平移、旋转、轴对称
旋转平移和轴对称的知识点

旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。
就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。
七年级轴对称平移与旋转知识点

七年级轴对称平移与旋转知识点在七年级的数学学习中,轴对称平移与旋转是一个重要的知识点。
这些概念不仅在数学的基础中有很大的作用,还经常出现在生活中。
理解轴对称平移与旋转的含义和运用方法对于学习数学及其它相关领域都是十分有益的。
一、轴对称轴对称是指图形相对于一条直线对称。
轴对称可以分为对称轴和对称中心两种情况。
1.对称轴对称轴是图形对称的直线,即当图形沿对称轴翻折,两侧的部分重合在一起。
对称轴是图形上的一条直线,可以是任意方向,但对称轴本身不能是图形的一部分。
对称轴可以用代数式和方程式表示出来。
2.对称中心对称中心是指图形对称的一个点,即当图形沿对称中心旋转一定角度后,成为与原图完全相同的新图形。
对称中心可以是图形中的任意一个点。
二、平移平移是指将图形沿指定方向移动一定距离,新图形与原图形形状相同,但位置不同。
在平面直角坐标系中,平移可以用向量表示。
1.向量向量是一个数学概念,有大小和方向。
向量可以用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量的大小可以是正数或负数,方向可以是任意方向。
2.平移向量平移向量是指从原图形移动到新图形的向量。
平移向量可以用两点之间的向量来表示。
通常使用起点和终点的坐标差作为平移向量进行计算。
三、旋转旋转是指将图形围绕指定中心点旋转一定角度,新图形与原图形形状相同,但方向不同。
在平面直角坐标系中,旋转可以用角度和坐标系原点表示。
1.旋转角度旋转角度是指旋转图形的角度。
旋转角度可以是正值或负值,正值表示顺时针旋转,负值表示逆时针旋转。
旋转角度可以用度数或弧度表示。
2.旋转中心旋转中心是指围绕该点进行旋转的点。
旋转中心可以是图形中的任一点,也可以是坐标系原点或任意一个点。
通过学习轴对称平移和旋转的知识点,我们可以更好地理解图形的构成和运动规律。
同时,此类知识也是进一步学习三角函数和向量运算等高阶数学知识的基础。
在学习的过程中,我们需要不断进行练习和巩固,通过做题来加深对于知识点的掌握。
平移旋转轴对称经典题目

平移旋转轴对称经典题目平移旋转轴对称是几何中的基本概念,它在解决许多问题时都发挥了重要作用。
下面将介绍一些经典的与平移旋转轴对称相关的题目。
平移对称1. 问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
问题:在平面上画一个矩形ABCD,点E是BC的中点,连接AE并延长到交F于F点。
试证明F是矩形ABCD的一个对称点。
证明:首先,连接BD并延长到交G于G点。
我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
首先,连接BD并延长到交G于G点。
我们注意到BC是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
首先,连接BD并延长到交G于G点。
我们注意到BC 是平移BD得来的,而E是BC的中点,所以AE也是平移AG得来的。
因此,FE是平移FG得来的,所以F是矩形ABCD的一个对称点。
2. 问题:给定梯形ABCD,其中AD平行于BC。
点M是AB 的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
问题:给定梯形ABCD,其中AD平行于BC。
点M是AB的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
问题:给定梯形ABCD,其中AD平行于BC。
点M是AB的中点,点N是CD的中点。
试证明MN平行于AD,并且MN的中点是梯形ABCD的一个对称点。
证明:因为M是AB的中点,N是CD的中点,所以MN平行于AD。
另外,由于MN是平移MC得来的,所以MN的中点也是平移梯形ABCD的中线AD得来的,即MN的中点是梯形ABCD的一个对称点。
第一单元《平移旋转和轴对称》教案

(2)旋转的概念及其性质:旋转是指将一个图形绕着某一点转动一个角度的图形变换。重点是让学生掌握旋转前后图形的大小和形状不变,只改变位置,并能运用旋转性质解题。
举例:在平面图上,将一个正方形绕其中心点逆时针旋转90度,要求学生能够正确画出旋转后的正方形,并说明旋转角度和中心点。
突破方法:通过实际操作和举例,让学生发现轴对称图形的特点,学会在平面图上准确找出对称轴,并理解对称轴两侧图形的相互关系。
在教学过程中,教师要针对重点内容进行详细讲解和强调,通过丰富的实例和实际操作,帮助学生理解并掌握核心知识。同时,针对难点内容,采取有效的教学方法,引导学生逐步突破,确保学生对平移、旋转和轴对称的理解透彻。
6.总结回顾环节,学生们对于本节课的知识点有了较好的掌握,但仍有个别学生在理解上存在误区。在今后的教学中,我要加强对这些学生的关注,及时发现并纠正他们的错误理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平移旋转和轴对称》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体移动或旋转的情况?”(如玩具车的移动,风车的旋转等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平移、旋转和轴对称的奥秘。
五、教学反思
在今天的《平移旋转和轴对称》教学中,我尝试了多种教学方法,旨在让学生更好地理解和掌握这些几何变换的概念及其应用。通过这节课的教学,我有以下几点思考:
1.学生对平移、旋转和轴对称的概念有了初步的认识,但在实际操作中,我发现部分学生对于如何准确判断和运用这些变换仍存在困难。在今后的教学中,我需要更加注重让学生动手操作,提高他们的实际应用能力。
《轴对称图形》平移旋转和轴对称

汇报人: 日期:
目录
• 轴对称图形 • 平移 • 旋转 • 轴对称、平移和旋转的关系
01
轴对称图形
轴对称图形的定义
轴对称图形
如果一个平面图形沿着一条直线 折叠后,直线两旁的部分能够互 相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。
举例
正方形、长方形、圆形、等腰三 角形等都是轴对称图形。
自然界中存在着许多轴对称的现象, 如蝴蝶、花等,这为艺术家和设计 师提供了丰富的创作灵感。
图案设计
轴对称的图案设计广泛应用于服装、 家居、包装等领域,如徽标、商标等 。
02
平移
平移的定义
01
平移是指在平面内,将一个图形 沿某一方向移动一定的距离,而 图形的大小和形状保持不变。
02
平移不改变图形的形状、大小和 方向,只是改变了图形的位置。
轴对称图形的性质
01
02
03
对称性
轴对称图形具有对称性, 即图形关于对称轴对称。
唯一性
每一个轴对称图形都只有 一条对称轴,且通过该对 称轴折叠后才能完全重合 。
稳定性
轴对称图形具有较好的稳 定性,因为其对称性使得 图形在受力时能够保持平 衡。
轴对称图形的应用
建筑设计
自然界中的轴对称现象
轴对称的建筑外观给人以稳重、平衡 和和谐的感觉,如故宫、天坛等建筑 群。
平移的性质
平移是刚性变换,即平移过程中不会 改变图形之间的相对位置关系。
平移后的图形与原图形全等,即平移 前后的图形在大小和形状上完全相同 。
平移 旋转 轴对称 知识点总结

旋转180°能否与自身重合
对应点间的连线是否经过同一点,并被这一点平分
各边对应相等
各角对应相等
找对称轴:找一组对应点连线,做其垂直平分线。找两组对应点连线,过两条中点的直线
找对称中心:找一组对应点连线找其中点
两组对应点连线的交点
画法
找关键点
过每个关键点做对称轴的垂线截取与之相等的距离,标出对应点
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
连接对应点。
找关键点
过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点
连接对应点。
找关键点
连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点
连接对应点。
找关键点
连接关键点与对称中心,延长并截取相等的长度,标出对应点ቤተ መጻሕፍቲ ባይዱ
连接对应点.
重要结论
线段是轴对称图形,对称轴是它的垂直平分线。
角是轴对称图形,对称轴是它的角平分线。
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等
对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分。
对应边相等,对应角相等
判断方法
沿着某条直线对折看是否重合。
找平移的方向和距离:
二年级下册数学图形的运动---轴对称、平移、旋转

创意性图案1
将正方形进行轴对称和平移,可以设计出 具有对称性的连续方形图案。
创意性图案2
将三角形进行旋转和平移,可以设计出具 有旋转对称性的复杂图案。
创意性图案3
将圆形进行平移和旋转,可以设计出具有 流动感的圆形图案。
欣赏经典数学图案作品
ห้องสมุดไป่ตู้经典作品1
经典作品3
埃舍尔的《相对性》利用轴对称和平 移等变换,展示了视觉上的错觉和数 学的魅力。
• 平移的要素:平移的方向和距离。
关键知识点总结回顾
旋转的定义
在平面内,将一个图形绕一个定 点沿某个方向转动一个角度,这
样的图形运动称为旋转。
旋转的性质
旋转不改变图形的形状和大小,只 改变图形的位置和方向。
旋转的要素
旋转中心、旋转方向和旋转角度。
学生自我评价报告
知识掌握情况
我已经掌握了轴对称、平移和旋转的基本概念和性质,能够识别和判断这些图形运 动。
选择基本图形
选择一个简单的图形,如正方形、三角形 或圆形,作为设计的基础。
应用轴对称
通过轴对称,可以创建出镜像效果,使得 图形具有对称美感。
应用平移
通过平移,可以将基本图形在平面上移动 到不同位置,形成连续的图案。
应用旋转
通过旋转,可以将基本图形绕某一点旋转 一定角度,创造出更丰富的图案效果。
创意性图案设计展示
绘制轴对称图形步骤
01
确定对称轴的位置和方向。
02
在对称轴的一侧绘制图形的一部 分。
03
根据轴对称的性质,在对称轴的 另一侧绘制出与已绘制部分完全 相同的图形。
04
检查绘制的图形是否满足轴对称 的定义,即沿对称轴折叠后两侧 是否能够完全重合。
三年级上册数学 :平移 旋转 和轴对称

第十一讲平移旋转和轴对称知识提纲:在生活中有很多运动,也包括着一些有规律的运动,平移旋转就是常见的运动方式,还有一些常见的有规律的图形,例如轴对称图形。
知识要点1:平移旋转平移:在生活中有很多平移的情况,如火车的直线行驶,电梯的上下移动,这些都是平移现象,那我们来观察下平移的规律和特点,如下图这个长方形向右移动,这过程就是平移,观察平移前后的图形在大小,形状和方向上有没有变化,但是位置发生了改变。
我们可以看出平移前后的图像在大小,形状以及方向上都没有变化,位置会发生改变,这就是平移的特点,那你能想到生活中还有哪些是平移呢?旋转:旋转在生活中也是常见的,例如闹钟上指针的转动,电风扇扇叶的转动都是旋转,我们来总结旋转的规律。
如图思考:观察这个图形的变化,它经过转动得到新的图形,观察这两个图形发现:图形的形状和大小并没有变化,但是位置和方向却不同,这就是旋转的特点,不改变图形的大小和形状,改变位置和方向。
那么生活中还有那些是旋转呢?课堂练习:在括号里填上平移旋转汽车在公路上运动时,轮子的运动是() 升旗时国旗的运动()在算盘上拨珠()电梯的运动()风扇叶片的运动()火车的运动()。
知识要点2:轴对称图形轴对称图形:首先了解轴就相当于一条直线;对称也就是两边折叠完全重合,放在一起就是,一个图形沿这一条直线对折两边完全重合就叫做轴对称图形,如下图观察发现,这个长方形沿这中间的直线对折两边完全重合,那么这就是轴对称图形。
所以在判断是不是轴对称图形,一定要去找有没有一条直线能使图形左右完全重合。
课堂练习:判断下例图形是不是轴对称图形()()()判断下例字母是不是轴对称图形A B C D E H J K L O P题型1:图形平移的画法:图形的平移我们可以找图形上的点去平移在连接点就行了思考:图中三角形向右移动4格,我们可以看到三角形上有3个顶点,我们可以把这3个顶点向右平移4格,在连接这3个顶点就行了。
课堂练习:题型2:图形的移动变化例观察图形,回答问题()格,再向()2,观察图形,需要先向()平移()格,再向()平移(自主练习1升降国旗2拧开水龙头3用钥匙拧开房间门4拉动抽屉5吊扇在空中运动6乘坐电梯7转动转盘8指针运动属于平移的有:()属于旋转的有:()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 图形的平移、旋转、轴对称[自我测试]基础验收题一、选择题(本题共8小题,每小题只有一个选项符合题意) 1.如图A B C '''∆由ABC ∆平移得到的,下列说法错误的( ) (A )将ABC ∆先向右平移9个单位,再向上平移4个单 位就得到A B C '''∆(B )将ABC ∆先向上平移4个单位,再向右平移9个单 位就得到A B C '''∆(C )将ABC ∆沿CC '方向,平移得距离等于线段CC '的长就得到A B C '''∆(D )将ABC ∆沿C C '方向,平移得距离等于线段C C '的长就得到A B C '''∆ 2.如图所示,将ABC '∆沿着XY 方向平移一定的距离成为△MNL ,就得到MNL ∆,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNL (A )1个 (B )2个 (C )3个 (D )4个3.如图,在这四个图案中都是某种衣物的洗涤说明,请指出不是 利用图形的平移、旋转和反射(轴对称)设计的是( )4.如果,在正六边形硬纸板上剪下一个正三角形(如图(1)中的阴影部分)那么将这个正三角形分别通过一次( )便可依次得到图(2)、(2)、(4)(A )平移、对称、旋转 (B )旋转、平移、平移 (C )对称、旋转、平移 (D )平移、平移、平移5.下列美丽图案,既是轴对称又是中心对称图形的个数是( )(A )1个 (B )2个 (C )3个 (D )4个6.如图,一块等边三角形木板ABC 的边长为1,现将木板沿水平线翻转(绕一个点旋转),那么A 点从开始到结束所走的路径长度为( )(A )4 (B )2π (C )23π (D )43π7.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,求正方形ABCD 的边被纸板覆盖部分的面积为( )一、1题图 一、2题图 (A) (B) (C) (D)一、5题图 一、6题图 一、7题图D CBAO一、8题图 三、1题图(A )213a (B )214a (C )212a (D )14a 8.P 是等边ABC ∆内部一点,APB ∠、BPC ∠、 CPA ∠的大小之比是5:6:7,所以PA 、PB 、PC 的长为边的三角形的三个角的大小之比是( )(A )2:3:4 (B )3:4:5 (C )4:5:6 (D )不能确定 二、填空题(本题共8小题,把答案填写在题中横线上)1.一个数字在镜子里看是“1208”,且这个数字图像垂直对着镜子,则实际上这个数字是 .2.如图,点P 关于OA 、OB 对称点分别是P 1、P 2, P 1P 2分别交OA 、OB 于点C 、D ,P 1P 2=6cm ,则△PCD 的周长为 .3.用黑白两种颜色的正六边形地面 砖按如图所示的规律,拼成若干图案,请 推算(1)第4个图案中有白色地面砖块;(2)第n 个图案中白 色的地面砖 块.4.如图,在Rt △ABC 中,∠C=90°,∠A=60°,,将△ABC 绕点B 旋转至△A B C '''的位置,且使点A 、B 、C三点在一条直线上,则点A 经过的最短路线的长度是 .5.已知矩形ABCD 的一边AB=2 cm ,另一边 AD=4cm ,则以直线AD 为轴旋转一周所得到的图形 是 ,其侧面积是 cm 2.6.如图,P 是正方形ABCD 内一点,将△PCD 绕点C 逆时针方向旋转后与△P CB '重合,若PC=1, 则PP '= . 7.如图,直线AE ∥BD ,点C 在BD 上,若AE=5,BD=8,△ABD 的面积为16,则 △ACE 的面积为 .8.将一个图形向左平移4个单位,则图形上所有点的横坐标 ,纵坐标 .若图形向上平移了3个单位,且同时向右平移2个单位,则图形上所有关的横坐标 ,纵坐标 .三、解答题:(本题共7小题,解答要写出文字说明或演算步骤)1.如图,P 为△BOA 内任一点,在OB 上找一点M , 在OA 上找一点N ,使得△PMN 的周长最短.2.如图,一圆的直径为等腰三角形△ABC 的一直二、2题二、4题图二、6题图 二、7题图二、3题图第1个 第2个 第3个 三、2题图BAC三、5题图 三、6题图角边的长,若将圆平移到直角三角形中使BC 成为圆的 直径,已知BC=2,求圆与三角形重叠部分的面积.3.如图,请你用三种方法把左边的 小正方形分别平移到右边三个图形中,使 它成为轴对称图形.4.如图是某设计师设计的方桌布图案的一部 分,请你运用旋转变换的方法,在坐标纸上将该图 形绕原点顺时针依次旋转90°、180°、270°并 画出它在各象限内的图形,你会得到一个美丽的“ 立体图形”,你来试一试吧!但是涂阴影...时要注意 利用旋转变换的特点,不要涂错了位置,否则不会 出现理想的效果,你来试一试吧!5.如图在正方形网络上有一个△ABC(1)作出△ABC 过于直线MN 的对称图形A B C '''∆; (2)作出△ABC 关于O 点对称图形A B C ''''''∆;(3)若网格上的最小正方形边长为1,求△ABC 的面积; (4)A B C ''''''∆能否由A B C '''∆平移得到,能否由A B C '''∆ 旋转得到.这两个三角形(指A B C '''∆与A B C ''''''∆)存在什 么样的图形变换关系.6.现有如图所示的6种瓷砖,请用其中的4块瓷砖(允许有相同的)设计出美丽的图案.方法1方法2方法3三、3题图三、7题图一、2题图 一、3题图一、5题图7.如图,将图中的ABC 作下列运动,画出相应图形,指出三个顶点坐标发生的变化:(1)沿x 轴向右平移1个单位;(2)关于y 轴对称;(3)以C 点为位似中心,放大5倍.综合能力测试一、选择题(本题共8小题,每小题只有一个选项符合题意)1.从图形的几何性质考虑,下列图形中有一个与其他三个不同,它是( ).2.小明从镜子里看到对面电子钟示数的影像如图,这时的时刻应是( ).(A)21:10 (B)10:21 (C)10:51 (D)12:013.如图,把一个正方形纸片三次对折后沿虚线剪下,然后展开,则所得图形是( ).4.下列图形中,是中心对称图形的是( ).5.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的. 右图是看到的万花筒的一个图案,图中所有小三角形均是全等 的等边三角形,其中菱形ABFG 可以看成是把菱形ABCD 以点 A 为中心( ). (A)顺时针旋转60°得到 (B)顺时针旋转120°得到 (C)逆时针旋转60°得到 (D)逆时针旋转120°得到6.如图是经过改造的台球桌面示意图,图中四个角上的阴影一、6题图一、7题图一、8题图二、4题图 二、6题图二、7题图二、8题图部分分别表示四个入球孔.如果一个球按图中所示的方向 被击出(球可以经过多次被反射),那么该球最后将落入的入 球孔是( ).(A)l 号孔 (B)2号孔 (C)3号孔 (D)4号孔7.如图,在菱形ABCD 中,∠DAE=80°,AB 的垂直平分线交 对角线AC 于点F ,E 为垂足,连结DF .则∠CDF 等于( ). (A)80° (B)70° (C)65° (D)60°8.如图,△ABC 为等腰直角三角形,∠A=90°,⊙O 与BC 相切于D ,则图中阴影部分的面积为( ). (A)12π-(B) 13π- (C) 14π- (D) 15π- 二、填空题(本题共8小题,把答案填在题中横线上)1.在剪纸中,如果所用的纸张对折了n 次(n ≥1且n 为整数),那么剪出来的图案至少有 条对称轴.2.在线段、角、等腰三角形、平行四边形和圆中,一定是轴对称图形,也是中心对称图形的是 .3.甲、乙两名运动员照镜子时,小明看到他们胸前的号码在镜子中的像分别是和, 那么甲胸前的号码是 ,乙胸前的号码是 .4.如图, △ABC 中,AB=AC ,D 、E 分别在AC 、AB 上,DE 垂直平分AB ,AB+BC=10cm ,则△DBC 的周长为 cm . 5.国旗上的五角星图案绕它的中心至少旋转 度能与自身重合.6.如图,已知Rt △ABC 中,∠C=90°,点D 、E 、F 分别在AB 、AC 、 BC 上,四边形CFDE 是正方形.如果AD=3,BD=4,那么图中阴影 部分的面积是 .7.如图,把边长为1的正方形ABCD 的对角线AC 分成n 段,以每一段为对角线作正方形,所有小正方形的周长之和为 .8.如图,矩形ABCD 中,AB=4cm ,BC=2cm ,E 是以A 为圆心、 AD 为半径所作圆周与BA 延长线的交点,则图中阴影部分的 面积是 cm 2.三、解答题(本题共8小题,解答应写出文字说明或演算步骤)1.如图,由小正方形组成的L 形图中,请你用三种方法分别在图中添画一个小正方形, 使它成为轴对称图形.方法1方法2 方法 3三、1题图 三、2题图三、3题图 (b ) 三、4题图 三、5题图三、6题图2.(1)如图,首先画出其中阴影所组成的图形绕点O 按顺时针方向旋转90°后的图形;然后把所画的图形向右平移一格,再向上平移一格. (2)设每个小正方形的面积为1,写出(1)中至最后所展现出的图 形内所有阴影部分的面积和.3.如图,在一块长为a ,宽为b 的长方形草地上,有一条弯曲的柏油小路(图中的阴影 部分表示小路,小路任何地方的水平宽度都是1个长度单位),请你猜想空白部分表 示的草地面积是多少?并说明你的猜想是正确的.4.(1)如图(a ),它是一个多么漂亮的图案啊!请你在这个图案中确定一个基本图形,然后说出这个基本图形经过怎样的变换便可得到图(b );(2)如图(b ),将它分成,△OAB 、△OBC 、△OCD 等三个等边三角形(包含三角形内 部所有图形).①探究:△OAB 怎样变换可以得到△OBC?△OBC 怎样变换可以得到△OCD? △OAB 怎样变换可以得到△OCD? ②思考:对称与旋转有何关系? 5.如图,已知矩形纸片ABCD ,折叠它的一边BC ,使C 点落在AB 边上的C '处,折痕为BG ;然后把△ADG 沿着AG 翻折, 使点D 落在矩形内部的D '处.如果再沿着AD '翻折△AD C ', 那么点G 恰好落在AB 边上的点G '处.(1)试探索,△AGG ',的形状并说明原因. (2)当BC=3时,求矩形纸片ABCD 的面积.6.如图,P 是正方形ABCD 内的一点,AP=1,APB=135°.求PC 的长.三、7题图7.如图,已知20×20的网络中每个小正方形的边长均为1个单位长度,等腰直角三角 形ABC 的腰长为4个单位长度,△ABC 从点A 与点M 重合的位置开始,以每秒1 个单位长度的速度先向下平移,当BC 边与网络的底部重合时,继续以同样的速度向 右平移,当点C 与点P 重合时,△ABC 停止运动.设运动时间为x 秒,△QAC 的面 积为y .问:当x 为何值时,y 取得最大值和最小值?最大值和最小值各是多少?8.如图,已知直线l ⊥OB ,P 点在l 上,以P 为圆心,OP 长为半径作⊙P 交y 轴的正 方向于B 点,交l 于A 点.已知的度数是120°,且AB 、AO , 再将△OAB 折叠,使点A 落在边OB 上,记为A ′,折痕为EF . (1)求证,△AOB 是等边三角形,并求出圆心P 的坐标, (2)当A'E ∥x 轴时,求点A '和E 坐标; (3)当A'E ∥x 轴,且抛物线216y x bx c =-++经过点A '和E 时,求抛物线与x 轴的交 点的坐标;(4)当点A '在OB 上运动但不与点O 、B 重合时,能否使△A'EF 成为直角三角形?若能,请求出此时点A '的坐标;若不能,请你说明理由.三、8题图OB。