. 9.8×104 C. 1 D. 1.5
答案:B; C
4. 转子流量计的主要特点是( )。 A. 恒截面、恒压差; B. 变截面、变压差; C. 变截面、恒压差; D. 变流速、恒压差。
答案:C
5.层流与湍流的本质区别是( )。 A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流无径向脉动,而湍流有径向脉动
答案:D
8.表压与大气压、绝对压间的关系是( )。 A. 表压=绝对压-大气压 B. 表压=大气压-绝对压 C. 表压=绝对压+真空度
答案:A
9.设备内的真空度愈高,即说明设备内的绝对压强( )。 A. 愈大 B. 愈小 C. 愈接近大气压
答案: 800; -50
3.计算流体局部阻力损失的方法:___________,____________,其相应 的阻力损失计算公式为__________,_________。
答案:当量长度法; 阻力系数法; hf =λ(le/d)(u2/2g); hf =ζ(u2/2g)
4.理想流体是指_____________,而实际流体是指_____________。
答案:流体静力学; 表压; 真空度
11.应用柏努利方程所选取的截面所必须具备的条件是:___________。
答案:处于稳定段, 连续, 垂直于流体流动方向, 流体平行流动
12.若Re值已知时,则流体在圆形管内呈层流时的摩擦系数λ=________, 在管内呈湍流时,摩擦系数λ与_______、_______有关。
答案:C
6.圆管内流动流体湍流时的雷诺准数值应为( ) A. Re<2000 B. Re>4000 C. Re=2000~4000
答案:B
7.流体在管路中作稳态流动时,具有( )的特点。 A. 呈平缓的滞流 B. 呈匀速运动 C. 在任何截面处流速、流量、压强等物理参数都相等; D. 任一截面处的流速、流量、压______型流体,牛顿粘性定律用内摩擦力的 表达式为_____________, 用剪应力的表达式为____________。
答案:牛顿; F=Aτ=Aμdu/dy; τ=μdu/dy;
2.当地大气压为750mmHg时,测得某体系的表压为50mmHg,则该体 系的绝对压强为_________mmHg,真空度为_______mmHg.
答案:雷诺准数,Re≥4000,Re≤2000,Re在2000-4000之间。
7.化工生产中,物料衡算的理论依据是_________,热量衡算的理论基础 是___________。
答案:质量守恒定律, 能量守恒定律。
8.当流体的体积流量一定时,流动截面扩大,则流速__________,动压 头___________,静压头___________。
相关文档
最新文档