嵌入式系统应用与开发
嵌入式系统及应用研究方向

嵌入式系统及应用研究方向嵌入式系统是指将计算机技术应用于各种终端设备中,通过嵌入的方式实现特定功能的计算机系统。
嵌入式系统广泛应用于家用电器、通信设备、医疗设备、交通工具等各个领域,并且随着科技的发展,嵌入式系统的研究方向也不断拓展。
以下是对嵌入式系统及应用研究方向的探讨。
一、嵌入式系统的基础研究方向:1. 硬件设计与控制:嵌入式系统的硬件设计是其基础,包括电路设计、片上系统设计、芯片设计等。
在硬件控制方面,研究人员不仅需要了解各种传感器、执行器等硬件设备的工作原理,还需考虑如何设计高效稳定的控制算法和电路设计,以实现设备的自动化控制。
2. 嵌入式操作系统与驱动开发:嵌入式系统通常需要使用专门的操作系统和驱动程序来管理和控制硬件设备。
研究方向主要包括操作系统的内核设计与实现、驱动程序的开发与优化,以及嵌入式操作系统与硬件设备的兼容性研究等。
3. 实时系统与软件可靠性:嵌入式系统中许多应用要求对系统的实时性能和可靠性有较高的要求。
研究方向主要包括实时任务调度算法的设计与优化、系统实时性能的测评与测试、软件工程与可靠性设计等。
4. 嵌入式软件开发:嵌入式软件开发是嵌入式系统的核心内容之一。
研究方向主要包括嵌入式软件架构设计、嵌入式编程语言和工具的研发、嵌入式软件测试与调试等。
5. 网络与通信技术在嵌入式系统中的应用:随着互联网的普及和物联网的兴起,嵌入式系统越来越多地与外界进行数据交互和通信。
研究方向主要包括网络协议的适配与性能优化、嵌入式系统的远程监控与管理、嵌入式系统的安全性与隐私保护等。
二、嵌入式系统的应用研究方向:1. 智能家居与物联网:智能家居是指通过嵌入式系统和物联网技术实现家庭设备的智能化管理和控制。
研究方向主要包括家庭设备的集成与互操作、智能家居系统的安全性与可靠性、以及智能家居与能源管理、健康监测等领域的结合等。
2. 智能交通与车联网:智能交通系统以及车联网是嵌入式系统的另一个重要应用领域。
嵌入式系统应用开发

嵌入式系统应用开发嵌入式系统应用开发是一门涉及硬件与软件的交叉学科,旨在设计、开发和实现嵌入式系统。
嵌入式系统是集成在具体应用中的计算机系统,通常用于控制和监测设备的运行。
在本文中,将详细介绍嵌入式系统应用开发的重要性、过程和技术。
一、嵌入式系统应用开发的重要性嵌入式系统应用开发在现代科技应用中扮演着重要的角色。
嵌入式系统的广泛应用涵盖了许多领域,例如家庭电器、智能手机、汽车电子等。
嵌入式系统可以优化设备的性能和功能,提高生产效率,并且可以集成各种传感器和通信技术,实现设备的智能化和互联网化。
因此,嵌入式系统应用开发对于满足市场需求、提升产品竞争力具有重要意义。
二、嵌入式系统应用开发的过程嵌入式系统应用开发的过程通常包括需求分析、系统设计、软硬件集成,以及测试和部署。
首先,需求分析阶段需要明确系统的功能需求和性能指标,以及与外部设备和应用的接口要求。
在系统设计阶段,根据需求分析结果,进行整体架构设计和模块划分,确定软硬件的开发方向。
软硬件集成是将设计好的模块组合在一起,实现整个系统的功能。
最后,测试和部署阶段用于验证系统的可靠性和稳定性,并将系统部署到目标设备中。
三、嵌入式系统应用开发的技术在嵌入式系统应用开发过程中,涉及到许多关键技术。
以下是其中几个重要的技术:1. 微控制器和处理器:嵌入式系统通常由微控制器或处理器控制,这些微控制器或处理器可以提供计算能力和设备控制功能。
2. 传感器和执行器:传感器用于感知和采集外部环境的数据,而执行器用于控制物理设备的运动或输出。
3. 实时操作系统(RTOS):RTOS用于管理和调度系统的任务,确保系统能够按时响应外部事件,并实时处理数据。
4. 嵌入式编程语言:为了开发嵌入式系统应用,需要使用特定的嵌入式编程语言,如C、C++等。
这些语言具有低层次的硬件访问能力和高效的代码执行性能。
5. 通信技术:嵌入式系统通常需要与其他设备或网络进行通信,如串口、以太网、无线通信等。
《嵌入式系统开发与应用》教学教案

《嵌入式系统开发与应用》教学教案一、教学目标1. 了解嵌入式系统的概念、特点和应用领域。
2. 掌握嵌入式系统的基本组成部分,包括硬件和软件。
3. 熟悉嵌入式操作系统的基本原理和常用嵌入式操作系统。
4. 学习嵌入式系统开发流程,包括需求分析、系统设计、硬件选型、软件开发、系统集成和测试。
5. 掌握嵌入式编程语言,如C/C++,并能应用于实际项目开发。
二、教学内容1. 嵌入式系统概述嵌入式系统的定义嵌入式系统的特点嵌入式系统的应用领域2. 嵌入式系统的基本组成嵌入式处理器嵌入式外围设备嵌入式操作系统3. 嵌入式操作系统原理嵌入式操作系统的概念嵌入式操作系统的特点常用嵌入式操作系统简介4. 嵌入式系统开发流程需求分析系统设计硬件选型软件开发系统集成和测试5. 嵌入式编程语言及应用C/C++编程语言基础嵌入式编程规范实际项目开发案例分析三、教学方法1. 讲授法:讲解嵌入式系统的基本概念、原理和开发流程。
2. 案例分析法:分析实际项目开发案例,让学生了解嵌入式系统开发的整个过程。
3. 实验法:安排实验室实践环节,让学生动手实践,加深对嵌入式系统的理解。
4. 小组讨论法:分组讨论嵌入式系统开发中的问题,培养学生的团队合作能力。
四、教学资源1. 教材:《嵌入式系统开发与应用》2. 实验室设备:嵌入式开发板、编程器、仿真器等。
3. 在线资源:嵌入式系统相关论文、博客、论坛等。
五、教学评价1. 课堂表现:考察学生的出勤、发言、讨论等参与程度。
2. 课后作业:布置相关课后练习,巩固所学知识。
3. 实验报告:评估学生在实验室实践环节的表现。
4. 课程设计:让学生完成一个嵌入式系统开发项目,综合评估学生的实际应用能力。
六、教学安排1. 课时:共计32课时,包括课堂讲授、实验和讨论。
2. 授课方式:每周4课时,共8周完成教学内容。
3. 实验安排:每2周安排1次实验,共4次实验。
七、教学进程第1-4周:嵌入式系统概述、基本组成和操作系统原理。
嵌入式Linux系统开发与应用实践

嵌入式Linux系统开发与应用实践嵌入式Linux系统是指将Linux操作系统嵌入到应用程序中,使其静态化运行。
嵌入式Linux系统可以在嵌入式设备中进行应用开发和应用实践。
随着人工智能技术的快速发展,嵌入式Linux 系统为嵌入式设备的应用带来了新的可能性。
本文将深入探讨嵌入式Linux系统的开发与应用实践。
一、嵌入式Linux系统的优点嵌入式Linux系统的优点主要有如下几个方面:1. 开放性:Linux是开放源代码的操作系统,用户可以通过自由软件协议获取开放源代码,进行修改和自定义。
这意味着随着Linux的发展,用户可以让其应用于更多应用场景,定制化程度更高。
2. 稳定性:Linux操作系统稳定性高,能够长时间稳定运行且系统崩溃的概率非常小。
3. 灵活性:嵌入式Linux系统灵活性非常高,用户可以根据具体设备进行开发和部署。
同时,也能够为设备提供更高的安全和性能支持。
4. 海量资源:Linux作为走在开源世界前沿的操作系统,具有海量的资源和社区支持。
用户可以通过社区开放的技术和资源,为设备提供更多的功能。
二、嵌入式Linux系统的应用实践嵌入式Linux系统包括了从裸机应用到成型系统的全过程,对于嵌入式应用开发来说是非常有益的。
嵌入式Linux系统的应用实践主要有以下几个步骤:1. 内核的选择和构建:嵌入式设备的内核和框架选择很重要,需要仔细考虑选用哪一种内核或框架,需要根据具体的应用进行选择。
然后需要构建一个内核。
2. 驱动的集成和调试:驱动是嵌入式设备重要的组成部分,需要根据之前构建的内核进行驱动的集成和调试。
3. 应用程序编写:应用层开发是系统开发的最终目的,需要根据应用的场景进行编写,对于嵌入式Linux系统的应用编写,需要进行编译和交叉编程等步骤。
4. 应用部署:最后一步是将应用部署到嵌入式设备中,进行运行和测试。
需要注意的是在遇到问题时,需要快速定位问题,分析原因,并解决问题。
《嵌入式系统开发与应用》教学教案

《嵌入式系统开发与应用》教学教案一、教学目标1. 了解嵌入式系统的概念、特点和应用领域。
2. 掌握嵌入式系统的基本组成和开发流程。
3. 学习嵌入式操作系统的基本原理和常用操作系统。
4. 掌握嵌入式系统编程方法和常用编程工具。
5. 培养学生的嵌入式系统设计和开发能力。
二、教学内容1. 嵌入式系统概述1.1 嵌入式系统的定义1.2 嵌入式系统的特点1.3 嵌入式系统的应用领域2. 嵌入式系统的基本组成2.1 硬件平台2.2 软件系统2.3 中间件和驱动程序3. 嵌入式系统开发流程3.1 需求分析3.2 硬件选型和系统设计3.3 软件开发3.4 系统集成与测试3.5 产品发布与维护4. 嵌入式操作系统原理4.1 嵌入式操作系统的概念4.2 嵌入式操作系统的分类4.3 嵌入式操作系统的特点4.4 常用嵌入式操作系统介绍5. 嵌入式系统编程方法5.1 嵌入式编程语言5.2 嵌入式系统编程工具5.3 嵌入式系统编程规范5.4 嵌入式系统编程实例三、教学方法1. 讲授法:讲解嵌入式系统的基本概念、原理和开发流程。
2. 案例分析法:分析实际项目中的嵌入式系统设计和开发案例。
3. 实验法:动手实践,掌握嵌入式系统编程方法和工具。
4. 小组讨论法:分组讨论,培养团队合作能力。
四、教学资源1. 教材:《嵌入式系统开发与应用》2. 课件:教学PPT3. 实验设备:嵌入式开发板、编程器、仿真器等4. 在线资源:相关论文、博客、教程、论坛等五、教学评价1. 课堂参与度:观察学生在课堂上的发言和讨论情况。
2. 作业完成情况:评估学生作业的质量和完成速度。
3. 实验报告:评估学生在实验过程中的操作能力和解决问题的能力。
4. 期末考试:测试学生对嵌入式系统开发与应用知识的掌握程度。
六、教学内容6. 嵌入式系统硬件平台6.1 微控制器(MCU)6.2 应用处理器(AP)6.3 系统级芯片(SoC)6.4 硬件选型的考虑因素7. 嵌入式系统软件系统7.1 固件编程7.2 嵌入式操作系统7.3 中间件与驱动程序开发7.4 软件开发工具与环境8. 嵌入式系统中间件与驱动程序8.1 中间件的概念与作用8.2 常用中间件介绍8.3 驱动程序的概念与开发8.4 设备驱动程序的框架9. 嵌入式系统项目开发流程9.1 需求分析与规格说明书编写9.2 硬件设计与选型9.3 软件设计与开发9.4 系统集成与测试9.5 项目管理与迭代10. 嵌入式系统案例分析与实践10.1 案例选择与分析10.2 系统设计与开发过程10.3 项目实施与调试10.4 项目报告与评审七、教学方法1. 案例分析法:通过分析具体的嵌入式系统项目案例,使学生了解项目开发的实际过程。
《嵌入式系统开发与应用》教学教案

《嵌入式系统开发与应用》教学教案一、教学目标1. 理解嵌入式系统的概念及其在日常生活和工作中的应用。
2. 掌握嵌入式系统的基本组成和开发流程。
3. 学习嵌入式操作系统的基础知识。
4. 培养实际动手能力和团队协作精神。
二、教学内容1. 嵌入式系统概述嵌入式系统的定义、特点、分类和应用领域。
2. 嵌入式系统基本组成硬件平台、软件系统和中间件。
3. 嵌入式系统开发流程需求分析、硬件选型、软件设计、系统集成和测试。
4. 嵌入式操作系统基础RTOS、嵌入式Linux和实时性分析。
5. 嵌入式系统实例分析以实际项目为例,分析嵌入式系统的应用和开发过程。
三、教学方法1. 讲授法:讲解嵌入式系统的基本概念、原理和开发方法。
2. 案例分析法:分析实际项目,让学生了解嵌入式系统的应用。
3. 实验法:引导学生动手实践,培养实际操作能力。
4. 小组讨论法:分组讨论,培养团队协作精神。
四、教学环境1. 教室:配备投影仪、计算机、网络等教学设施。
2. 实验室:配备嵌入式开发板、编程器、仿真器等实验设备。
五、教学评价1. 课堂互动:提问、回答问题、讨论等,评价学生对知识的掌握。
2. 课后作业:布置相关练习题,巩固所学知识。
3. 实验报告:评估学生在实验过程中的动手能力和解决问题能力。
4. 课程设计:综合运用所学知识完成一个嵌入式系统项目,评价学生的综合能力。
六、教学资源1. 教材:《嵌入式系统开发与应用》教材,用于引导学生学习基本概念和原理。
2. 案例库:收集各类嵌入式系统应用案例,用于分析讨论。
3. 实验指导书:提供实验步骤、原理和技巧,指导学生动手实践。
4. 在线资源:推荐相关网站、论坛和教程,便于学生自主学习。
七、教学安排1. 课时:共计32课时,包括16次理论课和16次实验课。
2. 进度计划:第1-4课时:嵌入式系统概述及基本组成第5-8课时:嵌入式系统开发流程第9-12课时:嵌入式操作系统基础第13-16课时:嵌入式系统实例分析第17-20课时:实验一:嵌入式系统硬件平台搭建第21-24课时:实验二:嵌入式系统软件设计第25-28课时:实验三:嵌入式操作系统应用第29-32课时:课程设计:完成一个嵌入式系统项目八、教学注意事项1. 注重理论联系实际,让学生了解嵌入式系统在生活中的应用。
嵌入式系统应用技术的研究与开发

嵌入式系统应用技术的研究与开发嵌入式系统是一种电子计算机系统,它是特别设计用于执行特定功能的计算机系统。
这种系统常用于控制和监视系统,如智能手机、数字相机、车载音频系统等。
为了实现嵌入式系统的工作,需要使用一系列技术和工具来进行开发和应用。
本文将探讨嵌入式系统应用技术的研究与开发,包括嵌入式系统基本原理和常用技术,以及嵌入式系统应用开发的方法和工具。
一、嵌入式系统基本原理嵌入式系统本质上是一个计算机系统,它具有计算、存储、控制和通信等功能。
由于嵌入式系统的特殊应用环境,它的体积、功耗、成本和性能等方面都有较高的要求。
嵌入式系统通常由下列组成部分组成:1. 主处理器/控制器主处理器/控制器是嵌入式系统的核心,负责计算、控制和管理系统的硬件和软件资源。
主处理器/控制器的类型和性能直接决定了系统的功能和性能。
常见的主处理器/控制器有ARM Cortex系列、Intel x86系列、MIPS系列等。
2. 存储器存储器用于存储系统程序和数据。
由于嵌入式系统的体积和功耗都有限制,因此存储器通常采用闪存、EEPROM、SRAM等低功耗、小体积的型号。
3. 输入/输出设备输入/输出设备用于与外界进行数据交换,如键盘、鼠标、显示屏、声卡、网卡等。
嵌入式系统通常使用专用的输入/输出设备,以满足应用需求和耗能要求。
4. 网络设备网络设备负责系统与外部网络通信,如以太网卡、无线网卡、蓝牙模块等。
网络设备的选择和配置决定了系统的通信速度和稳定性。
二、嵌入式系统常用技术1. 硬件设计嵌入式系统的硬件设计主要涉及主处理器/控制器的选择、连通性设计、电源管理等方面。
硬件设计的质量和性能直接决定了嵌入式系统的稳定性和能耗水平。
2. 软件开发嵌入式系统的软件开发主要涉及核心程序设计、驱动程序编写、通信协议实现等方面。
软件开发的质量和可靠性直接决定了嵌入式系统功能的实现和应用效果的稳定性。
3. 中间件中间件是嵌入式系统开发中常用的技术。
嵌入式系统的应用及开发

轰墨Ⅵ温爵I II I|l{嵌入式系统的应用及开发夏岩(东营职业学院山东东营257091)【摘要】简略分析嵌入式系统及其应用的特点,在论述开发原则的基础上,指出嵌入式软件的特点.[关键词]嵌入式系统设计原则软件特点中图分类号:TP3文献标识码:^文章编号:1871--7597(2006)0610094--01一、嵌入式系统及其应用曩述嵌入式系统是以应用为中心,以计算机技术为基础,软件可编程,硬件可剪裁、重构的专用计算机系统。
该系统通常嵌入在对象环境中,并通过其在对象环境下运行的特定程序,完成对外界物理参数地采集、处理,达到对控制对象地响应或人机交互的功能。
目前,嵌入式系统的发展方向主要是解决接口多样性、适应性,灵活性和集成开发环境等的特定应用问题。
嵌入式系统应用的底层性与对象系统的紧耦合性是其显著的基本特征。
所以,最大限度的满足对象数据采集、控制、开发环境、功耗,以及适应能力、可靠性等品质因数是选择嵌入式系统的标准。
为适应技术发展需求,嵌入系统在不断追求结构紧凑、坚固可靠、技术密集、高度分散的同时,尤以不断创新为嵌入式系统的发展核心。
使嵌入系统凸现了高技术门槛,主要表现在软硬件设计的紧密相关性上,特别是构建R T O S系统需透彻了解RT O S的工作机制和系统资源配制,掌握底层软件、系统软件和应用软件的设计、调试方法。
随着对嵌入式系统的智能化愈加关注,现场可编程、调试、引脚配置变得非常重要和必不可少。
所以,用户可配置的SC O(在片系统)已成为现阶段嵌入式系统的核心发展技术。
通过现场可编程阵列把接口应用设计和系统开发留给系统设计者,提供灵活、多样的片上电路设计平台,使电路板设计变成在片的芯片配置,将嵌入系统地设计带入了软硬件的双编程时期,进一步缩短了产品开发周期。
而下一代的在片系统还将发展成一个M U c数量可缩放的集合体。
在嵌入式应用系统中,虽然高端产品不断涌现,但由于应用对象、环境的不同特点,嵌入系统的8位机产品仍因应用对象的有限响应时间、完备的集成开发环境、良好的性价比等优势仍然占据着低端应用系统的主流地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
95.85MHZ固定频率的外设PLL。
•ቤተ መጻሕፍቲ ባይዱ
147.46MHZ固定频率的PLL。
图5-2 时钟管理器框图
时钟管理寄存器
表5-2 时钟管理器寄存器
1. 核时钟设置寄存器(CCCR)
位31~10: 保留; 位9~7:运行方式频率至快速方式频率倍因子N;
快速方式频率=运行方式频率*N; 位6~5:存贮器频率至运行方式频率倍因子M; 位4~0:晶振频率至存贮器频率倍因子L 。
4)决定正常工作(RUN方式)所需的核频率。它的 值为存贮器频率的1、2或4倍。把该值(M)编 程入核时钟设置寄存器。
5)决定快速(TURBO)方式工作的核频率。它用于 从CACHE中运行程序的时候。该值应为RUN方式 时钟的1、1.5、2或3倍。把该值(N)编程入核 时钟设置寄存器。
6)按存贮器频率设置LCD控制器和存贮器控制器。
嵌入式系统应用与开发
张睿 2004年2月
第四章 PXA250处理器介绍
PXA250和PXA210应用处理机是第 一代基于INTEL的XScale微架构的集成 系统芯片(ISOC)设计处理机。它们 除了XScale微内核外,还集成了许多适 用于手持设备市场需要的外围设备。
4.1 PXA250结构和特性
Xscale PXA250是一种十分先进的嵌入 式处理器,采用XScale核心,频率为200~ 400MHz,加强了微处理器速度的管理,加 快了多媒体处理的速度,并支持802.11b及 蓝牙技术、USB接口,采用PBGA封装方式。 其主要针对下一代高性能的PDA市场,支持 视频流、MP3、无线互联网存取以及其他边 缘领先技术。
两倍于SDRAM频率,存贮器控制器中的SDRAM时钟 分频值应设为2。如SDRAM频率为99.5MHZ,则存贮 器频率等于SDRAM的频率。 3)按99.5MHZ(L=0x1B), 118.0MHZ(L=0x20), 132.7MHZ(L=0x24),147.5MHZ(L=0x28)或 165.9MHZ(L=0x2D)的最近值来取存贮器频率,并 把L编程入核时钟设置寄存器。该频率(或一半, 如SDRAM频率为两分频)为外部同步存贮器频率。
表5-1 核PLL输出频率输出频率
4.2.2 复位
三种复位方式: 1、硬件复位 2、Watchdog复位 3、GPIO复位
1. 硬件复位
在nRESET脚上加低电平,将进入硬复位状态。这 时仅3.6864MHZ振荡器处于工作状态,停止内部时 钟,所有引脚处于复位状态,将丢失所有动态RAM 的内容,从nRESET_OUT输出低电平。在退出复位前, 所有电源必须稳定。在nRESET脚变为高时,退出硬 件复位,将: 1)等待3.6864MHZ振荡器和PLL时钟发生器稳定。 2)nRESET_OUT脚变高。 3)开始正常的启动步骤。软件应检查复位控制器状
提供服务。 —采用描述器(Descriptor)允许命令链和循环结构。 —支持字、半字和字节数据传送。
•LCD控制器: —支持被动(DSTN)和主动(TFT)LCD显示。 —最大分辨率800*600*16。 —两个专用DMA通道允许LCD控制器支持单层或双
层显示。
•系统集成模块: —GPIO —中断控制器 。 —实时时钟(RTC) —OS定时器 —PWM
•串行通讯口: —USB从机模块,支持USB V1.1 —三个UART,每个均可有慢速红外接口功能: * 全功能UART,波特率可高至230kbps。 * Bluetooth UART,波特率可高至921Kbps。 * 标准UART,波特率可高至230kbps。 —高速红外(FIR)通讯口,基于4Mbps IrDA 标准,可直接与外部IrDA LED相连。 —同步串行规程控制器(SSPC),提供全双工同 步串行接口,位速率为7.2KHZ至1.84MHZ。 —I2C总线接口单元。
态寄存器(RCSR)以决定启动源。
2. Watchdog复位
在 软 件 没 阻 止 Watchdog 定 时 溢 出 的 发 生 时 , 产 生 Watchdog 复 位 。 这 时 nRESET_OUT脚变低,除了RTC和部分时钟 电源管理器外,复位所有单元,也将丢失 动 态 RAM 的 内 容 。 在 经 过 约 18ms 后 退 出 Watchdog复位状态。
图5-1 应用处理机框图
PXA250的特性
•内核工作频率:100~400MHZ •系统存贮器接口:
—100MHZ SDRAM。 —4MB至256MB SDRAM存贮器。 —支持16、64、128、256Mbit DRAM技术。 —四个SDRAM区,每个支持64MB存贮器。 —时钟允许(1个CKE脚用于把整个SDRAM接口
•多媒休通讯口: —AC97控制器,支持AC97 V2.0 Codec。 —I2S控制器,可串行连接至数字立体声的标准I2S Codec,支持普通的I2S和MSB调整的I2S格式。 —多媒体卡(MMC)控制器,提供与标准的存贮器 卡的串行接口,最高速率可达20Mbps。
封装
•PXA250采用256脚17*17MBGA封装, 32位总线内核
2. 时钟允许寄存器(CKEN)
3. 振荡器设置寄存器(OSCC)
位31~2:保留 位1:OON——32.768KHZ允许位(只能写入一次) 位0:OOK——32.768KHZ运行标志(只读)
PLL频率编程方法
1)决定最快的同步存贮器(SDRAM)的频率。 2)如果SDRAM频率小于99.5MHZ,则存贮器频率必须
置为自我刷新)。 —支持多至六个静态存贮器器件(SRAM、
Flash、ROM或VLIO)。 —支持两个PCMCIA/CF卡插槽。
•时钟和电源控制器: —3.6864MHZ振荡器,具有核PLL和外围PLL,可产生各
工作频率。 —32.768KHZ振荡器可驱动实时时钟、电源管理器和中断
控制器。 —电源控制器可控制快速/运行、空闲和睡眠工作方式。 •DMA控制器: —具有16个有优先级的通道,可为内部外设和外部芯片
•PXA210采用225脚13*13MMAP封装, 具有16位总线
4.2 时钟和电源管理
时钟和电源管理控制每个模块的时 钟频率,管理不同工作方式的转换以优 化计算性能和电源消耗。
4.2.1 时钟管理
时钟系统包括五个主要时钟源:
•
32.768KHZ振荡器。
•
3.6864MHZ振荡器。
•
可程控频率的核PLL。