小学奥数计数练习题:排列与组合
排列与组合最全最详细最经典练习题

检测题1.6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法.2.5名男生和4名女生排成一队,其中女生必须排在一起,一共有________种不同的排法.3.a,b,c,d排成一行,其中a不排第一,b不排第二,c不排第三,d不排第四的不同排法有_______种.4.0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是.5.下列各式中与排列数相等的是().A. B.C.D.6.,且,则等于().A.B.C.D.7.若,则的个位数字是().A.8 B.5 C.3 D.08.7名同学排成一排,其中甲、乙两人必须排在一起的不同的排法有().A.720种B.360种 C.1440种D.120种9.求和 .10.5名男生、2名女生站成一排照像:(1)两名女生要在两端,有多少种不同的站法?(2)两名女生都不站在两端,有多少不同的站法?(3)两名女生要相邻,有多少种不同的站法?(4)两名女生不相邻,有多少种不同的站法?(5)女生甲要在女生乙的右方,有多少种不同的站法?(6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?参考答案:1.504 2.17280 3.9 4.3140 5.D 6.D 7.C 8.C 9.∵, .∴10.(1)两端的两个位置,女生任意排,中间的五个位置男生任意排;(种);(2)中间的五个位置任选两个排女生,其余五个位置任意排男生;(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列;(种);(4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生;(种);(5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的;(种);(6)采用排除法,在七个人的全排列中,去掉女生甲在左端的个,再去掉女生乙在右端的个,但女生甲在左端同时女生乙在右端的种排除了两次,要找回来一次.(种).检测题选择题1.掷下4枚编了号的硬币,至少有2枚正面朝上的情况有().A.种B.种C.种D.不同于A、B、C的结论2.从A、B、C、D、E五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为().A.24 B.48 C.121 D.723.数字不重复,且个位数字与千位数字之差的绝对值等于2的四位数的个数为().A.672 B.784 C.840 D.8964.…,为100条共面且不同的直线,若其中编号为的直线互相平行,编号为4k-3的直线都过某定点A.则这100条直线的交点个数最多为().A.4350 B.4351 C.4900 D.4901填空题1.在数字0,1,2,3,4, 5,6中,任取3个不同的数字为系数a,b,c,组成二次函数y=ax2+bx+c,则一共可以组成__________个不同的解析式?2.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则共有_________种承包方式.3.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒的放法共有______种.4.某校乒乓球队有男运动员10人和女运动员9人,选出男、女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有___种不同的选赛方法.解答题1.有7本不同的书:(1)全部分给6个人,每人至少一本;(2)全部分给5个人,每人至少一本,求各有多少种不同的分法.2.九张卡片分别写着数字0,l,2,…,8,从中取出三张排成一排组成一个三位数,如果写着6的卡片还能当9用,问共可以组成多少个三位数?参考答案:选择题:1.A 2.D 3.C 4.B填空题:1.180 2.1680 3.144 4.3628800解答题:1.(l)先取两本书作为一份,其余每本书为一份,将这六份书分给6个人,有种分法(2)有两类办法:一人得3本,其余4人各得一本,方法数为;两人各得2本,其余3人各得一本,方法数为,所以所求方法种数为.2.以是否取卡片6分成两类,每类中再注意三位数中0不能在首位.(l)不取卡片6,组成三位数的个数为;(2)取卡片6,又分成两类,(i)当6用时组成的三位数的个数为;(ii)当9用时同样有个.根据加法原理得所求三位数的个数为:.排列与组合一、教材分析:1.基本概念:排列与排列数、组合与组合数从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号表示.2.基本公式:=n(n-1)(n-2)……(n-m+1)= (规定0!=1).= (规定=1).3.排列组合的解题原则:(1)深入弄清问题的情景要深入弄清问题的情景,切实把握各因素之间的相互关系,不可分析不透,就用或乱套一气.具体地说:首先要弄清有无“顺序”的要求,如果有“顺序”的要求,用,如果无“顺序”要求,就用;其次,要弄清目标的实现,是分步达到的,还是分类完成的,前者用分步计数原理,后者用分类计数原理.事实上,一个复杂的问题,往往是分类和分步交织在一起的,这就要准确分清,哪一步用分步计数原理,哪一步用分类计数原理.(2)两个方向的解题途径对于较复杂的问题,一般都有两个方向的列式途径,一个是正面直接解,一个是反面排除法.前者是指按要求,一点一点选出符合要求的方案,后者是指先按照全局性的要求,选出方案,再把不符合其他要求的方案排除掉.这两个途径的优劣因题而异.一般地,一道题目“正面解”很繁琐时,“反面排除”往往简单,反之亦然.(3)分析问题的两个方向分析问题时,我们往往从元素和位置两个方向插手,一般情况,从算理上说,从特殊元素和特殊位置两个方向都能解决问题.但具体问题从特元与特位上作对比,则可能大相径庭,差距很大。
奥数 数字排列组合解题技巧

奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。
以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。
-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。
2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。
循环置换的计算可以借助循环节的长度和总元素个数。
3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。
5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。
6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。
7. 利用对称性:-利用对称性质,减少计算量。
例如,当问题中存在对称性时,可以利用对称性简化问题。
8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。
这个原理在一些排列组合问题中经常被使用。
9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。
10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。
总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。
小学奥数之排列组合问题

题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
小学奥数思维训练排列组合专项练习

小学数学专项训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.计数专题:④排列组合一. 进门考1.有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?3.甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?4.从1到500的所有自然数中,不含有数字4的自然数有多少个?5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米?(2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱?5 87 66*.按1,2,3,4的顺序连线,有多少种不同的连法?二.授新课①奥数专题:乘法原理专题简析在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。
排列公式:由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.组合公式:从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m nC .12)112321m m n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()().例1:排列数:121m n P n n n n m =---+()()()1. 三个人排成一排照相,有多少种不同的排法?2. 有3名男生和2名女生排成一排照相,有多少种不同的排法如果要求两名女生必须相邻,有多少种排法3.有从1到9共计9个号码球,请问,可以组成多少个三位数?4.5人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 多少?例2:组合数:12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()()1. 从有3名男生和2名女生中选出2名同学参加数学竞赛,有多少种选法?2.在“星星杯”,“排球比赛中,共有10个小球队参加比赛。
排列和组合的计算公式例题

排列和组合的计算公式例题好的,以下是为您生成的关于“排列和组合的计算公式例题”的文章:咱先来说说排列和组合这回事儿哈。
排列呢,讲究顺序,比如说从10 个人里选 3 个站成一排拍照,这顺序不同结果就不一样,这就是排列。
组合呢,不管顺序,还是从这 10 个人里选 3 个去干活儿,谁先谁后没关系,这就是组合。
咱来看个排列的例题。
比如说,要从 5 个不同颜色的球里选 3 个排成一排,有多少种排法?这就得用排列公式 A(5,3) = 5×4×3 = 60 种。
为啥呢?第一个球有 5 种选法,第二个球就剩 4 种选法,第三个球就剩 3 种选法,乘起来就是总的排法。
再看个组合的例题。
从 8 个水果里选 3 个做水果沙拉,有几种选法?这就用组合公式 C(8,3) = 8! / (3!×(8 - 3)!) = 56 种。
我记得之前有一次给学生们讲这部分内容的时候,有个特别好玩的事儿。
当时我在黑板上写了一道题:从 6 个同学里选 2 个参加比赛,有几种选法?有个学生特别积极,一下子就站起来说:“老师,这多简单啊,我觉得是 12 种。
”我就问他:“你咋算的呀?”他说:“一个同学能和另外 5 个同学组队,一共 6 个同学,那不就是 6×2 = 12 种嘛。
”其他同学听了都哈哈大笑,我也笑了,然后给他解释说:“这可不能这么算哦,这里不管谁和谁一组,顺序不重要,所以要用组合公式 C(6,2) = 6! / (2!×(6 - 2)!) = 15 种。
”这学生恍然大悟,挠挠头坐下了。
咱们继续说啊,排列组合在生活中用处可大了。
比如说抽奖,从100 个号码里抽 5 个中奖号码,这就是组合。
再比如,跑步比赛,给 8 个选手排定名次,这就是排列。
还有个例子,假设一个班级有 10 个男生和 10 个女生,要选 4 个同学参加活动,其中至少要有1 个男生和1 个女生。
这就得分类讨论了。
一种情况是 1 男 3 女,那就有 C(10,1)×C(10,3) 种选法;另一种情况是2 男 2 女,有 C(10,2)×C(10,2) 种选法;还有3 男 1 女,有C(10,3)×C(10,1) 种选法。
五年级奥数.计数综合.排列组合(ABC级).学生版

分列组合常识构造一、分列问题在现实生涯中经常会碰到如许的问题,就是要把一些事物排在一路,构成一列,盘算有若干种排法,就是分列问题.在排的进程中,不但与介入分列的事物有关,并且与各事物地点的先后次序有关.一般地,从个不合的元素中掏出()个元素,按照必定的次序排成一列,叫做从个不合元素中掏出个元素的一个分列.依据分列的界说,两个分列雷同,指的是两个分列的元素完整雷同,并且元素的分列次序也雷同.假如两个分列中,元素不完整雷同,它们是不合的分列;假如两个分列中,固然元素完整雷同,但元素的分列次序不合,它们也是不合的分列.分列的根本问题是盘算分列的总个数.从个不合的元素中掏出()个元素的所有分列的个数,叫做从个不合的元素的分列中掏出个元素的分列数,我们把它记做.依据分列的界说,做一个元素的分列由个步调完成:步调:从个不合的元素中任取一个元素排在第一位,有种办法;步调:从剩下的()个元素中任取一个元素排在第二位,有()种办法;……步调:从剩下的个元素中任取一个元素排在第个地位,有(种)办法;由乘法道理,从个不合元素中掏出个元素的分列数是,即,这里,,且等号右边从开端,后面每个因数比前一个因数小,共有个因数相乘.二、分列数一般地,对于的情形,分列数公式变成.暗示从个不合元素中取个元素排成一列所构成分列的分列数.这种个分列全体掏出的分列,叫做个不合元素的全分列.式子右边是从开端,后面每一个因数比前一个因数小,一向乘到的乘积,记为,读做的阶乘,则还可以写为:,个中.在分列问题中,有时刻会请求某些物体或元素必须相邻;求某些物体必须相邻的办法数量,可以将这些物体当作一个整体绑缚在一路进行盘算.三、组合问题日常生涯中有许多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同窗中选出几人介入某项运动等等.这种“分组”问题,就是我们将要评论辩论的组合问题,这里,我们将侧重研讨有若干种分组办法的问题.一般地,从个不合元素中掏出个()元素构成一组不计较组内各元素的次序,叫做从个不合元素中掏出个元素的一个组合.从分列和组合的界说可以知道,分列与元素的次序有关,而组合与次序无关.假如两个组合中的元素完整雷同,那么不管元素的次序若何,都是雷同的组合,只有当两个组合中的元素不完整雷同时,才是不合的组合.从个不合元素中掏出个元素()的所有组合的个数,叫做从个不合元素中掏出个不合元素的组合数.记作.一般地,求从个不合元素中掏出的个元素的分列数可分成以下两步:第一步:从个不合元素中掏出个元素构成一组,共有种办法;第二步:将每一个组合中的个元素进行全分列,共有种排法.依据乘法道理,得到.是以,组合数.这个公式就是组合数公式.四、组合数的主要性质一般地,组合数有下面的主要性质:()这个公式的直不雅意义是:暗示从个元素中掏出个元素构成一组的所有分组办法.暗示从个元素中掏出()个元素构成一组的所有分组办法.显然,从个元素中选出个元素的分组办法恰是从个元素中选个元素剩下的()个元素的分组办法.例如,从人中选人开会的办法和从人中选出人不去开会的办法是一样多的,即.划定,.五、插板法一般用来解决求分化必定命量的无不同物体的办法的总数,应用插板法一般有三个请求:①所要分化的物体一般是雷同的:②所要分化的物体必须全体分完:③介入分物体的组至少都分到1个物体,不克不及有没分到物体的组消失.在有些标题中,已知前提与上面的三个请求其实不必定完整相符,对此应该对已知前提进行恰当的变形,使得它与一般的请求相符,再实用插板法.六、应用插板法一般有如下三种类型:⑴小我分个器械,请求每小我至少有一个.这个时刻我们只须要把所有的器械排成一排,在个中的个闲暇中放上个插板,所以分法的数量为.⑵小我分个器械,请求每小我至少有个.这个时刻,我们先发给每小我个,还剩下个器械,这个时刻,我们把剩下的器械按照类型⑴来处理就可以了.所以分法的数量为.⑶小我分个器械,许可有人没有分到.这个时刻,我们无妨先借来个器械,每小我多发1个,如许就和类型⑴一样了,不过这时刻物品总数变成了个,是以分法的数量为.例题精讲【例 1】4个男生2个女生6人站成一排合影留念,有若干种排法?假如请求2个女生紧挨着排在正中央有若干种不合的排法?【巩固】4男2女6小我站成一排合影留念,请求2个女的紧挨着有若干种不合的排法?【例 2】将A.B.C.D.E.F.G七位同窗在操场排成一列,个中学生B与C必须相邻.请问共有若干种不合的分列办法?【巩固】6名小同伙站成一排,若两人必须相邻,一共有若干种不合的站法?若两人不克不及相邻,一共有若干种不合的站法?【例 3】书架上有4本不合的漫画书,5本不合的童话书,3本不合的故事书,全体竖起排成一排,假如同类型的书不要离开,一共有若干种排法?假如只请求童话书和漫画书不要离开有若干种排法?【巩固】四年级三班举办六一儿童节联欢运动.全部运动由2个跳舞.2个演唱和3个小品构成.请问:假如请求同类型的节目持续表演,那么共有若干种不合的出场次序?【例 4】8人围圆桌会餐,甲.乙两人必须相邻,而乙.丙两人不得相邻,有几种坐法?【巩固】a,b,c,d,e五小我排成一排,a与b不相邻,共有若干种不合的排法?【例 5】一台晚会上有个演唱节目和个跳舞节目.求:⑴当个跳舞节目要排在一路时,有若干不合的安插节目标次序?⑵当请求每个跳舞节目之间至少安插个演唱节目时,一共有若干不合的安插节目标次序?【巩固】由个不合的独唱节目和个不合的合唱节目构成一台晚会,请求随意率性两个合唱节目不相邻,开端和最后一个节目必须是合唱,则这台晚会节目标编排办法共有若干种?【例 6】有10粒糖,分三天吃完,天天至少吃一粒,共有若干种不合的吃法?【巩固】小红有10块糖,天天至少吃1块,7天吃完,她共有若干种不合的吃法?【巩固】有12块糖,小光要6天吃完,天天至少要吃一块,问共有种吃法.【例 7】10只无差此外橘子放到3个不合的盘子里,许可有的盘子空着.请问一共有若干种不合的放法?【巩固】将个雷同的苹果放到个不合的盘子里,许可有盘子空着.一共有种不合的放法.【例 8】把20个苹果分给3个小同伙,每人起码分3个,可以有若干种不合的分法?【巩固】三所黉舍组织一次联欢晚会,共表演14个节目,假如每校至少表演3个节目,那么这三所黉舍表演节目数的不合情形共有若干种?【例 9】(1)小明有10块糖,天天至少吃1块,8天吃完,共有若干种不合吃法?(2)小明有10块糖,天天至少吃1块,8天或8天之内吃完,共有若干种吃法?【巩固】有10粒糖,天天至少吃一粒,吃完为止,共有若干种不合的吃法?【例 10】马路上有编号为,,,…,的十只路灯,为勤俭用电又能看清路面,可以把个中的三只灯关失落,但又不克不及同时关失落相邻的两只,在两头的灯也不克不及关失落的情形下,求知足前提的关灯办法有若干种?【巩固】黉舍新建筑的一条道路上有盏路灯,为了节俭用电而又不影响正常的照明,可以熄灭个中盏灯,但两头的灯不克不及熄灭,也不克不及熄灭相邻的盏灯,那么熄灯的办法共有若干种?【例 11】在四位数中,列位数字之和是4的四位数有若干?【巩固】大于2000小于3000的四位数中数字和等于9的数共有若干个?【例 12】所有三位数中,与456相加产生进位的数有若干个?【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少产生一次进位?教室检测【随练1】某小组有12个同窗,个中男少先队员有3人,女少先队员有人,全组同窗站成一排,请求女少先队员都排一路,而男少先队员不排在一路,如许的排法有若干种?【随练2】把7支完整雷同的铅笔分给甲.乙.丙3小我,每人至少1支,问有若干种办法?【随练3】在三位数中,至少消失一个6的偶数有若干个?家庭功课【作业1】将三盆同样的红花和四盆同样的黄花摆放成一排,请求三盆红花互不相邻,共有种不合的放法.【作业2】黉舍合唱团要从个班中填补名同窗,每个班至少名,共有若干种抽调办法?【作业3】能被3整除且至少有一个数字是6的四位数有个.【作业4】黉舍乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排拍照,请问:(1)假如请求男生不克不及相邻,一共有若干不合的站法?(2)假如请求女生都站在一路,一共有若干种不合的站法?【作业5】由0,1,2,3,4,5构成的没有反复数字的六位数中,百位不是2的奇数有个.【作业6】泊车站划出一排个泊车地位,今有辆不合的车须要停放,若请求残剩的个空车位连在一路,一共有若干种不合的泊车计划?教授教养反馈学生对本次课的评价○特殊知足○知足○一般家长看法及建议家长签字:。
四年级奥数排列组合题及答案

四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数计数练习题:排列与组合经典的排列与组合奥数题及答案
问题:小明所在的班级要选出4名中队长,要求每位同学在选票上写上名字,也能够写自己的名字。
结果全班的每位同学都在自己的选票上写了4个互不相同的名字。
当小明把同学们的选票收集后发现一个有趣的现象:就是任意取出2张选票,一定有且只有一个人的名字同时出现在2张选票上。
请问:小明所在的班级共有多少人?
总体逻辑思路:首先,假设题目所说的情况存有。
然后,得出班级人数。
最后,构造出一个例子,说明确实存有这种情况。
我们先来证明这个班每个人都恰好都被选了4次。
思路简介:我们首先用反证法证明没有人被选了4次以上。
因为平均每人被选了4次,既然没有人被选了4次以上,肯定也不存有被选了4次以下的人。
所以,能够得到每个人恰好被选了4次。
首先证明没有人被选了4次以上,我们用反证法。
假设有一个人被选了4次以上(因为很容易证明这个班的人数肯定很多于7人,所以我们能够假设有一个人被选了4次以上),我们设这个人为A同学。
接下来我们来证明这种情况不存有。
把所有选择A同学的选票集中到一起,有5张或5张以上。
方便起见,我们把这些选票编号,记为A1选票,A2选票,A3选票,A4选票,A5选票,…。
意思就是选择A同学的第1张选票,选择A同学的第2张选票,…。
这些选票都选择了A同学。
因为任意2张选票有且只有1个人相同,所以这些选票上除了A同学外,其他都是不同的人。
我们还能够证明,这些并不是全部的选票,不是太难,就不证明了。
既然这些(所有选A同学的选票)不是全部的选票,我们再拿一张没有选择A同学的选票。
方便起见,称之为B选票。
根据任意2张选票有且只有1个人相同,A1选票上必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。
同样道理,第A2、A3、A4、A5、…上也必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。
因为B选票上只有4个不同的人,而A1、A2、…,的数量大于4.所以,A1、A2、A3、…选票中至少有2张选票,除了A同学外还有一个共同的候选人。
根据任意2张选票有且只有1个人相同,我们知道这是不能够的。
所以,没有人被选了4次以上。
因为平均每人被选4次,既然没有人被选4次以上,当然也就不可能有人被选4次以下。
所以,每个人恰好被选了4次!。