示波器说明书(新)

合集下载

示波器(CRT)的操作和应用说明书

示波器(CRT)的操作和应用说明书

The Oscilloscope: Operation andApplications1.The OscilloscopeOscilloscope Operation (X vs Y mode)An oscilloscope can be used to measure voltage. It does this by measuring the voltage dropacross a resistor and in the process draws a small current. The voltage drop is amplified andused to deflect an electron beam in either the X (horizontal) or Y (vertical) axis using anelectric field. The electron beam creates a bright dot on the face of the Cathode Ray Tube(CRT) where it hits the phosphorous. The deflection, due to an applied voltage, can bemeasured with the aid of the calibrated lines on the graticule.First we will consider the circuitry that amplifies and conditions the voltage to be measured (the “Amp” block in figure 1).Figure 1. X vs. Y Deflection Block Diagram of the CRT The deflection of the oscilloscope beam is proportional to the input voltage (after ac or dccoupling). The amount of deflection (Volts/Division) depends upon the setting of theAMPL/DIV control for that channel (see figure 2).The input signal can be ac or dc coupled. Ac coupling involves adding a series capacitor. This has the effect of blocking (removing) the dc bias and low frequency components of a signal.Dc coupling does not have this problem and therefore allows you to measure voltages rightdown to 0 Hz. Ac coupling is useful when you are trying to measure a small ac voltage that is “on-top” of a large dc voltage. A typical example is trying to measure the noise of a dc power supply.Figure 2. Amplifier Block DiagramAmplifier FeaturesAMPL/DIV - This abbreviated name varies but it is generally some short form of amplitude per division. The control is a simple voltage divider (attenuator) which is used to change the sensitivity of the oscilloscope. At a 1 volt/DIV setting, a deflection of one major division on the graticule represents a one volt change at the oscilloscope input.Calibrated voltage measurementsThe small knob within the AMPL/DIV control must be rotated clockwise into its detente position for the amplifiers to be calibrated. Otherwise the voltage/division will be some unknown value greater than what the dial indicates.INV - There is almost always a control which lets you invert one channel. This can be used along with the ADD function to subtract two voltages. This is necessary because the common input (black lead of the oscilloscope cable) can only be connected to a 0V node. If channel A has V1 + V2 and channel B has voltage V1 then the reading of channel A + (-channel B) = (V1 + V2) + (-V1) = V2Position - For each axis there is a control which lets you shift the electron beam. With this you can set the zero voltage point to anywhere that is convenient for you.Oscilloscope InputsThe input of the oscilloscope can usually be modelled as a resistance and a parallel capacitance (see figure 3). The resistance is usually 1M S but it and the capacitance can vary greatly. The total or effective capacitance includes the oscilloscope circuitry (approx. 30 pF), cables (approx. 30 pF/m) and stray capacitance. The resistance will draw current from the circuit while the capacitance will add an RC time constant with its associated time delay, frequency response and distortion of some waveforms.The common connection (black lead or shield) at the input of the oscilloscope goes to the metal case as the symbol by the input connector shows. Because of this, the common input can only be connected to a 0V point in the circuit. Since the common inputs for both the A and B channels are connected to the case, they are effectively shorted together.Figure 3. DC-coupled Oscilloscope Input Circuitand Frequency ResponseFigure 4. AC-coupled Oscilloscope Input Circuit andFrequency ResponseFrequency response is calculated or measured by applying a pure sinusoidal waveform to a circuit. The circuit response is the output voltage divided by the input voltage. This is a complex number that can also be expressed as a magnitude (gain) and phase.Due to limitations in the amplifiers, the oscilloscope's frequency response is limited. Themanufacturer simply lists the half-power point for the oscilloscope without any external effects.Half power is also called the -3dB point. At this point, the voltage has decreased to 70.7% of its maximum. This means that only one-half of the maximum power would be dissipated in aresistive load. Keep in mind that an oscilloscope that is rated at 20 MHz is usually only accurate to 4 MHz for non-sinusoidal waveforms before distortion becomes a problem.With ac coupling (figure 4), an oscilloscope has another series RC circuit. It acts like a high pass filter (HPF). If you are viewing low frequency signals when ac coupled, not only will you not be able to measure any dc offset, but you will also be removing some low frequency information.Oscilloscope Operation (Voltage vs Time)The main function of an oscilloscope is to show voltage vs time. This is done by applying a ramp (or sawtooth) waveform into the X-axis amplifier as shown in figure 5. During the rising edge of the ramp, the electron beam scans across the screen. When the voltage drops back to 0V, the beam is turned off and quickly goes back to its starting point. This is signified by a thick line when the beam is on and a thin one when it is off (blanked).To obtain a stable picture on the CRT screen, the ramp waveform has to be in phase with the signal that you want to observe. This is done with a triggering circuit. The triggering circuit allows the oscilloscope to draw repeatedly the same waveform over and over by identifying the same point on a repetitive waveform.Figure 5.A Ramp-driven X-axis inputFigure 6. A Triggering ExampleFigure 7. Several Triggering CyclesThe triggering circuit allows you to select a voltage (an analog value) and an edge or slope (positive or negative) for the triggering circuit to compare to the input waveform. When the two are equal, the circuit puts out a pulse. This pulse triggers the ramp waveform generator to do one cycle of its rising and falling edges. Once the ramp has started a cycle of increasing voltage, it can not be retriggered until it has completed the full ramp and returned to 0V. This is illustrated in figure 6 for a single cycle and in figure 7 for multiple cycles.Not only do you have control over the starting point of the ramp, but the amount of time that the ramp takes to reach its maximum voltage (the right hand side of the CRT screen) can be adjusted with the timebase control. In essence, you have a “window”. You can move the window to any point on a waveform with the triggering circuit and you can change the size of the window with the timebase.The time-base control allows you to set the time / division that the beams takes to scan acrossthe screen. Just like the voltage selector, there is a calibration knob in the middle of the control. Unless the vernier (calibration knob) is 'clicked' in to its most clockwise position, the time per division is unknown.When set to AUTO (automatic) triggering, the oscilloscope will always show a trace. However, when you use a manual triggering mode (DC, AC), many strange things can happen. For example, if the triggering voltage or level is set to +10V and the waveform never exceeds +5V, the triggering circuit will never trigger and the screen will stay blank.You may think that in a condition of no triggering, you would still have a bright dot on the screen because the electron beam would go to its 'home' or undeflected position. Since the oscilloscope is designed to work with a moving electron beam, a stationary beam can very quickly 'burn' a hole in the phosphorous coating of the screen. To prevent this, there is a ' blanking' circuit which turns off the electron beam. Blanking occurs when there is no triggering or when the electron beam is sweeping from the right edge back to the left side of the screen. Time measurements are done the same way as voltage measurements. As long as the timebase is calibrated you multiply the number of divisions by the number of seconds per division to get the total time difference. Phase measurements are done by comparing the measured time to the period of the waveform.Oscilloscope Two Channel OperationYou can view two voltage waveforms at once by using two Y-axis (vertical) input channels. The individual channels are sometimes labelled as '1' and '2' or as 'A' and 'B'. Since there is only one electron beam, you have to share its drawing time between both waveforms. This may be accomplished using either the chop or alternate modes.When in the chop mode (figure 8), the oscilloscope displays a little bit of channel A, then a little bit of B, then A, then B ....during a single sweep of the electron beam. If you increase the timebase to about 1:s/division, you can start to see the individual pieces as it chops between one channel and the other channel.Figure 8. Chop ModeIn the alternate mode (figure 9), the oscilloscope will sweep the electron beam twice across the screen. The first time it will draw the signal from channel A and the next time from channel B. At very low timebase settings, you can see it draw one channel and then the other in successive passes.Note: When you use the alternate function, the two waveforms that you see are from different points in time and the triggering circuit has to trigger twice.Figure 9.Alternate ModeFigure 10. A Simple Oscilloscope Block DiagramThe reason that you can see a non-flickering image on the screen is because the phosphorous coating on the CRT has persistence. In essence, the phosphorous acts like a low pass filter and averages several images that are drawn on the screen.By viewing two signals at a time, you can measure relative time differences. By combining a voltage and phase measurement (relative to the appropriate reference), you can measure a phasor value.With a two channel oscilloscope, you have the ability to trigger on each waveform andelectronically switch (chop or alt) between them as well. A block diagram of a oscilloscope has now become as shown in figure 10.Some oscilloscopes offer a way to alternately trigger as depicted in figure 11. When combined with alternate displaying, you can stably display two waveforms of any frequency by alternately showing each channel and triggering on the channel that is being drawn. This way, the oscilloscope is acting like a two beam scope with both waveforms triggering at the same voltage and slope. However, there is no way to know what the relationship is between one waveform and the other when using alternate triggering.Figure 11. Stable Triggering of Two Different FrequenciesIf you have two waveforms that do not have the same frequency, it is still possible to show them as two stable waveforms on a normal oscilloscope. In figure 11, you will notice that if the triggering occurs at the 'X', both waveforms are in phase (ie. at the same phase each time the timebase triggers). The condition for a stable display is not that two waveforms have to be of exactly the same frequency, but that when they are triggered, they have to be in phase.Or n A f1 = m A f2 where n, m are integers. That is not necessary, but it is sufficient. There are many other ways to achieve a stable trace when you consider that the trigger circuit will wait for the next triggering point. There is also a control on some oscilloscopes, called 'hold off', which allows you to add a delay between the end of the trace being drawn and the time when the triggering circuit starts to look for the next triggering point. That can be used to stabilize the display under some circumstances.Remember that all of this applies only for repetitive waveforms that are properly triggered. If the triggering is not stable, or the waveform is not repetitive, you will see a constantly moving image or several images offset and superimposed.A slightly more complicated block diagram of an oscilloscope, with the typical functions found in the laboratory, is illustrated in figure 12.AccuracyThere are many factors affecting the accuracy of oscilloscope measurements.There are errors due to the input channel voltage divider, timebase control, the use of magnifiers, the accuracy to which the CRT deflection can be read, beam thickness, temperature etc. The voltage divider error will be the same for all readings that are done on the same timebase and voltage range, but may be different each time the range is changed. Measurements over only two divisions can incur two to three times the error of those made over the centre eight divisions.If the phase angle is used in a trigonometric function, this error can be multiplied by the slope of the function. Consider that the tangent of a 1% phase error entered at 85 degrees is much worse (20%) than the same 1% error on a sine function (0.2%) at the same angle. To get a feel for this look at the Taylor expansion of the trigonometric functions.It is wise to consult the user manual for a particular instrument’s accuracy specifications.Figure 12. Oscilloscope Block Diagram2.Iwatsu Model SS-5702 OscilloscopeAccuracyThe Iwatsu SS-5702 oscilloscope is used in this laboratory. All measurements on the graticule should be made over as many divisions as possible. For simplicity, assume the Iwatsu SS-5702 oscilloscope’s error is ±5% for a measurement on either the vertical or horizontal scales over eight divisions.Front Panel ControlsThe front panel controls, shown in figure 13, will be described in the remainder of this section.Figure 13. The Iwastu SS-5702 OscilloscopeFront Panel ControlsThe power, trace rotation, intensity, focus, and scale illumination controls are located at the bottom centre.The vertical controls and input selection are on the left side.The horizontal controls and horizontal input selection are on the right side.The triggering selection section is at the bottom right.The power on/off, trace rotation, intensity, focus and scale illuminationTrace rotation has to be checked with just a straight line across the screen of the oscilloscope. The intensity should be adjusted to a mid point (or more clockwise).The focus of the beam can be done while observing the straight line display.The scale illumination can be adjusted to the operator’s preference.Vertical InputsVertical channels are used for measuring voltage.The beam is deflected vertically as a result of the signal being applied to the vertical input of the channel (CH).CH-1 and CH-2 are the labels for the two vertical inputs.Each channel has a position control, a range selection switch, a pull “x5” knob, a coupling selector switch (AC/GND/DC), and an input connector.Each channel Range switch (VOLTS/DIV) has a smaller knob in the middle of the Range Selector Switch. And there is an arrow showing that the Range Selector Switch is in the “CAL” position when rotated fully clockwise.In the centre of the two channel sections is the channel selection switch. You can choose to have CH-1, CH-2, both (DUAL), or ADD.In addition, CH-2 has a “Polarity” switch. You push the polarity switch in to “INVERT” the polarity of the signal being displayed. The “NORM” or out position is the normal position of the polarity switch.Horizontal InputsThe “EXT” (HORIZONTAL IN) can be supplied a voltage directly via the connector at the bottom right of the panel, or the Horizontal can be driven by an internal timebase circuit which generates the voltage.TimebaseIn the timebase mode, the horizontal signal is from an internal source which changes linearly with respect to time. Hence, the beam is deflected to give us a calibration of time for the horizontal scale.The position control, the pull “x5” magnifier switch, the time range selection switch, and the range “CAL” knob all affect the X-axis of the display.Trigger SourcesThe TRIGGER SOURCE may be selected from one of three sources, CH-1, CH-2, or EXT. Look at the bottom right of the control panel.Calibration SourceThe Calibration Source is an internal source, available on the oscilloscope.Look at the bottom right side of the front panel. The output is labelled 0.3 V.This is a 1000 Hz, square-wave ( the 50 % duty cycle is not accurate ).Figure 14.Differential Measurement Example3.Oscilloscope ApplicationsVoltage and Time MeasurementsNote:The oscilloscope measures divisions of deflection not voltage or time. From the divisions of deflection you can calculate the time or voltage.Differential MeasurementsAn important application of the oscilloscope is differential measurements. Such measurements are necessary because both vertical channels have one terminal connected to the chassis common (ie single ended). To measure a floating (off ground) voltage you have to use the “invert and add” feature of the oscilloscope. For example, in figure 14, to measure V1:Channel A measures (V1 + V2) relative to ground while channel B measures V2 relative to ground. By pushing the invert button you negate the voltage displayed on channel B. Then you can add the channels together with the “ADD” display mode. The waveform now displayed is (V1 + V2) + (- V2) = V1.Bandwidth (-3 dB) MeasurementThis measurement is easily done by first finding the maximum gain (max. VOUT / VIN atfrequency To) and adjusting the oscilloscope so that the sinewave fills seven divisions peak to peak. A -3dB point can be found by increasing and/or decreasing the frequency until the gain is reduced to /2 . If the input voltage has remained constant this will occur when the output voltage is five divisions peak to peak.The frequency is then simply read with a frequency counter or the oscilloscope. Not by reading the dial of the signal generator.RisetimeThe risetime indicates how quickly a circuit responds. The risetime is the time it takes a waveform to go from 10% of the voltage range to 90% of the voltage range. This is in response to a square wave and the output voltage must settle to a steady-state voltage (0% and 100%). Most oscilloscopes have dotted lines on the graticule marking the 10% and 90% points to aid in this measurement. Usually these dotted lines assume that 0% is the lowest line of the graticule and 100% is the highest line. The measurement, as shown in figure 15, also includes the risetime of the oscilloscope and the squarewave source.Figure.15 A Risetime and Phase MeasurementPhasePhase is most accurately measured when the waveform is as large as possible and the difference is measured at the zero crossings. Typically the timebase is uncalibrated so that a 180 degree section of the waveform is expanded to the full 10 divisions of the graticule. Then the sign of the phase can be determined by observing more than one period of both waveforms. Both waveforms must be symmetrical about the centre line of the graticule. The angle is determined by: phase = # of divisions * 180 degrees / 10 divisions.。

操作手册示波器使用方法说明书

操作手册示波器使用方法说明书

操作手册示波器使用方法说明书操作手册-示波器使用方法说明书1. 简介示波器是一种广泛应用于电子测量领域的仪器,用于显示电压信号的波形、频率、幅度等参数。

本操作手册旨在向用户提供关于示波器使用的详细指南,帮助您正确高效地操作示波器。

2. 示波器的组成与基本功能2.1 示波器的组成示波器主要由以下几部分组成:- 垂直放大与输入:用于放大和调整待测信号的幅度和范围。

- 水平放大与扫描:用于控制波形的触发和水平移动。

- 示波器显示:负责生成、显示和记录电压波形。

- 添加功能:包括触发、自动测量、数据存储等。

- 控制按钮与接口:便于用户操作和连接外部设备。

2.2 示波器的基本功能示波器具备以下基本功能:- 波形显示:将输入信号转换为波形图显示在示波器屏幕上。

- 触发功能:通过设置特定的触发条件,使示波器只显示特定条件下的波形。

- 自动测量:示波器能够自动测量波形的参数,如频率、峰值、周期等。

- 存储和回放功能:允许用户存储并随时回放特定波形,方便后续分析。

3. 示波器的使用步骤3.1 准备工作- 确保示波器与待测电路正确连接,并正确设置垂直和水平放大范围。

- 打开示波器,并调整亮度和对比度以获得清晰的显示效果。

- 定位示波器中心线,并调整位置使其垂直居中在屏幕上。

3.2 调整垂直和水平放大- 使用垂直放大旋钮调节信号显示的幅度,使波形占满示波器屏幕并不超过边界。

- 根据信号的频率调整水平放大旋钮,以获得合适的波形显示幅度。

3.3 设置触发条件- 使用触发按钮设置触发条件,如边沿触发、脉宽触发等。

- 根据待测信号的特征调整触发电平、触发沿等参数,以稳定地显示波形。

3.4 进行波形测量- 利用示波器的自动测量功能获取波形的相关参数,如频率、周期、峰峰值等。

- 可根据需要选择特定波形的测量,例如上升沿触发后的波形。

3.5 数据存储和回放- 按下示波器上的存储按钮,可以将当前波形保存到示波器内存中。

- 通过示波器的回放功能,可以随时查看已存储的波形,并进行后续分析和处理。

示波器使用方法说明书

示波器使用方法说明书

示波器使用方法说明书一、简介示波器是一种常用的电子测试设备,用于观察电流、电压、频率等信号的波形,并能进行测量和分析。

本说明书旨在为用户提供使用示波器的详细方法和步骤,帮助用户充分发挥示波器的功能。

二、安装与连接1. 将示波器放置在平稳的台面上,确保通风良好。

2. 将示波器的电源线插入交流电源插座,并确保电源线连接牢固。

3. 使用合适的连接线将待测电路的输出端与示波器的输入端相连,确保连接牢固可靠。

三、调整示波器参数1. 打开示波器电源,待示波器启动后,在显示屏上会出现初始界面。

2. 调整水平扫描控制,使波形在屏幕上水平移动。

3. 调整垂直幅度控制,使波形在屏幕上垂直移动。

4. 调整触发控制,使波形在屏幕上稳定显示。

四、观察波形1. 调整水平扫描速度,通过旋钮控制波形的宽度,观察信号的周期。

2. 调整垂直灵敏度,通过旋钮控制波形的高度,观察信号的幅值。

3. 使用游标测量功能,可以在屏幕上选择特定的点进行测量,如周期、频率、峰峰值等。

五、保存和存储波形1. 示波器通常具备存储和回放功能,可将观察到的波形图像进行保存和存储。

2. 使用示波器内置的存储设备,选择合适的文件名并进行保存。

3. 存储的波形可以通过示波器的回放功能进行再次观察和分析。

六、使用示波器的注意事项1. 在使用示波器之前,务必仔细阅读和理解本说明书,确保正确操作。

2. 遵循电路安全操作规范,避免触电和短路等事故发生。

3. 使用示波器时,应注意电流和电压的测量范围,避免超过示波器的额定参数。

4. 示例波器有很强的测量能力,请勿将其用于非法用途或与他人的隐私权利相冲突的行为。

七、故障排除1. 若示波器出现异常现象,比如显示不稳定、无法触发等问题,应先检查示波器的连接是否正确。

2. 若连接无误,可尝试重新启动示波器,或将示波器恢复出厂设置。

3. 若问题仍未解决,请联系售后服务。

八、维护与保养1. 定期对示波器进行外观清洁,使用干净、柔软的布进行擦拭,避免使用化学溶剂和腐蚀性液体。

数字示波器的使用方法说明书

数字示波器的使用方法说明书

数字示波器的使用方法说明书一、简介数字示波器是一种用于测量电子信号的仪器,它能够将电信号转换成数字信号,通过处理和显示,使人们能够直观地观察和分析电子信号的各种特性。

二、准备工作1. 检查设备:确保数字示波器的外部和内部没有损坏或故障。

2. 准备电源:将数字示波器与稳定可靠的电源连接。

三、使用方法1. 连接信号源:将被测信号源与数字示波器进行连接,确保信号源输出的电压范围在数字示波器的测量范围内。

2. 调节显示模式:根据需要选择适当的显示模式,如时间域显示、频域显示等。

3. 调节触发模式:选择合适的触发模式,如边沿触发、脉冲触发等。

4. 设置水平和垂直缩放:根据被测信号的幅值和频率调整水平和垂直缩放,使被测信号能够在屏幕上完整显示。

5. 调整触发电平:根据被测信号的特性设置触发电平,确保波形稳定地显示在屏幕上。

6. 调整触发延迟:根据需要设置触发延迟,使触发点位于波形的合适位置。

7. 分析波形:观察波形的各个特性,如幅值、频率、周期、上升时间等,并进行相应的测量和分析。

四、注意事项1. 使用过程中避免将数字示波器暴露在潮湿、高温、高压等恶劣环境中,以免损坏设备或危及人身安全。

2. 在连接信号源时,确保输入端与待测电路相互匹配,避免因电阻、电容等不匹配导致的测量误差。

3. 调节触发模式和触发电平时,应根据被测信号的特性选择合适的设置,以确保波形能够稳定地显示在屏幕上。

4. 在分析波形时,要根据具体需要选择合适的测量功能,并正确使用示波器的各项功能和参数进行测量和分析。

五、故障排除1. 若数字示波器无法正常启动或显示异常,首先检查电源连接是否良好,是否存在电源故障。

2. 若波形显示不稳定或触发功能失效,可尝试调整触发模式、触发电平和触发延迟等参数,或检查信号源输出是否正常。

六、维护保养1. 定期清洁:根据使用频率和工作环境,定期清洁数字示波器的外壳和连接接口,确保设备的正常散热和连接良好。

2. 防护措施:避免将硬物、液体等杂物接触到数字示波器的内部电路板,以防止损坏电路板或导致电击等事故发生。

示波器操作说明书

示波器操作说明书
可用此鍵設定延遲時間光標位置
△V-▽t-OFF
選擇▽T時間變化測量△V電壓變化測量或OFF關閉
TCK/C2
選擇光標移動形式
SAVE/RECALL
選擇儲存或重取
HOLDOFF
選擇休止時間
DELAY/TRACE.SEP
選擇延釋
核准
審核
制作
日期
設備名稱
示波器
設備功能
DC/DC測試
文件編號
設備型號
SS-7810
廠商
伯仲
版本
A0
二﹑操作說明
1.按下“POWER”電源開關﹐儀器自檢后到主畫面。
2.根據所需通道選擇﹕CH1﹑CH2或CH3。
3.來訊ΔU值測量。
將偵測線正負極分別與產品輸出端正負極相連﹐按“AUTOSET”鍵儀器自動鎖定波形﹐按
“△V-▽t-OFF”鍵直到屏幕顯示△V﹐然后按“TCK/C2”﹐選擇U-C﹑U-C2儀器自動顯示
設備名稱
示波器
設備功能
DC/DC測試
文件編號
設備型號
SS-7810
廠商
伯仲
版本
A0
一﹑面板功能說明
名稱
功能說明
POWER
用于開啟電源。ON﹕打開。OFF﹕關閉
INTEM
調整掃跡亮度
READOUT
調整文字顯示亮度
FOCUS
調整焦點
SCALE
調整刻度亮度
TRACE.ROTA.TIOW
調整掃跡之磁偏
CAL
△V值﹐按“△V-▽t-OFF”鍵到屏幕顯示▽t按下“TCK/C2”﹐選擇H-C1﹑H-C2儀器自動顯示▽t值。
4.測量完畢﹐關閉電源電壓。
三﹑注意事項

示波器操作说明书

示波器操作说明书

示波器操作说明书1. 简介本操作说明书旨在指导用户正确、安全地操作示波器,并充分利用其功能和优势。

请用户仔细阅读本说明书,并按照指导进行操作。

2. 示波器概述示波器是一种用于测量和显示电压波形的仪器。

它可无损地显示、测量和分析各种电压信号的幅度、频率、相位等参数,广泛应用于电子、通信、自动化等领域。

3. 示波器外观及元件介绍a) 示波器主机:示波器的主要部分,包含屏幕、操作按钮、旋钮等。

用于控制及显示测量结果。

b) 探头:连接示波器和被测对象的电缆,用于采集信号。

请确保探头正确连接,保持良好的信号传输。

c) 示波器输入通道:通常具有多个输入通道,用于接收不同信号源的输入。

每个通道可根据需要进行设置和调整。

4. 示波器操作步骤a) 开机与校准i) 将示波器主机插入电源,并打开电源开关。

ii) 等待示波器启动,确保屏幕正常显示。

iii) 进行校准操作,校准示波器以提高测量准确性。

b) 信号连接i) 将需要测量的电路信号连接到示波器输入通道上。

ii) 检查连接是否牢固,避免短路或断路等问题。

c) 示波器设置i) 根据测量要求选择合适的测量模式,并在示波器主机上进行相应设置。

ii) 设置水平控制参数,如时间基准、触发等,以确保测量结果准确可靠。

d) 进行测量i) 确认示波器设置无误后,可以开始进行测量。

ii) 观察屏幕上显示的波形,并根据需要进行调整和分析。

e) 停止和关闭i) 测量完成后,停止信号输入,并关闭示波器主机。

ii) 断开示波器与测量对象的连接。

iii) 将示波器主机从电源上拔出。

5. 示波器常见功能a) 波形显示:通过屏幕显示被测信号的波形图像。

b) 自动测量:示波器可根据预设条件自动进行各项测量,并显示测量结果。

c) 触发功能:设置触发条件,使示波器只显示满足条件的信号。

d) 存储和回放:示波器可将测量数据存储,并随时回放以进行分析和比较。

e) 储存和导出:测量结果可储存在示波器内部或外部存储器,并支持导出至计算机等设备。

泰克示波器使用手册

泰克示波器使用手册

泰克示波器使用手册(最新版)目录1.泰克示波器概述2.泰克示波器的主要功能3.泰克示波器的使用步骤4.泰克示波器的维护与保养5.泰克示波器的注意事项正文【泰克示波器概述】泰克示波器是一种用于测量电信号的仪器,它能够将电信号转换成可视化的波形,便于工程师们分析和调试电路。

泰克示波器具有高精度、高速度、高可靠性等特点,广泛应用于电子科技、通信技术、计算机科学等领域。

【泰克示波器的主要功能】泰克示波器的主要功能包括波形观察、数据分析、信号生成和调试等。

它能够观测和记录各种模拟和数字信号,对信号进行实时监测和分析,为电路设计和故障排查提供有力支持。

【泰克示波器的使用步骤】1.连接电路:将待测电路与示波器连接,注意正确连接地线、电源线等。

2.打开示波器:开启示波器电源,根据需要调整示波器的垂直和水平缩放。

3.设置示波器:选择适当的测量模式,设置触发器、时基等参数。

4.观察波形:开始观测波形,并进行实时数据记录和分析。

5.保存和输出数据:将观测到的波形和数据保存到计算机或其他存储设备中,以便后续分析和打印。

【泰克示波器的维护与保养】1.定期检查:定期检查示波器的性能和外观,确保其正常工作。

2.清洁示波器:使用干净柔软的布擦拭示波器表面,避免使用有刺激性化学品的清洁剂。

3.避免振动:示波器在工作过程中应避免受到振动和冲击。

4.储存条件:在不使用示波器时,应将其存放在通风干燥、避免阳光直射的地方。

【泰克示波器的注意事项】1.使用前请仔细阅读说明书,了解示波器的性能和使用方法。

2.操作示波器时需佩戴防静电手环,防止静电损坏元器件。

3.切勿在示波器上施加过高的电压或电流,以免损坏示波器。

示波器使用说明书

示波器使用说明书

示波器使用说明书一、产品概述示波器是一种用来观察和测量电信号波形的仪器。

本示波器使用说明书旨在介绍示波器的基本操作方法,以帮助用户正确使用本产品。

二、产品特点1. 高精度测量:示波器具备高精度的信号测量功能,可准确显示电信号的各种参数,包括频率、幅度、相位等。

2. 大屏幕显示:该示波器配备了大尺寸液晶显示屏,能清晰、直观地显示波形图像,便于用户观察和分析信号。

3. 多功能测量:示波器具备多种测量功能,可进行时间、幅度、频率、脉宽等多项测量。

用户可根据需要自行设置测量参数。

4. 多通道输入:本示波器支持多通道信号输入,可同时显示和比较多路信号波形,方便用户进行多信号分析。

三、安全操作注意事项1. 在操作示波器之前,请务必先阅读本使用说明书,并确保了解示波器的基本操作方法和注意事项。

2. 在使用示波器时,应注意电源接地的可靠性,确保设备和被测电路的安全。

3. 在对高压电路进行测量时,切勿直接接触高压部分以避免触电危险。

4. 确保示波器工作环境通风良好,避免灰尘和湿气进入。

5. 不得私自拆卸或改装示波器,如需维修或升级,请联系售后服务部门。

四、示波器基本操作方法1. 打开示波器电源,确保电源指示灯亮起。

2. 连接被测信号到示波器的输入端口,注意信号的极性和幅度范围。

3. 调整示波器的时间基准,使得信号波形能够在屏幕上完整显示。

4. 调整示波器的触发模式,以确保信号波形能够稳定显示。

5. 根据需要设置示波器的测量参数,如测量频率、幅度、相位等。

6. 根据需要调整示波器的触发电平、输入耦合方式等参数,以适应不同的信号源。

7. 使用示波器的光标功能,可对具体的波形进行测量和分析。

8. 在观察和测量结束后,关闭示波器电源,并断开与被测信号的连接。

五、故障排除1. 若示波器显示屏幕无法正常显示波形图像,请先检查示波器的电源是否正常开启。

2. 如果示波器无法触发或无法稳定显示波形,请检查示波器的触发设置和输入信号的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安 全 性使用者应对以下安全性预防措施充分了解,以避免受伤并防止损坏本产品及与其相连接的任何产品。

1、使用正确的电源线,本产品通过电源线的接地导体接地,以免电击,在使用本产品前务必将本产品正确接地。

2、正确连接探极,探极地线与地电势相同,切勿将地线连接至高电压上。

3、请勿超过本产品规定的额定值时使用。

4、请勿开箱操作本产品。

5、使用本产品出现故障时,请勿进行操作,应请合格的维修人员进行检查。

6、保持产品表面清洁,保持适应的通风使用环境,请勿在潮湿环境、易燃易爆环境下使用。

Copyright 2006 Jingce Electronic入 门一、一般功能1、本公司产品的分类:型号带宽取样速率显示MS/S 单色JC2021M 25MHz 250JC2041M 40 MHz 250 MS/S 单色JC2061M 60 MHz 250 MS/S 单色JC2061C 60 MHz 250 MS/S 彩色JC2101M 100 MHz 250 MS/S 单色JC2101C 100 MHz 250 MS/S 彩色JC2151M 150 MHz 250 MS/S 单色JC2151C 150 MHz 250 MS/S 彩色JC2061MA 60MHz 1GS/S 单色JC2061CA 60MHz 1GS/S 彩色JC2101MA 100MHz 1GS/S 单色JC2101CA 100MHz 1GS/S 彩色JC2151MA 150MHz 1GS/S 单色JC2151CA 150MHz 1GS/S 彩色JC2201CA 200MHz 1GS/S 彩色2、产品分有单色和彩色液晶显示,分辨率为320×240。

3、有20MHz带宽抑制。

4、每通道4K的深度存储器。

5、等效采样率为50GSa/s。

6、自动菜单设置。

7、波形及设置的存储及调用。

Copyright 2006 Jingce Electronic8、延迟扫描功能,可同时显示波形全貌和细节。

9、自动测量20种波形参数。

10、光标测量及自动光标跟踪测量功能。

11、具有FFT数字滤波器及频率计等多种功能。

12、具有波形数学运算功能。

13、具有多种触发功能,边沿、视频、脉宽、外部触发、电源触发等。

14、多文字菜单显示。

二、面板和操作说明JC2000系列示波器前面板如图1-1所示,面板操作说明如图1-2所示,面板包括旋钮和功能按键。

图1-1 JC2000系列示波器前面板旋钮控制类似模拟示波器,如移位(POSITION)、电平(LEVEL)、档级(VOLTS/DIV)。

功能按键主要是选择各种不同功能的菜单和运行的控制。

Copyright 2006 Jingce Electronic图1-2 面板操作说明1、菜单操作键,在液晶屏幕右侧显示相应Array的菜单,用未标记的五个菜单操作键来进行选项,示波器使用下列二种方法显示菜单选项,如图1-3所示。

a、循环列表,每次按下选项按钮时,示波器都会将参数设定为不同的值。

b、动作,按下运作选项按钮时立即发生的动作类型。

三、功能检查1、接通仪器电源并打开,片刻后按任意键进入测试界面,如图1-4所示。

2、将示波器探头连接至通道(CH1)并将探极上的衰减开关设定为×10,并将探Copyright 2006 Jingce ElectronicCopyright 2006 Jingce ElectronicJINGCET ' D21CH1=2.00V CH2=2.00V Time 500.0us 0.0000sT CH22/2档位调节粗调 反相 输入 1M Ω打开 通道标志2内存中的当前波形窗口运行状态显示显示档位状态通道2耦合及垂直档位状态通道1耦合及垂直档位状态CH2图1-4 显示界面头连接器上的插槽对准CH1的输入插座(BNC )的凸键上,插入并右转以锁定到位,如图1-5所示。

图1-5 探头补偿器Copyright 2006 Jingce Electronic3、将探头端部和接地夹连接至探头补偿器的输出端,按AUTOSET (自动设置)按钮,数秒钟内可见示波显示(3V,1KHz )。

如图1-6所示。

图1-6 探头补偿器波形4、以同样的方法检查通道2(CH2),按MENU/CH OFF 功能键关闭CH1,按CH2菜单键打开通道2,重复步骤2和步骤3。

四、探头补偿1、按上述功能检查,连接示波器和探头,并按AUTO/SET 键,显示波形。

2、检查所显示波形形状。

如图1-7所示。

图1-7 探头补偿Copyright 2006 Jingce Electronic3、如有必要,调探头上的可变电容,至屏幕上显示的波形补偿正确。

五、自动设置本仪器具有自动设置功能,根据输入信号可自动调整,垂直、时基、触发方式来显示合适的波形,应用自动设置时要求被测信号的频率大于或等于50Hz ,占空比大于1%。

1、将被测信号连接至通道输入端。

2、按下AUTO/SET 键,波形将会自动显示,如需要,可手工调整,以达到你所需最佳波形。

六、垂直系统如图1-8所示,为垂直控制区图1—81、POSITION转动该旋钮可使波形上下移动。

2、VOLTS/DIV转动该旋钮可改变垂直放大器的放大档级,有粗调细调两档。

3、CH1、CH2、MATH为菜单选择键,屏幕显示相应键的菜单,由5个菜单操作键作相应操作。

七、时基系统如图1-9所示,为时基控制区图1-91、POSITION转动该旋钮可改变信号在波形窗口的位置2、SEC/DIV转动该旋钮可改变时基的扫描速度,从2ns—50s(最快扫描速度与具体机型有关)3、HORIZ菜单键按下此菜单键可选择延迟扫描,X—Y,触发释抑等工作方式Copyright 2006 Jingce Electronic八、触发系统如图1-10所示,为触发控制区图1-101、LEVEL转动该旋钮,可以发现屏幕上出现一条触发线及标志并随之移动,停止转动后在数秒钟内消失,在移动触发线时,触发电平的数值或百分比会相应改变。

(触发耦合为交流或低频抑制时,触发电平以百分比显示)2、TRIG按下此菜单键,可选择触发类型,信源选择,边沿类型,触发方式,耦合等。

改变选择时,屏幕右上角的状态栏会作相应的变化。

3、50%按下此键,可设定触发电平在触发信号幅值的垂直中点。

4、FORCE按下此键,强制产生一触发信号,主要应用于触发方式中的“普通”和“单次”模式。

Copyright 2006 Jingce Electronic示波器功能的使用说明通过入门的了解后,用户初步掌握了示波器的基本使用,并对屏幕的状态栏的变化,体会到数学存储示波器屏幕界面的直观方便明了,按键与旋钮的操作都将在状态栏的数据和标志中反应,用户应习惯使用屏幕显示的信息,来确定你的测量结果,本章将详细叙述各菜单功能的操作。

一、垂直系统1、CH1和CH2菜单为通道的操作菜单分上下两页,七种选择:a、耦合:交流、直流、接地、左下角相应标志为 ∽ 或 ···· 或 ┷ 。

交流:屏幕显示无直流分量的波形,如观察直流电源上的纹波直流:屏幕显示含直流分量的波形,因此可测量波形的直流电平接地:断开输入信号b、带宽限制:打开时,带宽限制在20MHz,在观察频率较低信号时,可抑制掉高频噪音,使波形清晰稳定。

c、探头:1X、10X、100X、1000X,根据探极衰减因数选取,以保证Y灵敏度的正确性。

d、数字滤波:接入数字滤波器。

e、档位调节:粗调为1-2-5进制,设定垂直灵敏度,细调,调节变细微。

f、反相:打开时波形反向,关闭时波形正常显示。

g、输入:1MΩ:输入阻抗为1MΩ50Ω:输入阻抗为50ΩCopyright 2006 Jingce Electronic2、功能说明a、耦合:为被测信号与示波器的耦合方式,如图2-1所示选择交流:被测信号的直流分量被隔离,适宜观察直流分量大,信号波形幅度小,如直流电源纹波。

直流:被测信号的直流分量和交流分量均被通过,可以测量的信号的直流成分。

接地:示波器显示零电平位置。

状态标记:左下角显示耦合状态标记:交流∽ 直流 ···· 接地 ┷b、设置通道带宽限制,如图2-2所示。

关闭时被测信号的高频分量可以通过。

打开时示波器带宽限制在20MHz,因此大于20MHz的高频分量将被隔离。

带宽限制标记:左下角‘B’显示时表示带宽限制被打开。

Copyright 2006 Jingce ElectronicCopyright2006 Jingce Electronicc 、调节探头比例,如图2-3所示。

Copyright 2006 Jingce Electronic探头衰减系数——菜单设置 1:1 1× 10:1 10×100:1 100×1000:1 1000×探头衰减系数的改变,相对的垂直档位的标记也相应更改,如1:1时垂直档位为1V ,则10:1时垂直档位为10V 。

d 、档位调节,如图2-5所示。

档位调节分粗调和细调两种模式,垂直灵敏度2mvdiv -5v/div ,粗调是以1-2-5进制确定垂直档位灵敏度。

细调是指在当前垂直档位时进一步的细微调节,以便于波形的观察与比较。

垂直档位的标记在屏幕的左下角,如粗调时2mV 、5mV 、10mV 、20mV …5V 。

细调为2.05mV 、2.10mV 、2.15mV ,(在2mV 粗调档位上变化。

) e 、波形反相设置波形反相:相对地电位翻转180°,如图2-4、所示:JINGCET ' D21CH1=2.00V CH2=2.00V Time 500.0us0.0000sT CH22/2档位调节粗调 反相 输入 1M Ω打开 图2—4Copyright 2006 Jingce Electronicf 、输入阻抗,如图2-5所示。

示波器的输入阻抗可以设置为1M Ω和50Ω,设置50Ω可方便在高频,快速电路中的测试,或50Ω电缆的匹配阻抗。

50Ω设置时输入信号幅度不得超过额定值(5 V rms)。

50Ω设置的标志为左下角的‘Ω’。

g 、数字滤波,如图2-6,图2-7所示。

在通道菜单的第一页打开“数字滤波”,屏幕将显示数字滤波功能菜单,调节水平POSITION 可以设置频率的上限或下限。

菜单功能: 数字滤波:关闭,打开 滤波类型: 设置为低通滤波器:设置为高通滤波器 :设置为带通滤波器:设置为带阻滤波器。

频率上限、频率下限:调节水平档级SEC/DIV和POSITION可以设置频率上下限。

(必须选中)3、数字运算功能数字运算可以实现两通道的加、减、乘、除以及FFT快速付立叶变换运算,如图2-8所示。

相关文档
最新文档