平移旋转和轴对称

合集下载

四下第1讲 平移、旋转和轴对称(解题思路)

四下第1讲 平移、旋转和轴对称(解题思路)

第1讲平移、旋转和轴对称考点1:平移的两要素例1.如图所示:图形(1)向平移了格.图形(2)向平移了格.图形(3)向平移了格.【思路分析】找出各个图形平移后的对应关键点,即可得到平移的方向和距离,由此得解.【规范解答】解:如图所示:图形(1)向上平移了2格.图形(2)向左平移了4格.图形(3)向右平移了6格.故答案为:上,2,左,4,右,6.【名师点评】此题考查了利用平移进行图形变化的方法的灵活应用.练习1.(1)长方形向上平移了格.(2)六边形向平移了格.(3)五角星向平移了格.【思路分析】根据题意,结合图形,由平移的概念找出图形平移的方向,和平移的格数,即可求解.【规范解答】解:观察图形可知:(1)长方形向上平移了6格.(2)六边形向左平移了5格.(3)五角星向下平移了6格.故答案为:上,6,左,5,下,6.【名师点评】本题考查平移的基本概念及平移规律,关键是要观察比较平移前后物体的位置.2.填一填.(1)①向上平移了格.(2)②向平移了格.(3)③向平移了格.【思路分析】先找清楚方向,看原图到现在的图是向哪个方向平移的,然后在原图中选择一个点,找出这个点在后来图中的位置,然后数出这两个点之间的小格数即可.【规范解答】解:(1)①向上平移了2格.(2)②向左平移了4格.(3)③向右平移了6格.故答案为:上、2;左、4;右、6.【名师点评】解决本题关键是要数清楚平移的格子数.考点2:作平移后的图形例2.画出网格中图形向上平移1格,再向右平移3格后的图形.【思路分析】根据平移图形的特征,把平行图形的各个顶点分别向上平移1格,再向右平移3格,然后顺次连接各点即可.【规范解答】解:【名师点评】作平移后的图形关键是把对应点的位置画正确.练习1.(1)房子向右平移5格.(2)小船向下平移4格,再向左5格.【思路分析】(1)根据平移的特征,把小房子的各顶点分别向右平移5格,再依次连结即可得到向右平移5格后的图形.(2)同理即可画出小船向下平移4格,再向左平移5格后的图形.【规范解答】解:(1)房子向右平移5格(下图):(2)小船向下平移4格,再向左5格(下图):【名师点评】平移作图要注意:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.考点3:运用平移的知识解决问题例3.一块平行四边形地底是18m,高是12m,地中间有两条1米宽的小路(如图),在这块地里种菜,种菜的面积是多少?【思路分析】将小路两旁部分向中间平移,直至小路消失,那么种菜的面积就是底为(181)--米,高为(121)米的平行四边形的面积,根据平行四边形的面积=底⨯高计算即可得出种菜的面积.【规范解答】解:(181)(121)-⨯-=⨯1711=(平方米)187答:种菜的面积是187平方米.【名师点评】此题主要考查平行四边形面积的计算.关键是求出图形切拼后平行四边形的底和高.练习1.如图,求图中阴影部分的面积.(单位:厘米)【思路分析】如图所示:阴影部分①和空白部分②的面积相等,将①平移到②的位置,则阴影部分就变成了一个长方形,利用长方形的面积公式S ab=即可求解.【规范解答】解:据思路分析可知,阴影部分的面积为:(12)2+⨯=⨯32=(平方厘米)6答:阴影部分的面积是6平方厘米.【名师点评】规范解答此题的关键是:利用平移的方法,将不规则图形转化成规则图形,再根据规则图形的面积公式即可求解.2.一块草地形状如图的阴影部分,阴影部分的面积是多少平方米?【思路分析】把草地上左边的半圆放在右边就变成了一个长为10米,宽为6米的长方形,这个长方形的面积就是草地的面积.【规范解答】解:把左边的半圆平移到右边的半圆上后草地就变成了一个长方形,它的面积是:10660⨯=(平方米);答:阴影部分的面积是60平方米.【名师点评】求组合图形的面积时经常用平移、旋转、填补、切割等方法把复杂的图形变成较简单的图形来算.考点4:旋转的三要素例4.根据图,回答问题.①号三角形是绕A点按顺时针方向旋转了度.②号梯形是绕B点按时针方向旋转了度.③号三角形是绕C点按时针方向旋转了度.④号平行四边形是绕D点按时针方向旋转了度.【思路分析】根据图形旋转的特征,一个图形绕某点顺时针(或逆时针)旋转一定的度数,某点的位置不动,其余各点(边)均绕某点按相同的方向旋转相同的度数.【规范解答】解:①号三角形绕A点按顺时针方向旋转了90度.②号梯形绕B点按逆时针方向旋转了90度.③号三角形绕C点按逆时针方向旋转了90度.④号平行四边形绕D点按顺时针方向旋转了90度.故答案为:顺,90,逆,90,逆,90,顺,90.【名师点评】本题是考查图形的旋转,关键是弄清旋转的方向与角度.练习1.①图形D绕点O按方向旋转︒到图形A所在的位置.②图形A绕点O按方向旋转︒到图形C所在的位置.③图形C绕点O按方向旋转︒到图形B所在的位置.【思路分析】旋转的要素是旋转方向,旋转中心,旋转角,据此即可解决问题.【规范解答】解:①图形D绕点O按逆时针方向旋转90︒到图形A所在的位置.②图形A绕点O按逆时针方向旋转180︒到图形C所在的位置.③图形C绕点O按顺时针方向旋转90︒到图形B所在的位置.故答案为:逆时针,90;逆时针,180;顺时针,90.【名师点评】本题主要考查了旋转的要素,是需要熟记的内容.3.如图:(1)指针从“1”绕点O顺时针旋转60︒后指向.(2)指针从“1”绕点O逆时针旋转90︒后指向.(3)指针从“12”绕点O顺时针旋转︒后指向“3”.(4)指针从“12”绕点O逆时针旋转︒后指向“8”.(5)指针从7:15到7:40绕点O顺时针旋转度.【思路分析】钟面上12个数字把钟面平均分成12份,每份所对应的圆心角是3601230︒÷=︒,即每两个相邻数字间的夹角是30︒,即指针从一个数字走到下一个数字时,绕中心轴旋转了30︒,由此规范解答即可.【规范解答】解:(1)指针从“1”绕点O顺时针旋转60︒后指向3.(2)指针从“1”绕点O逆时针旋转90︒后指向9.(3)指针从“12”绕点O顺时针旋转90︒后指向“3”.(4)指针从“12”绕点O逆时针旋转120︒后指向“8”.(5)指针从7:15到7:40绕点O顺时针旋转150度.故答案为:3,9,90,120,150.【名师点评】关键弄清在钟面上指针绕中心从一个数字旋转到相邻的另一个数字旋转了多少度.考点5:作旋转一定角度后的图形例5.我会操作.(1)画出三角形绕点“A”顺时针旋转90度后的图形,并标为图1.(2)画出三角形绕点“B”逆时针旋转180度后的图形,并标为图2.【思路分析】(1)根据旋转的特征,三角形ABO绕点“A”顺时针旋转90︒,点“A”的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形1.(2)同理,三角形ABO绕点“B”逆时针旋转180︒,点“B”的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形2.【规范解答】解:(1)画出三角形绕点“A”顺时针旋转90度后的图形,并标为图1(图中红色部分).(2)画出三角形绕点“B”逆时针旋转180度后的图形,并标为图2(图中绿色部分).【名师点评】经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.练习1.画出小旗绕点O逆时针旋转90︒后得到的图形.【思路分析】根据旋转的意义,找出图中三角旗3个关键处,再画出绕O点按逆时针方向旋转90度后的形状即可.【规范解答】解:作图如下:【名师点评】本题考查了图形的旋转变化,学生主要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.考点6:轴对称图形的辨识例6.下面图形不是轴对称图形的是()A.B.C.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:选项A、B都是轴对称图形,而C不是轴对称图形;故选:C.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.练习1.下面9个交通标志图案中,有()个图形是轴对称图形.A.4B.5C.6D.7【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:是轴对称图形;故选:A.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.2.成轴对称的两个数字是()A.B.C.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:选项A、B都不是轴对称图形,只有C是轴对称图形;故选:C.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.考点7:画轴对称图形的对称轴例7.按要求画出下面轴对称图形的对称轴.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此画图规范解答即可.【规范解答】解:【名师点评】本题考查了轴对称图形的对称轴的确定,根据轴对称图形的对称轴两边的部分关于对称轴折叠能够完全重合作图即可,比较简单.练习1.画出下列图形的所有对称轴.【思路分析】(1)有三条对称轴,即过每个圆圆心与另外两个圆交点的直线.(2)有两条对称轴,即过个两个箭头顶点的直线,及箭头两个顶点间线段的垂直平分线.(3)等腰有一条对称轴,底边高所在的直线.【规范解答】解:【名师点评】此题是考查确定轴对称图形对称轴的条数及位置.关键是轴对称图形的意义及各图形的特征.考点8:作轴对称图形的另一半例8.动手画一画:以虚线为对称轴,画出下列图形的轴对称图形.【思路分析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的另一边画出原图的关键对称点,依次连结即可.【规范解答】解:【名师点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可.练习1.先画出下面这个轴对称图形的另一半,再画出这个轴对称图形向右平移8格后的图形.【思路分析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的下边画出图形的关键对称点,顺次连结.然后根据平移的特征,把图形的各点分别向右平移8格,再依次连结即可.【规范解答】解:先画出下面这个轴对称图形的另一半,再画出这个轴对称图形向右平移8格后的图形,作图如下:【名师点评】本题是考查作轴对称图形、作平移的图形.关键是确定对称点(对应点)的位置.2.下面的图形都是由相同的小正方形组成的,请分别在各图形上画一个同样大小的小正方形,使它们成为轴对称图形.【思路分析】因为如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,据此规范解答.【规范解答】解:作图如下【名师点评】此题是考查了轴对称图形的意义.考点9:镜面对称问题例9.如图是小明在平面镜中看到时钟形成的像,它的实际时间是()A.21:05B.12:02C.12:05D.15:02【思路分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.【规范解答】解:如图实际时间是12:05.故选:C.【名师点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.练习1.如图的钟面是从镜子里看到的,实际钟面上的时刻是.【思路分析】镜面对称的特点是:上下前后方向一致,左右方向相反;图中镜子里看到的时间是6:40,由镜面对称左右方向相反特点,镜中时针在6与7之间,实际是在5与6之间,是5时,镜中分针指刻度8,实际中是指刻度4,即20分;据此规范解答.【规范解答】解:因为镜中时针在6与7之间,实际是在5与6之间,是5时,镜中分针指着刻度8,实际中是指刻度4,即20分,所以实际钟面上的时刻是5:20.故答案为:5:20.【名师点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.2.一位司机从反光镜中看到后面汽车的车牌是,这个车牌号实际是浙F.8765A.【思路分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.【规范解答】解:如图,这个车牌实际是:浙F.8765A.故答案为:浙F.8765A.【名师点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.3.从镜子里看的样子是()A.B.C.【思路分析】镜面对称的特点是:上下前后方向一致,左右方向相反,在镜中的样子,上下前后的样子不变,只有左右方向相反,所以.【规范解答】解:从镜子里看的样子是;故选:C.【名师点评】此题考查了镜面对称的特点:上下前后方向一致,左右方向相反.注意左右方向是相反的.考点10:运用平移、对称和旋转综合作图例10.按要求在方格纸上画一画.①把三角形先向右平移10格,再向上平移4格.②把长方形绕点A顺时针旋转90︒.③把最右边的图形补全,使它成为轴对称图形.【思路分析】①根据平移的特征,把三角形的各顶点分别向右平移10格,依次连结即可得到向右平移10格后的图形;用同样的方法即可把平移后的图形再向上平移4格.②根据旋转的特征,长方形绕点A顺时针旋转90︒,点A的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形.③根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的左边画出右半图的关键对称点,依次连结即可.【规范解答】解:①把三角形先向右平移10格(图中灰色部分),再向上平移4格(图中红色部分).②把长方形绕点A顺时针旋转90︒(图中绿色部分).③把最右边的图形补全,使它成为轴对称图形(图中蓝色部分).【名师点评】作平移后的图形、作旋转一定度数后的图形、作轴对称图形的关键是确定对应点(对称点)的位置.练习1.如图(1)将图形A先绕点O顺时针旋转90 ,再向左平移6格,得到图形C.(2)将图形B向右平移5格后得到图形D.(3)以直线l为对称轴作图形D的轴对称图形E.【思路分析】(1)以点O为旋转中心,把图形A的另外几个顶点,分别绕点O顺时针旋转90后,再依次连接起来,得到的图形再把各个顶点分别向左平移6格,依次连接起来即可得出图形C;(2)把图形B的各个顶点分别向左平移5格,再依次连接起来,即可得出图形D.(3)据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,画出图形D的轴对称图形E即可规范解答问题.【规范解答】解:根据题干思路分析可得:【名师点评】此题考查利用轴对称、旋转、平移进行图形变换的方法.。

关于“平移、旋转、轴对称”学习价值的思考

关于“平移、旋转、轴对称”学习价值的思考

关于“平移、旋转、轴对称”学习价值的思考引言在数学学科中,平移、旋转和轴对称是三个基本的几何变换方法。

学习这些变换方法不仅可以提升学生的空间想象能力,还能培养他们的逻辑思维和问题解决能力。

本文将从学习这些变换方法的意义、方法及应用等方面进行探讨,并分析其在实际生活和职业发展中的价值。

一、学习平移、旋转、轴对称的意义1.1 提升空间想象能力平移、旋转和轴对称是几何变换中最基本的三种变换方法。

通过学习这些方法,学生可以在脑海中形成对空间的直观想象,从而更好地理解和描述几何形状的移动、旋转和对称性。

1.2 培养逻辑思维和问题解决能力学习平移、旋转、轴对称需要学生进行推理和抽象思维,培养他们的逻辑思维和问题解决能力。

通过分析和解决与这些变换相关的问题,学生可以锻炼自己的思维能力,并培养解决问题的方法和策略。

1.3 基础建设与后续学习平移、旋转、轴对称是几何学习的基础,掌握这些基本变换方法对学习后续内容,如相似性、对称图形等有着重要的作用。

只有牢固掌握了这些基本内容,才能更好地理解和应用更复杂的几何概念和方法。

二、学习平移、旋转、轴对称的方法2.1 平移平移是指在平面上将一个图形沿着某个方向移动一段距离,但其形状和大小保持不变。

学习平移的方法可以通过探索物体的位置关系和移动规律,培养学生观察和分析的能力,并通过解决与平移相关的问题来巩固知识。

2.2 旋转旋转是指将一个图形绕着某个中心点旋转一定角度,使其形状和大小保持不变。

学习旋转的方法可以通过观察和分析旋转后图形的特点和规律,培养学生旋转变换的感性认识,并通过解决相关的旋转问题来巩固知识。

2.3 轴对称轴对称是指图形绕着某个中心轴进行对称,两侧的部分完全相同。

学习轴对称的方法可以通过观察和分析轴对称图形的特点和规律,培养学生对对称性的理解,并通过解决相关的轴对称问题来巩固知识。

三、平移、旋转、轴对称的应用3.1 实际生活中的应用平移、旋转和轴对称在实际生活中有着广泛的应用。

平移、旋转和轴对称教案设计及实施

平移、旋转和轴对称教案设计及实施

平移、旋转和轴对称是初中数学中的基础知识点,也是几何变换中比较基础的内容。

在教学中,我们应该注重让学生理解这些概念,并掌握它们的实际应用。

本文将从设计教案、实施教学和教学效果等方面展开讨论。

一、教案设计1.1 教学目标通过学习,使学生能够:(1)理解平移、旋转、轴对称三种几何变换的概念。

(2)掌握平移、旋转、轴对称三种变换的定义和性质。

(3)在解决实际问题中应用几何变换的知识。

1.2 教学重点和难点教学重点:平移、旋转、轴对称的概念和性质。

教学难点:平移、旋转、轴对称的实际应用。

1.3 教学方法本课程将采用讲授与实践相结合的方式,让学生动手实践,比较直观地感受几何变换。

二、实施教学2.1 知识预热在开始教学之前,可以先对平移、旋转、轴对称三种几何变换的概念进行简要讲解,并结合实例让学生感受这些变换。

2.2 学习具体内容(1)平移讲解平移的概念和性质,引导学生体会平移的特点和变化方式,并设计相关示例让学生动手操作。

(2)旋转讲解旋转的概念和性质,引导学生体会旋转的特点和变化方式,并设计相关示例让学生动手操作。

(3)轴对称讲解轴对称的概念和性质,引导学生体会轴对称的特点和变化方式,并设计相关示例让学生动手操作。

2.3 实践应用引导学生通过实例,结合自身生活和实际问题,了解几何变换在现实中的应用,并通过互动、讨论等方式加深对几何变换的理解。

三、教学效果在课程结束后,可以通过以下方式来检测教学效果:(1)练习题设计练习题,测试学生掌握平移、旋转、轴对称的能力和应用水平。

(2)小结通过让学生回顾整个课程内容,提升他们对几何变换的整体理解和应用能力。

(3)实践设计相关实践活动,让学生在实际应用中掌握几何变换技能。

通过以上的教学设计与实践,我们可以让学生更加直观地认识平移、旋转和轴对称,并在实际应用中掌握这些几何变换的相关技能。

同时,通过练习、小结和实践等方式来检测教学效果,进一步提升学习效果和教学质量。

《平移、旋转和轴对称》教案

《平移、旋转和轴对称》教案

《平移、旋转和轴对称》教案第一章节:平移1.1 学习目标:了解平移的定义和特点,学会用平移的方法进行图形的变换。

1.2 教学内容:1.2.1 平移的定义:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动称为平移。

1.2.2 平移的特点:平移不改变图形的形状和大小,只改变图形的位置。

1.3 教学步骤:1.3.1 引入:通过展示图片,让学生观察图片中物体的运动,引导学生发现平移的现象。

1.3.2 讲解:讲解平移的定义和特点,让学生理解平移的概念。

1.3.3 实践:让学生动手进行图形的平移操作,巩固对平移的理解。

1.3.4 总结:通过实例总结平移的特点,加深学生对平移的理解。

1.4 作业布置:让学生运用平移的方法,设计一个图形变换的图案。

第二章节:旋转2.1 学习目标:了解旋转的定义和特点,学会用旋转的方法进行图形的变换。

2.2 教学内容:2.2.1 旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形运动称为旋转。

2.2.2 旋转的特点:旋转不改变图形的大小和形状,只改变图形的位置和方向。

2.3 教学步骤:2.3.1 引入:通过展示图片,让学生观察图片中物体的运动,引导学生发现旋转的现象。

2.3.2 讲解:讲解旋转的定义和特点,让学生理解旋转的概念。

2.3.3 实践:让学生动手进行图形的旋转操作,巩固对旋转的理解。

2.3.4 总结:通过实例总结旋转的特点,加深学生对旋转的理解。

2.4 作业布置:让学生运用旋转的方法,设计一个图形变换的图案。

第三章节:轴对称3.1 学习目标:了解轴对称的定义和特点,学会用轴对称的方法进行图形的变换。

3.2 教学内容:3.2.1 轴对称的定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。

3.2.2 轴对称的特点:轴对称图形对称轴两侧的部分完全相同。

3.3 教学步骤:3.3.1 引入:通过展示图片,让学生观察图片中物体的对称现象,引导学生发现轴对称的概念。

《平移、旋转和轴对称》教案

《平移、旋转和轴对称》教案

《平移、旋转和轴对称》教案第一章:平移1.1 学习目标了解平移的定义和特点学会平移图形的绘制方法能够应用平移解决实际问题1.2 教学内容平移的定义:图形沿着某一方向移动一定的距离,而不改变其形状和大小。

平移的特点:图形中的每个点都按照同一方向和距离移动,保持图形原来的相对位置不变。

平移图形的绘制方法:先画出原图形,按照平移的方向和距离,将每个点移动到新的位置,连接所有移动后的点,得到平移后的图形。

1.3 教学活动导入:通过展示图片,让学生观察和描述图形的移动情况。

新课导入:介绍平移的定义和特点,引导学生理解平移的概念。

实例讲解:通过具体的图形实例,讲解平移的绘制方法,让学生跟随老师一起绘制平移后的图形。

练习巩固:给学生发放练习题,让学生独立完成平移图形的绘制。

应用拓展:提供实际问题,让学生运用平移的知识解决问题。

1.4 作业布置绘制一个任意的正方形,将其沿着一个给定的方向和距离进行平移,标记出平移后的位置。

第二章:旋转2.1 学习目标了解旋转的定义和特点学会旋转图形的绘制方法能够应用旋转解决实际问题2.2 教学内容旋转的定义:图形绕着某一点旋转一定的角度,而不改变其形状和大小。

旋转的特点:图形中的每个点都绕着同一个点旋转,保持图形原来的相对位置不变。

旋转图形的绘制方法:先画出原图形,按照旋转的中心点和角度,将每个点旋转到新的位置,连接所有旋转后的点,得到旋转后的图形。

2.3 教学活动导入:通过展示图片,让学生观察和描述图形的旋转情况。

新课导入:介绍旋转的定义和特点,引导学生理解旋转的概念。

实例讲解:通过具体的图形实例,讲解旋转的绘制方法,让学生跟随老师一起绘制旋转后的图形。

练习巩固:给学生发放练习题,让学生独立完成旋转图形的绘制。

应用拓展:提供实际问题,让学生运用旋转的知识解决问题。

2.4 作业布置绘制一个任意的三角形,将其绕着一个给定的点旋转一个给定的角度,标记出旋转后的位置。

第三章:轴对称3.1 学习目标了解轴对称的定义和特点学会轴对称图形的绘制方法能够应用轴对称解决实际问题3.2 教学内容轴对称的定义:图形相对于某一条直线对称,即图形的每一部分关于这条直线都有一个对应的部分。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

《轴对称图形》平移、旋转和轴对称

《轴对称图形》平移、旋转和轴对称
对称点的特点
对于任何一对对称点,它们到对称轴的距离相等,且连线垂直于对 称轴。
旋转与轴对称的关系
一个图形以某点为旋转中心旋转一定角度后与另一个图形重合,那 么这两个图形关于这条旋转中心成轴对称。
轴对称应用
艺术领域
许多艺术作品都利用了轴对称原 理,如建筑、雕塑、绘画等,给
人以美的感受。
自然界中
自然界中许多物体也具有轴对称 性,如叶子、花朵、动物身体等 ,这反映了自然界中一种平衡和
平移的性质
平移不改变图形的形状、 大小和方向,只改变图形 的位置。
平移性质
对应线段相等
平移后得到的图形与原图形对应线段相等。
对应角相等
平移后得到的图形与原图形对应角相等。
对应点所连的线段平行(或在同一直线上)且相等
平移后得到的图形与原图形对应点所连的线段平行(或在同一直线上)且相等。
平移应用
平行四边形的判定
旋转定义
旋转
在平面内,将一个图形绕 一个定点沿某个方向转动 一个角度,这样的图形运 动称为旋转。
旋转角
图形旋转时转动的角度。
旋转中心
图形旋转时,定点所在的 位置称为旋转中心。
旋转性质
旋转方向:可以是顺时针或逆 时针方向。
旋转角度:可以是任意角度, 但必须是0°的整数倍。
旋转前后图形全等,对应点到 旋转中心的距离相等,对应线 段长度、对应角大小相等。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。

平移和旋转能转化为轴对称吗

平移和旋转能转化为轴对称吗

平移和旋转能转化为轴对称吗平移、旋转和轴对称都是平面图形基本的全等变换,那么你是否思考过这样一个问题:平移和旋转能转化为轴对称吗?下面就让我们通过具体例子来研究这个问题.一、平移转化为轴对称例1 如图1,已知△ABC,直线m ∥n 且距离为a,画△ABC 关于直线m 对称的△A 'B 'C ',再画△A 'B 'C '关于直线n 对称的△A ''B ''C '',那么,能否通过平移△ABC 得到△A ''B ''C ''?研析:判断一个图形能否通过平移得到另一个图形,关键是看这两个图形对应点所连的线段是否平行且相等.由线段A A '、A 'A ''分别被对称轴m 、n 垂直平分,知点A 、A '、A ''共线,且A A ''=2a.同理可知, B B ''=2a ,C C ''=2a.所以A A ''、 B B ''、 C C ''互相平行且相等,所以将△ABC 沿与对称轴m(n)垂直的方向,平移2a 即可得到△A ''B ''C ''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴平行时,两次轴对称相当于一次平移,且平移的方向垂直于对称轴,平移的距离是两条对称轴之间的距离的2倍.二、旋转转化为轴对称例2 如图2,已知△ABC,直线MN 、PQ 相交于点O,且夹角为α(0°<α≤90°),画△ABC 关于直线MN 对称的△A 'B 'C ',再画△A 'B 'C '关于直线PQ 对称的△A ''B ''C '',那么,能否通过旋转△ABC 而得到△A ''B ''C ''?研析:抓住旋转的三要素:旋转中心、旋转方向及旋转角进行分析.由轴对称的性质知,OA=O A ', O A '=O A '',OM 平分∠AO A ',OP平分∠A 'O A '',所以OA=O A '',∠AO A ''=2α.同理OB=O B '',OC=O C '',∠BO B ''=2α, ∠CO C ''=2α.所以点A 、B 、C 分别绕点O 顺时针旋转2α的角度,就得到点A ''、B ''、C '',故将△ABC 绕点O 顺时针A BC B ' C ' A '' B '' C '' A ' 图1 m n A ' ABC B ' C ' A '' B '' C ''Nα Q 图2 O M P旋转2α的角度就得到△A''B''C''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴相交于一点时,两次轴对称相当于一次旋转,且旋转中心是对称轴的交点,旋转角为对称轴夹角α(0°<α≤90°)的2倍,旋转方向,与第一条对称轴旋转α的角度到第二条对称轴的位置的方向一致.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档