第8讲_自然语言的熵

合集下载

最大熵模型与自然语言处理MaxEntModelNLP 94页PPT文档

最大熵模型与自然语言处理MaxEntModelNLP 94页PPT文档
与Y的具体内容无关,只与|Y|有关。 • 两个Y(就是:y1y2)的表达能力是多少? • y况1可。以两表个达并三列种,情一况共,有y:2可3*以3表=9达种三情种况情
(乘法原理)。因此:
H y1H y2H (Y)H (Y)H (Y Y)
注 YY : Y
称硬币(cont.)
称硬币-Version.2
《数据结构》:Huffman编码问题。
1
2
3
4
5
1/3 1/3 1/9
1/9
1/9
称硬币-Version.2
《数据结构》:Huffman编码问题。
3?5 1/3
1
2
3
4
5
1/3 1/3 1/9
1/9
1/9
称硬币-Version.2
《数据结构》:Huffman编码问题。
p(x1)p(x2)1
已知:
4
p( yi ) 1
i 1
“学习”可能是动词,也可能是名词。可以被标为主语、 谓语、宾语、定语……
“学习”被标为定语的可能性很小,只有0.05p(y4)0.05
当“学习”被标作动词的时候,它被标作谓语的概率为
引0.9入5这个新的知识: p(y2|x1)0.95
求:y4

NLP与随机过程
yi可能有多种取值,yi被标注为a的概率有多少? 随机过程:一个随机变量的序列。
x1x2…xn x1x2…xn y1 x1x2…xn y1 y2 x1x2…xn y1 y2 y3 …
p(y1=a|x1x2…xn) p(y2=a|x1x2…xn y1) p(y3=a|x1x2…xn y1 y2) p(y4=a|x1x2…xn y1 y2 y3)

熵的起源历史和发展

熵的起源历史和发展

熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯Rudolf Clausius, 1822 –1888在提出了热力学第二定律后不久,首次从宏观上提出了熵Entropy的概念.Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”另有一说译为“转变”,表示热转变为功的能力.在中国被胡刚复教授一说为清华刘先洲教授译为“熵”,因为熵是Q除以T温度的商数.他发表了力学的热理论的主要方程之便于应用的形式一文,在文中明确表达了“熵”的概念式——dS=dQ/T.熵是物质的状态函数,即状态一定时,物质的熵值也一定.也可以说熵变只和物质的初末状态有关.克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.,此即熵增加原理.克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0.在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少.但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态.热寂说至今仍引发了大量争论,没有得到证明.二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究.1872年奥地利科学家玻尔兹曼L. E. Boltzmann首次对熵给予微观的解释,他认为:在大量微粒分子、原子、离子等所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度The degree of randomness or disorder in a thermodynamic system..这也称为是熵的统计学定义.玻尔兹曼提出了着名的玻尔兹曼熵公式S=klnΩ,k=×10^-23 J/K,被称为玻尔兹曼常数;Ω则为该宏观状态中所包含之微观状态数量,或者说是宏观态出现的概率,一般叫做热力学概率.玻尔兹曼原理指出系统中的微观特性Ω与其热力学特性S的关系,后来这个伟大的等式被刻在他的墓碑上.三、熵的应用自从Clausius提出熵的概念以来,它在热学界发挥的作用有目共睹.提及这个概念,我们往往把它与热力学定律,熵增原理,卡诺循环等联系在一起,除了热学之外,从它的宏观、微观意义出发,它还被抽象地应用到信息、生物、农业、工业、经济等领域,提出了广义熵的概念.熵在其他领域中的应用在此不再赘述,下面仅在热学领域对熵进行一个基本的探讨.一、熵的定义Definition1.宏观:宏观上来说,熵是系统热量变化与系统温度的商.Amacroscopic relationship between heat flow into a system and the system's change in temperature.这个定义写成数学关系是:dS是系统的熵变, δq是系统增加的热量,仅在可逆过程成立,T是温度.注:对于可逆过程,等号成立;对于不可逆过程,大于号成立;所有自发过程都是不可逆过程.2.微观:微观上说,熵是一个系统宏观态对应的相应微观态的数目热力学概率的自然对数与玻尔兹曼常量的乘积.On a microscopic level, as the natural logarithm of the number of microstates of a system.数学表达如下:S是熵,kB是玻尔兹曼常量, Ω微观态的数目热力学概率.二熵的相关定义1.比熵:在工程热力学中,单位质量工质的熵,称为比熵.表达式为δq=Tds, s称为比熵,单位为J/ kg·K 或 kJ/ kg·K.2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变.定义式为:.熵流可正可负,视热流方向而定.3.熵产:纯粹由不可逆因素引起的熵的增加,定义式为:.熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程.熵产是不可逆程度的度量.三熵和热力学第二定律1.热力学第二定律的三种表述:1克劳修斯描述Clausius statement:不可能将热从低温物体传至高温物体而不引起其它变化.It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body.2开尔文描述Kelvin statement:不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响.It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.3熵增原理principle of entropy increase:孤立热力系所发生的不可逆微变化过程中,熵的变化量永远大于系统从热源吸收的热量与热源的热力学温度之比;也可以说成,一个孤立的系统的熵永远不会减少.The second law of thermodynamics states that the entropy of an isolated system never decreases, because isolated systems always evolve toward thermodynamic equilibrium— a state depending on the maximum entropy.2.熵增原理:根据这一原理,我们得到了对于孤立体系的熵判据:ΔS 孤>0 自发ΔS 孤=0 平衡ΔS 孤<0 非自发利用熵判据能够对孤立体系中发生的过程的方向和限度进行判别.如:把氮气和氧气于一个容器内进行混合,体系的混乱程度增大,熵值增加即ΔS>0,是一个自发进行的过程;相反,欲使该气体混合物再分离为N2 和O2,则混乱度要降低,熵值减小ΔS<0,在孤立体系中是不可能的.当然,若环境对体系做功,如利用加压降温液化分离的方法可把此混合气体再分离为O2 和N2,但此时体系与环境之间发生了能量交换,故已不是孤立体系了.四熵的性质1.非负性:SnP1,P2,…,Pn≥0;2.可加性:熵是一个状态函数,对于相互独立的状态,其熵的和等于和的熵;3.极值性:当状态为等概率的时候,即pi=1/n,i==1,2,…,n其熵最大,有SnP1,P2,…,Pn≤Sn1/n,1/n,…,1/n=㏑n;4.影响熵值的因素:①同一物质:S高温>S低温,S低压>S高压;Sg>Sl>Ss;②相同条件下的不同物质:分子结构越复杂,熵值越大;③S混合物>MS纯净物;④对于化学反应,由固态物质变成液态物质或由液态物质变成气态物质或气体物质的量增加的反应,熵值增加.5.对于纯物质的晶体,在热力学零度时,熵为零.热力学第三定律6.系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少.In a physical system, entropy provides a measure of the amount of thermal energy that cannot be used to do work.四、参考资料Reference工程热力学第三版高等教育出版社;现代化学基础清华大学出版社;薛凤佳熵概念的建立和发展;李嘉亮,刘静玻尔兹曼熵和克劳修斯熵的关系;顾豪爽熵及其物理意义;熵——百度百科;Introduction to entropy, From Wikipedia, the free encyclopedia;A History of Thermodynamics——Springer。

熵的概念和本质特征

熵的概念和本质特征

熵的概念和本质特征嘿,朋友,今天咱们来聊聊一个特别神奇又有点烧脑的概念——熵。

你可能一听这个词就觉得有点懵,啥是熵呀?这就像是突然有人跟你说一个来自外太空的神秘词汇一样。

不过别担心,跟着我,咱们一点点把这个神秘的面纱揭开。

我有个朋友,叫小李。

有一次我们一起整理他那超级乱的房间。

他的房间简直就像被龙卷风席卷过一样,衣服到处扔,书桌上各种东西堆得乱七八糟。

我就跟他说:“你这房间的熵可太高了。

”他一脸疑惑地看着我,就像我在说外星语似的。

我就跟他解释,熵啊,在这种情况下就像是混乱的程度。

你看你这房间,东西毫无秩序,熵就很大。

从科学的角度来说,熵最早是在热力学里被提出来的。

想象一下,你有一杯热茶放在桌上。

刚开始的时候,这杯茶是很热的,它的热量集中在这杯茶里,这时候它的熵比较低。

为啥呢?因为它的能量状态比较有序。

可是随着时间推移,这杯茶的热量会慢慢散发到周围的空气中。

最后,茶凉了,热量均匀地分布在茶和周围的空气里了。

这个时候,整个系统(茶和周围空气)的熵就增加了。

就好比一群小朋友在操场上排队做早操,刚开始排得整整齐齐的,这时候就像低熵状态。

后来下课了,小朋友们到处跑,分散在整个操场,变得混乱无序了,这就类似熵增加了。

那熵的本质特征到底是啥呢?我觉得啊,熵就像是一个宇宙的“混乱管理员”。

它总是倾向于让事物变得更加混乱无序。

你看大自然里,水总是从高处往低处流。

山上的石头,随着时间的推移,可能会因为风化、地震等原因滚落下来,然后散落在各处。

这都是熵在起作用。

我记得我在大学里上物理课的时候,老师给我们讲过一个有趣的例子。

他说有个封闭的盒子,中间有个隔板,一边装着氧气分子,另一边装着氮气分子。

当把隔板拿掉的时候,你猜怎么着?这些分子就开始自由地跑来跑去,最后混合得乱七八糟的。

这就是熵增加的过程。

如果说分子们都乖乖地待在自己原来的那一边,那就是低熵状态,可是它们才不会那么听话呢,就像调皮的小孩子一样,总是要到处跑,让整个系统变得混乱。

信息论第二章

信息论第二章

集合X中,包含该信源包含的所有可能输出 的消息,集合P中包含对应消息的概率密度,各 个消息的输出概率总和应该为1。 例:天气预报
第一节 信源的数学模型及分类 2、连续信源 数学,模型如下:
离散信源的进一步分类
发出单个符号的无记忆信源 离散无记忆信源指信源每次只发出 发出符号序列的无记忆信源 离散信源 一个符号 代表一 发出符号序列的有记忆信源 个消息. 离散有记忆信源 发出符号序列的马儿可夫信源
H( p1, p2 ,..., pq ) H(1/ q,1/ q,...,1/ q) log q
上式表明,对于具有q个符号的离散信源,只有在q 个信源符号等可能出现的情况下,信源熵才能达到最 大值,这也表明等概分布的信源的平均不确定性最大, 这是一个很重要得结论,称为最大离散熵定理 例:对于一个二元信源 H(X)=H(1/2,1/2)=log2=1bit
H ( X 2 ) 2H ( X )
第五节 离散平稳信源 1、离散平稳信源的数学定义 一般来说,信源的前后消息之间有前后依赖关系, 可以用随机矢量描述:
第五节 离散平稳信源 2、二维平稳信源及其信息熵 最简单的平稳信源——二维平稳信源,信源发出序列 中只有前后两个符号间有依赖关系,我们可以对其二维 扩展信源进行分析。 信源的概率空间:
n
n是指发出在时间和幅度上都是离散分布的
离散信源 连续信源
符号都是离散消息。 是指发出在时间和幅度上都是连续分布的 连续消息(模拟消息)的信源,如语言、 图像、图形等都是连续消息。
n
第一节 信源的数学模型及分类 1、离散信源
信源种类 离散信源 (数字信源) 连续信号 举例 文字、数据、 离散化图象 数学描述 离散随机变量序列

熵的起源、历史和发展

熵的起源、历史和发展

熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius, 1822 – 1888)在提出了热力学第二定律后不久,首次从宏观上提出了熵(Entropy)的概念。

Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”(另有一说译为“转变”,表示热转变为功的能力)。

在中国被胡刚复教授(一说为清华刘先洲教授)译为“熵”,因为熵是Q除以T(温度)的商数。

他发表了《力学的热理论的主要方程之便于应用的形式》一文,在文中明确表达了“熵”的概念式——dS=(dQ/T)。

熵是物质的状态函数,即状态一定时,物质的熵值也一定。

也可以说熵变只和物质的初末状态有关。

克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少(For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.),此即熵增加原理。

克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0。

在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少。

但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态。

热寂说至今仍引发了大量争论,没有得到证明。

二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究。

1872年奥地利科学家玻尔兹曼(L. E. Boltzmann)首次对熵给予微观的解释,他认为:在大量微粒(分子、原子、离子等)所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度(The degree of randomness or disorder in a thermodynamic system.)。

最大熵模型自然语言处理

最大熵模型自然语言处理

最大熵模型自然语言处理什么是最大熵模型?最大熵模型在自然语言处理中应用的原理是什么?如何使用最大熵模型解决实际的自然语言处理问题?最大熵模型在自然语言处理中都有哪些典型应用?现在,让我们一步一步深入探讨这些问题。

最大熵模型是一种统计模型,其核心思想是基于最大熵原理。

在信息熵的概念中,熵被定义为系统的不确定性量度,而最大熵原理则是一种寻找最符合已知信息且不引入新的不确定性的方法。

最大熵模型的目标是构建一个能够最大程度上满足已知信息、但没有任何额外假设的模型。

在自然语言处理中,最大熵模型被广泛应用于各种问题的解决。

最大熵模型的原理可以通过以下步骤进行理解:第一步是定义问题和收集训练数据。

在自然语言处理中的最大熵模型应用中,问题可以是文本分类、命名实体识别、语义角色标注等。

训练数据是指包含了问题定义所需要的相关信息的数据集,通常由标注人员对样本数据进行人工标注得到。

第二步是定义特征函数。

特征函数是将问题与训练数据联系起来的手段,它可以是一种对问题的描述,表达问题中的某种特征。

这些特征函数通常由专家根据经验和领域知识确定。

第三步是定义最大熵模型的模型结构和参数空间。

最大熵模型采用指数模型的形式,其中模型的输出是特征函数的线性组合,并且由参数来控制每个特征函数的权重。

参数的选择可通过迭代算法,例如改进的迭代尺度法(I I S)进行求解。

第四步是训练和优化模型。

这一步骤中,最大熵模型使用训练数据进行参数学习,以最大化模型对训练数据的似然函数,从而得到最优的模型参数。

训练的过程可以通过梯度下降、牛顿法等优化算法进行求解。

第五步是使用训练好的最大熵模型解决实际问题。

这一步骤中,通过将待处理的文本数据转化成特征表示,然后利用训练好的最大熵模型进行预测和分类,从而实现自然语言处理任务的解决。

最大熵模型在自然语言处理中有许多典型的应用。

举例来说,最大熵模型可以应用于文本分类任务,用于将文本归类到不同的主题或类别中。

最大熵模型还可以用于命名实体识别,即从文本中识别并分类出人名、地名等具有特殊意义的实体。

熵简单解释

熵简单解释

熵简单解释熵(entropy)是一个非常重要的概念,在热力学、信息论、统计物理学等领域都有广泛的应用。

然而,对于普通人来说,熵是一个非常抽象的概念,很难理解。

本文将尝试用尽可能简单的语言,解释熵的概念和意义。

1. 熵的定义熵最早是由德国物理学家克劳修斯(Rudolf Clausius)在19世纪提出的。

他把熵定义为一个系统的无序程度,也就是系统的混乱程度。

熵越大,系统越混乱,熵越小,系统越有序。

这个定义非常直观,但是也有一些问题,因为它没有明确说明“无序”和“有序”是什么意思。

后来,美国物理学家布里丹(Ludwig Boltzmann)提出了更加精确的定义。

他把熵定义为系统的微观状态数的对数。

也就是说,如果一个系统有N个微观状态,那么它的熵就是lnN(其中ln是自然对数,以e为底的对数)。

这个定义比较抽象,但是它更加准确地描述了熵的本质。

2. 熵的意义熵的意义非常重要,因为它涉及到了自然界的基本规律。

熵是一个系统的混乱程度,也就是说,它描述了系统的无序程度。

这个无序程度与能量转化的效率有关系。

例如,如果一个发动机的熵越小,那么它的能量转化效率就越高。

这是因为熵越小,系统越有序,能量转化的过程就越容易进行。

相反,如果熵越大,系统越混乱,能量转化的效率就越低。

熵的意义还涉及到了自然界的趋势。

根据热力学第二定律,一个孤立系统的熵总是趋向于增加。

也就是说,自然界的趋势是朝着混乱和无序的方向发展的。

这个趋势是不可逆转的,因为熵的增加是一个热力学过程,它需要能量的输入才能逆转。

3. 熵的计算熵的计算需要知道系统的微观状态数。

微观状态是指系统中每一个粒子的状态,包括它的位置、速度、自旋等等。

对于一个大的系统来说,微观状态数是非常巨大的,通常是以指数形式增长的。

因此,熵的计算非常困难,需要借助于统计物理学的方法。

统计物理学是一门研究系统微观状态和宏观性质之间关系的学科。

它的基本假设是,一个系统的微观状态是随机的,所有可能的微观状态出现的概率是相等的。

Shannon关于“熵”的研究

Shannon关于“熵”的研究

Shannon关于“熵”的研究Shannon关于“熵”的研究冯志伟1948年,美国科学家C. E. Shannon(⾹农,1916-2001,图2-8)在《贝尔系统技术杂志》(Bell System Technical Journal,27: pp 379-423, 1948)上发表了《通信的数学理论》(A mathematical theory of communication)的长篇论⽂,奠定了信息论(Information Theory)的理论基础,Shannon被尊为“信息论之⽗”。

Shannon于1916年4⽉30⽇出⽣于美国密歇根州的Petoskey,1936年毕业于密歇根⼤学并获得数学和电⼦⼯程学⼠学位,1940年获得⿇省理⼯学院(MIT)数学博⼠学位和电⼦⼯程硕⼠学位。

1941年他加⼊贝尔实验室数学部,⼯作到1972年。

1956年他成为⿇省理⼯学院(MIT)客座教授,并于1958年成为终⽣教授,1978年成为名誉教授。

Shannon于2001年2⽉26⽇去世,享年84岁。

信息论是研究信息传输和信息处理系统中的⼀般规律的科学。

在信息论产⽣之前,⼈们对于信息系统的理解是⽐较肤浅的,⼀般把携带信息的消息看成是瞬态性的周期性的信号。

后来,⼈们把近代统计⼒学中的重要概念,把Markov随机过程理论以及⼴义谐波分析等数学⽅法应⽤于信息系统的研究中,才看出通信系统内的信息实质上是⼀种具有概率性的随机过程,从⽽得出了⼀些概括性很⾼的结论,建⽴了信息论这个学科。

信息论的研究对象是⼴义的信息传输和信息处理系统,从最普通的电报、电话、传真、雷达、声纳,⼀直到各种⽣物的感知系统,都可以⽤同样的信息论观点加以描述,都可以概括成这样的或那样的随机过程加以深⼊的研究。

从信息论的⾓度看来,⽤⾃然语⾔来交际的过程,也就是从语⾔的发送者通过通信媒介传输到语⾔的接收者的过程。

图⽰如下(图2-9)语⾔的发送者(即信源)随着时间的顺序顺次地发出⼀个⼀个的语⾔符号,语⾔的接收这也随着时间的顺序顺次地接收到⼀个⼀个的语⾔符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可见对于有记忆信源,最小单个消息熵应
为 H ,即从理论上看,对有记忆信源只需传送 H 即可。但是这必需要掌握信源全部概率统计特性和
所有的记忆关系。这显然是不现实的。实际上,往 往只能掌握有限的N维,这时只需传送 H N 1 ,那么 与理论值相比,就多传送了 H N 1 H 。 为了定量描述信源熵的有效性,定义了信源冗余度:
H m1
H m1 H 2 H ( x2 x1 )
对于一般的离散信源都可以近似地用不同记忆长度的马尔可夫信源来 逼近。进一步简化,可以建设信源为无记忆信源,信源符号有一定的概 率分布。最后可以假定是等概率分布的离散无记忆信源。
log q H0 H1 H2 Hm1 H
因此信息可以看作是消除不确定性。
信息分析与统计的工具是概率论(数学)。
具有实际意义的平均信息量称为熵(物理)。
对信息量的认识理解 衡量信息多少的物理量称为信息量。 信息量的大小与消息所描述事件的出现概率有 关。
若概率很小,受信者感觉很突然,该消息所含信 息量就很大; 若概率很大,受信者事先已有所估计,则该消息 信息量就越小; 若受信者收到完全确定的消息,则没有信息.
第8讲 信源冗余度与自然语言的熵
背景知识:
实际的信源可能是非平稳的,其极限熵
可以假定它是平稳的,用平稳信源的 对于一般平稳的离散信源,求
H
不一定存在。
H
来代替。
H
值也是极其困难的。
进一步假设它是m阶马尔可夫信源,用m阶马尔可夫信源的信息熵 来近似。
最简单的马尔可夫信源是记忆长度为m=1的信源,信源的熵:
H0
英文 法文 德文
H1
4.03
H2
3.32
H3
3.1
...
H
1.4

0.29
R
0.71
4.7
4.7
4.7
3
1.08
0.63
0.23
0.37
0.77
西班牙文 4.7 中文
1.97
0.42
0.58
13
9.41
8.1
7.7
4.1
0.315
0.685
(按8千汉字计算)
汉字的编码
GB2312-80 国家标准汉字编码简称国标码。该编码集的全称是“信 息交换用汉字编码字符集—基本集”,国家标准代号是 “GB2312-80”。该编码的主要用途是作为汉字信息交换码使 用。 国标码中收集了二级汉字,共约7445个汉字及符号。其 中,一级常用汉字3755个,汉字的排列顺序为拼音字典序; 二级常用汉字3008个,排列顺序为偏旁序;还收集了682个图 形符号。一般情况下,该编码集中的二级汉字及符号已足够 使用。 国标码规定:一个汉字用两个字节来表示,每个字节只 用前七位,最高位均未作定义(见图)。为了方便书写,常 常用四位十六进制数来表示一个汉字。
在诊断过程中,每进行一项检查获得一个 征候信息表现时,它就给医生对疾病的认识带 来一定的信息量,医生对患者所患疾病认识的 不确定性就会减少。设征候S有m个互不相容的 表现s1 ,s2 ,…,sm ,当sj 出现时,疾病ai 发生 的概率设为
P(ai|sj),i=1,2,…,n,j=1,2,…,m 在获得征候表现sj 后,信源(患者)不确定性 大 小 , 按信 息 论 , 可 以 用 条件 熵 度 量 , 即 H (x|sj)
GB2312 编码表的格式和布局
国际汉字编码也用类似于ASCCII码表的形式给出, 将汉字和必要的非汉字字符排列在94×94方阵的区域中。方 阵中的每一个位置的行和列分别用一个七位二进制编码表示, 称为区码和位码,每一个汉字和非汉字字符对应于方阵中的 一个位置,因此,可以把汉字和非汉字字符所在位置的区码 和位码作为它们的编码。区码和位码的存储各占一个字节, 所以在国际汉字编码中,每个汉字和非汉字字符占用俩个字 节。表2-6给出了GB2312编码表的局部格式。
H c 1.2
比特/符号
H 1.2 R 1 1 1 0.4 H0 2
正由于信源存在着冗余度,即存在着不必要传送的信息,因 此信源也就存在进一步压缩信息率的可能性。冗余度越大,压缩 潜力也就越大。可见它是信源编码,数据压缩的前提与理论基础。 下面,以英文为例,计算文字信源的冗余度。 首先给出英文字母(含空档)出现概率如下:
为计算这些熵,要计算字母之间的一维条件概率、二维条件 概率
P (a j ai )
ai , a j [英文字母集 ]
P(ak ai a j )
ak , ai , a j [英文字母集 ]
二阶马尔可夫信源,条件概率为 273 19683 个。 香农做法:
对于其它文字,也有不少人作了大量的统计工作,现简述如下:
27
再次,若仅考虑字母有一维相关性,求 H 2
H 2 3.32 bit / symbol
还可进一步求出:
H 3 3.1 bit / symbol
最后,利用统计推断方法求出 H ,由于采用的逼近的 方法和所取的样本的不同,推算值也有不同,这里采用 Shannon的推断值。
H 1.4 bit / sym bol

位码: 低7位 区码:高7位
GB2312编码局部表
010 010 08 哀 抱 钵 09 皑 报 波 癌 暴 博
010 010 010 010 010 010 010 01 啊 薄 病 02 阿 雹 并 03 埃 保 玻 04 挨 堡 菠 05 哎 饱 播 06 唉 宝 拨 07
0001 0010 0011 0100 0101 0110 0111 1000 1001
什么是信息?
关于信息的定义,众说纷纭。
哲学家说,信息就是认识论。
数学家则认为信息是概率论。 物理学家把信息定义为熵。 通信专家把信息看作是消除不确定性。 表明信息科学尚未形成一套统一的、完整的、 得到公认的理论。
获取信息的过程是一个由未知到已知的过程(哲
学),或者说由不确定到确定的过程(通信)。
b7
b6
b5 b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
0
×
× × × × × ×
0
×
×
×
× × ×
×
国标码的格式 例如: 汉字“大”的国标码是“3473”(十六进制 数)。 国标码是一种机器内部编码,其主要作用是:用于统 一不同的系统之间所用的不同编码。通过将不同的系统使用 的不同编码统一转换成国标码,不同系统之间的汉字信息就 可以相互交换。
这样,可以计算出:
0.29 , R 0.71
这一结论说明,英文信源,从理论上看71%是多余成分。即有 71%是由语言结构定好的,而剩下的29%可由写文章的人自由 发挥的。 直观地说100页英文书,理论上看仅有29页是有效的,其 余71页是多余的。正是由于这一多余量的存在,才有可能对英 文信源进行压缩编码。
GB2312中的6763个汉字是在文化部1965年发布的《印刷
通用汉字字形表》(6196字)的基础上,根据需要增加了500 多个科技名词、地名和姓名用字,既基本上满足了各方面的 需要,又有利于降低汉字信息处理系统的成本,提高汉字编 码的效率,有利于汉字信息处理技术的推广和应用。 GB2312广泛应用于我国通用汉字系统的信息交换及硬、 软件设计中。例如,目前汉字字模库的设计都以GB2312为准, 绝大部分汉字数据库系统、汉字情报检索系统等软件也都以 GB2312为基础进行设计。 GB2312是汉字信息处理技术领域内的基础标准,许多 其他标准都与它密切相关,例如,汉字点阵字型标准、磁 盘格式标准的制定均根据GB2312标准。
H log q H R 1 1 H0 log q
从提高信息传输效率的观点出发,人们总是希望尽量
去掉冗余度。 但是从提高抗干扰能力角度来看,却希望增加或保留信 源的冗余度,因为冗余度大的消息抗干扰能力强。
中华人民共和国 母亲病愈,身体健康
输效率。
中国 母病愈
信源编码是减少或消除信源的冗余度以提高信息的传 信道编码则通过增加冗余度来提高信息传输的抗干扰能 力。
H log q H R 1 1 H0 log q
信源的冗余度来自两个方面: 1、信源符号间的相关性 信源符号间相关程度越大,符号间的依赖关系 越长,信源的实际熵越小; 2、另一方面是信源符号分布的不均匀性使信源的 实际熵越小。 为了更经济有效的传送信息,需要尽量压缩信 源的冗余度,压缩冗余度的方法就是尽量减小符号 间的相关性,并且尽可能的使信源符号等概率分布。
GB2312编码表总体布局
位 区 01 至 94 区 1 2 3 4 5 6 7 8 9 … 16~55 56~87 88 … 94 常用符号(94) 序号、罗马数字(72) GB1988图形字符集(94) 日文平假名(83) 日文片假名(86) 希腊字母(48) 俄文字母(66) 汉语拼音符(26)、注音字母(37) 制表符(76) … 第一级汉字(3755个) 第二级汉字(3008个) … 01~94位
临 床 诊 断 的 信 息 分 析
信源的熵由H(X)降到获得征候表 现Sj 后的H(x|sj ),此时,两个熵值之 差就是征候表现Sj 提供给医生的信息量: I(X,Sj)=H(X)- H(X|Sj) 上面各式可计算和比较各征候及每 个征候各临床表现的信息量,信息量越 大的征候或征候表现,其临床诊断的价 值就越大。
由此看出,由于信源输出符号间的依赖关系也就是信 源信号的相关性使信源的实际熵减小。信源输出符号间统 计约束关系越长,信源的实际熵越小。当信源输出符号间 彼此不存在依赖关系且为等概率分布时,信源的实际熵等 于最大熵。 定义:一个信源的熵率(极限熵)与具有相同符号集的最 大熵的比值称为熵的相对率:
相关文档
最新文档