火电厂输煤系统粉尘超标原因分析与抑尘改造实践
电厂输煤系统粉尘治理的经验及对策

电厂输煤系统粉尘治理的经验及对策【摘要】本文分析了电厂输煤系统粉尘产生的原因和危害、传统除尘技术以及新型除尘技术,并进行了效益分析,以供参考。
【关键词】输煤;粉尘;危害;成因;除尘;技术一、前言粉尘在火力发电厂燃煤输送作业中会给周围环境造成很大影响,不利于安全生产,更影响到职工的身心健康。
加强粉尘治理是电厂安全生产的重要任务。
二、粉尘的概念生产性粉尘(productivedust)是指在生产中形成的,并能长时间漂浮在空气中的固体微粒。
在测定粉尘性能方面,将粉尘分为总粉尘、呼吸性粉尘。
火力发电厂内运煤系统中的污染物主要是指生产性粉尘,即煤尘。
1、总粉尘:简称总尘,是指能够进入鼻、咽和喉、胸腔支气管、细支气管和肺泡即整个呼吸道的粉尘。
2、呼吸性粉尘:简称呼尘,是指粉尘颗粒的空气动力学直径均小于7.07μm 且空气动力学直径5μm粒子的采样效率为50%,按呼吸性粉尘标准测定方法所采集的可进入肺泡的粉尘粒子。
3、呼尘浓度与总尘浓度的关系。
根据初步研究的结果,呼吸性粉尘浓度与总粉尘浓度的比值为1∶(4.6~4.8)。
4、粉尘对人体的危害见表1。
表1粉尘对人体的危害表三、输煤系统产生粉尘的主要原因分析1、传统的落煤管结构设计遵循的是“料磨料”的指导思想,从头部落煤管到输煤导料槽设计,通过“料磨料”设计减少对设备的磨损,物料运行过程中多次发生撞击,使物料分散造成物料间冲击挤压,造成大量的粉尘扬起。
(1)头部落煤管的通用化设计不能满足不同带速、不同皮带倾角物料抛出角度的要求,在头部落煤管内形成冲击和粉尘的产生,格栅导流板使扬尘现象加剧;(2)落煤管设计有很多拐角,在拐角处物料之间冲击和挤压严重,散装物料中间包含的空气发生膨胀带起大量的粉尘;(3)缓冲锁气器在落煤过程中起到一定的缓冲效果,减少物料对皮带冲击但由于物料过于分散,因强烈的冲击引起大量的粉尘,还有由于维护工作量大,很多电厂都拆掉了,导致输煤系统粉尘含量增加。
浅析输煤系统扬尘原因及抑尘与治理措施

浅析输煤系统扬尘原因及抑尘与治理措施摘要:带式输送机传输系统是保障电力生产的重要组成部分。
输煤系统包括燃煤的接卸、转运、筛分、破碎、输送等多个复杂的环节,在整个传输过程中极易产生大量的粉尘,大量弥漫的粉尘不仅给工作环境、员工的身体健康带来了影响,也带来了严重的火灾安全隐患,依据国家最新环保标准政策的出台,扬尘问题给输煤系统文明治理带来了新的挑战。
关键词:输煤系统;扬尘;抑尘;治理一引言:根据目前火力发电厂输煤传输系统扬尘治理现状,分析输煤系统在传输过程中的扬尘产生原因,剖析现有除尘抑尘设备的优缺点,提出具有针对性的抑尘措施。
二输煤系统扬尘现状分析:火力发电厂输煤系统通常是由储煤场、卸煤沟(场)、给煤机、筛煤设备、碎煤设备、犁式卸料器、转运站落煤管、导料槽等多种产生扬尘的设备构成。
目前大部分储煤场根据环保要求,都加装有外部棚、罩之类的防尘措施,可抑制和防范因大风而产生的大量粉尘。
但内部在接卸、转运期间也会产生大量的扬尘,虽然部分煤棚内装设有喷雾等抑尘设备,但不能完全抑制扬尘的蔓延。
针对输煤设备在完成燃煤输送、筛分、破碎的过程中因高度差、气流回旋等各种原因产生的扬尘,火力发电企业根据国家相关的行业标准都设置了部分防护措施,如微雾抑尘装置、布袋除尘器等,这些措施对粉尘抑制在一定程度上有了效果,但并没有在根本上解决扬尘问题。
虽然布袋除尘器设备、微雾抑尘能抑制和处理正常输送过程中的一部分粉尘,但还没有形成全面而完整的系统。
为了达到最佳的防尘和抑尘效果,还需要对输煤系统整个过程进行全面的分析和研究。
在燃煤电厂生产运行过程中,输煤系统主要包括储煤场、卸煤场、碎煤机室、转运站等部分。
现阶段,在燃煤电厂中的储煤场一般都已经做了外部的保护措施,可以有效的防止由于外部环境所导致的煤尘出现,但是就目前发展实际情况来看在很多燃煤电厂中的卸煤场、碎煤机室、转运站等生产现场即使已经布设了除尘设备,但是除尘效果却差强人意,这使得输煤系统成为了燃煤电厂生产实践中环境最差、粉尘污染最严重的区域,不仅严重影响工作在输煤系统一线员工的身体健康,同时也会对火电厂所处区域的环境造成一定的污染,这与现阶段深化贯彻落实的科学发展观是相悖的,也不符合全面构建境友好型社会的现实要求。
电厂输煤煤粉尘成因分析及防治措施

电厂输煤煤粉尘成因分析及防治措施发布时间:2022-08-28T08:33:10.944Z 来源:《中国电业与能源》2022年8期作者:金明赞[导读] 在火力发电厂相关工作的开展中,电厂输煤系统是其中较为重要的部分,金明赞辽宁大唐国际葫芦岛热电有限公司设备部摘要:在火力发电厂相关工作的开展中,电厂输煤系统是其中较为重要的部分,这对于火力发电厂的环境治理工作是非常重要的。
由于多种因素的影响,火力发电厂的煤粉尘污染非常严重,在各项工作环节都会有大量的粉尘产生,这直接导致了对于环境的污染,同时也造成了巨大的安全隐患。
如果不采取有效的措施对其进行治理,必将导致重大安全事故的发生。
为了减少粉尘对于环境的污染,避免生产事故的发生,本文在此基础上对煤粉尘的成因进行了分析和研究,并提出了相应的防治措施,希望能够促进火力发电厂环境治理工作的进一步开展。
关键词:电厂输煤;煤粉尘;成因;防治措施现阶段,我国发电所使用的燃料依然以燃煤为主,而火电机在其中的占比非常大。
但在对燃煤进行运用的各项环节中,都会有大量的粉尘产生,这使得火力发电厂的粉尘这里难度大大提升。
粉尘的产生不仅污染了环境,也使得火力发电厂工作的开展中存在着巨大的安全隐患。
如果工作人员吸入粉尘,还有可能引发各种疾病。
随着我国对于环保的要求越来越严格,火力发电厂在发展的过程中也应采取相应的措施对粉尘进行治理。
一、煤粉尘的成因根据火力发电厂粉尘的特点进行分析,粉尘产生的地点主要有:碎煤机室:这一设备是通过对燃煤的挤压和冲击来使其破碎,在这一过程中,由于鼓风效应的作用,并会产生大量的粉尘。
但由于机器的长期使用,其外壳的密封性能受到了较大的影响,因此粉尘便会从设备的缝隙中扩散。
转运站:燃煤从皮带上下落的速度是非常快的,这会产生较大的冲击,在这一过程中就会产生较多的细小煤尘,如果导料槽的密封性能遭到破坏,粉尘就会泄露。
在用卸载工具卸煤的过程中,在燃煤倾倒会使周围的空气流动进一步加快,这就会导致粉尘随着空气的流动而进一步扩散,也就造成了扬尘污染[1]。
浅析火电厂输煤系统粉尘产生原因及综合治理措施

浅析火电厂输煤系统粉尘产生原因及综合治理措施摘要:在我国,输煤系统属于火电厂生产过程中的关键性构成,其状态能否正常运行,对火电厂电力能否正常输出有着直接影响,而煤炭作为火电厂发电燃料,在燃烧之前,会经过多道工序,这期间会产生大量粉尘。
粉尘所带来的直接危害就是影响输煤系统的工作人员身体健康,甚至影响周边人民群众的生活。
基于此,本文将分析火电厂输煤系统粉尘产生的主要原因,并提出针对性的治理措施。
关键词:火电厂;输煤系统;粉尘;治理一、火电厂输煤系统粉尘治理现状目前,随着我国经济建设的快速发展,各个领域对生态环境保护提出了更高的要求,尤其是火电厂,因为输煤系统的多个环节会产生不同浓度的粉尘。
此时就需要火电厂管理人员,对输煤系统的粉尘综合治理工作给予高度的重视。
就当下而言,我国相关领域对粉尘污染问题进行了大量的实践工作,并取得了不错的治理效果,为火电厂输煤系统粉尘综合治理工作的开展提供了大量可以借鉴的经验。
通过对我国火电厂输煤系统粉尘治理工作的开展情况进行调查后发现,大部分火电厂在选择除尘器的过程中,采用了水激式除尘器、干雾抑尘装置、多管冲击式除尘器、无动力除尘器以及布袋除尘器等设备,并且都取得了比较明显的降尘效果,但是在粉尘综合治理过程中需要对这些设备进行大量的维护,而且除尘器的实际投入与产出存在一定的差距,因此需要对粉尘产生的原因进行系统分析和研究,从而源头上来制定有效的措施,从而提高粉尘综合治理效果。
二、火电厂输煤系统粉尘产生的主要原因1、采制样过程中产生大量粉尘入厂的拉煤车辆需先经过入厂煤采样方可卸入煤沟,多数采样装置都是螺旋杆提取式采样,在采样过程中会产生大量的物料颗粒物及粉尘,此外在破碎、缩分过程中都会产生粉尘,且极易扩散至周边区域。
2、转运站上煤时落差大从而产生粉尘煤流在重力作用下高速下落,产生大量粉尘,并产生强烈的诱导风;而落煤管为直通式结构,中段无任何抑制诱导风措施,同时由于调试或锈蚀等原因,造成落煤管底部的重锤式缓冲锁气器内的翻板处于常开状态,未能实现“锁气”作用,使得大量风粉直接进入导料槽,产生强大的正压,为粉尘大量逸出提供了便利条件。
浅析输煤系统粉尘治理与改进

浅析输煤系统粉尘治理与改进随着我国煤炭产业的快速发展,输煤系统在煤炭运输领域中扮演着非常重要的角色。
输煤系统在使用过程中也会产生大量的粉尘,给环境和人们的健康带来了很大的隐患。
对输煤系统的粉尘治理与改进显得尤为重要。
一、输煤系统产生的粉尘问题在输煤的过程中,主要会产生两种粉尘,一种是煤炭自身的粉尘,另一种是输煤设备的磨损产生的粉尘。
这些粉尘在输煤的各个环节中不可避免地产生,给周围环境和工作人员带来了很大的影响。
一方面,粉尘在输煤设备运行过程中,会附着在设备表面,影响设备的正常运行,增加了设备的维护成本和生产成本;粉尘还可能造成空气污染,对周围环境产生不良影响,甚至对工作人员的健康产生威胁。
输煤系统的粉尘治理与改进显得非常迫切。
目前,我国对输煤系统的粉尘治理多采取传统的方法,包括对输煤设备进行定期清洁、喷淋降尘、通风换气等措施。
这些方法在一定程度上可以减少粉尘对设备和环境的影响,但是仍存在一些问题。
这些方法需要人工干预,工作量大,成本高,效果有限;这些方法只是对粉尘进行被动清理,没有根本解决粉尘产生的问题;这些方法在一定程度上也会对设备造成一定的损害。
三、输煤系统粉尘治理的改进方向针对当前输煤系统粉尘治理存在的问题,需要采取一系列的改进措施。
可以采用先进的输煤设备和技术,减少设备的磨损产生的粉尘。
采用耐磨材料制造输煤设备,提高设备的耐磨性能,减少设备的磨损。
可以采用自动化的粉尘治理设备,实现对粉尘的实时监测和自动清理。
采用粉尘监测传感器和自动清洁装置,对产生的粉尘进行实时监测和清理,降低人工干预,减少清理成本。
可以加强对输煤系统的管理与维护,落实粉尘治理的责任,制定粉尘治理的标准和流程,加强设备的维护和保养,确保输煤系统的安全运行。
为了有效地改善输煤系统的粉尘治理情况,建议可以从以下几个方面进行实施。
1.推广节能环保的输煤设备和技术,提高设备的耐磨性能,减少设备的磨损产生的粉尘。
2.引入先进的自动化粉尘治理设备,实现对粉尘的实时监测和自动清理,降低人工干预,提高粉尘治理的效率。
火力发电厂输煤系统粉尘综合治理探讨

火力发电厂输煤系统粉尘综合治理探讨火力发电厂是目前我国主要的电力生产方式之一,其运行过程中需要大量的煤炭作为能源。
煤炭在输送、储存和燃烧过程中会产生大量的粉尘污染,给环境和人体健康造成严重影响。
如何对火力发电厂的输煤系统进行粉尘综合治理成为了一个迫切需要解决的问题。
一、火力发电厂输煤系统的粉尘产生及危害火力发电厂的输煤系统主要包括煤场、皮带输送机和煤磨等设备。
在这些设备的运行过程中,煤炭会产生大量的粉尘,主要源于以下几个方面:1. 煤场堆放:煤场是煤炭的储存地点,煤炭在堆放过程中会产生大量的粉尘,尤其是在装载和卸载的过程中,粉尘的扬尘问题尤为严重。
2. 皮带输送机:皮带输送机是将煤炭从煤场输送到锅炉燃烧的关键设备,其在运行过程中会产生大量的摩擦粉尘。
3. 煤磨:煤磨是将原煤粉碎成粉煤的设备,其在运行过程中也会产生大量的粉尘。
这些粉尘会对环境和人体健康造成严重危害,例如对大气的污染、土壤的污染以及对人体呼吸系统的直接危害。
对火力发电厂输煤系统的粉尘污染进行综合治理显得十分重要。
目前对于火力发电厂输煤系统的粉尘污染治理主要采取了以下几种技术:1. 环境保护设施:包括除尘设备、静电除尘器等,这些设施是对烟气中的粉尘进行收集和处理的主要设备。
2. 煤场封闭:通过对煤场进行封闭,减少了煤炭运输和装卸过程中的扬尘。
3. 喷水降尘:通过在煤场和皮带输送机等设备上方喷洒水雾的方式,降低了粉尘的飞扬。
这些技术在实际应用中存在一些问题:1. 除尘效率低:目前的除尘设备对于细颗粒物的处理效率较低,无法完全达到排放标准要求。
2. 能耗高:一些治理技术需要大量的水资源和电力资源,导致了能耗的增加和成本的提高。
3. 维护困难:一些设备在长期运行过程中容易出现故障,维护困难,影响了设备的正常运行。
基于现有技术的不足,对于火力发电厂输煤系统的粉尘综合治理亟需进行技术创新和方法探索。
1. 高效除尘设备:研发高效的除尘设备,例如电除尘器、湿式除尘器等,提高粉尘的处理效率。
浅析火电厂输煤系统粉尘综合治理措施

浅析火电厂输煤系统粉尘综合治理措施摘要:对于火电厂输煤系统来说,粉尘的产生是不可避免的因素,而粉尘综合治理是一项系统性、复杂性的工作,致使火电厂粉尘综合治理效果不理想。
现如今,随着生态环境保护意识的不断增强,对火电厂输煤系统粉尘综合治理工作提出了更高的要求,因此需要对诱发粉尘的相关因素进行分析,然后制定系统性的综合治理策略,从而有效的降低输煤系统粉尘浓度,确保火电厂输煤系统的有效性和安全性。
关键词:火电厂;输煤系统;粉尘;综合治理;措施1火电厂输煤系统粉尘产生的原因1.1除尘器的问题在火电厂输煤系统中,一期除尘设备设计选择了布袋式除尘装置,布袋选择的是针刺毡,当工作一段时间后布袋吸附的煤粉就会达到饱和,如果未对其进行及时、有效的处理将会在布袋表面板结,从而使针刺毡布袋被不同程度的堵塞,致使含煤空气不能得到及时、有效的分离,进而对除尘效果产生一定的影响。
在布袋除尘过程中,需要借助压缩空气的反吹来达到清洁的目的,如果煤粉带水或除尘器板结后,将会导致其阻力不断增加,甚至超过压缩空气反吹力,这样一来就无法实现反吹清洁的效果,影响后续除尘工作的开展。
同时,火电厂输煤系统的二期除尘设备将采用的是多管冲洗式除尘器,该过程中使用了现场复用水作为水源,这些复用水只是对含煤废水进行了简单的处理,导致其中的杂质多、水质差,很容易堵塞出口排水阀、进水电磁阀及管路等问题,从而影响了除尘器的工作效果。
1.2皮带落煤管及导煤槽的问题在输煤系统转运过程中,皮带机在各个转运站的衔接存在一定的落差,从上一级皮带到下一级皮带,落差少则三四米,多则十几米,一般通过落煤管、切换挡板、导煤槽、缓冲装置等实现平稳定向转载。
燃煤在落煤管内的下落过程中,由于煤流的携带作用,在落煤管内产生诱导风,诱导风在落煤管和导煤槽的破损部位向输煤廊道扩散,其携带的大量煤尘造成了输煤廊道空间环境的污染。
皮带导煤槽是收集落煤管扬尘的重要部件,大多火电厂现有导煤槽使用普通6mm钢板制作,并大多使用多年,多处导煤槽锈蚀穿孔,影响除尘器的抽吸力。
电厂输煤粉尘成因分析及防治

电厂输煤粉尘成因分析及防治摘要:燃煤电厂在社会发展中意义重大,但在具体工作中,输煤系统的运行会造成大量粉尘出现,这种粉尘会大面积污染环境,如果处理不及时,还可能导致工作人员人身安全,遭受严重威胁,并在具体工作中,出现各类安全隐患。
近几年随着安全要求提高,和技术快速进步,在煤炭电厂运行和发展中,关于煤炭运输系统,在工作中产生粉尘的处理,得到了高度关注。
所以,运输燃煤时,为了能将环境污染有效减少,同时将各类安全隐患扼杀在摇篮内,必须不断针对煤粉尘成因和管理进行分析,在了解粉尘类型的同时对科学的防治方法进行探讨,以此来加强输煤粉尘的治理,减少工作人员和周边生态受到的影响,推动整个发电厂长久发展。
关键词:电厂输煤;输煤系统;煤炭处理;粉尘防治火力发电厂在具体工作中,必须得到足够燃煤的支持,而输煤系统在电厂,也发挥着巨大的作用价值,尤其在电厂的环保治理方面,属于关键环节。
在输煤系统具体运行中,无论在任何环节,都可能出现大量煤粉尘,比如在煤燃料破碎、运输、接卸、掺配,以及转运等步骤中,都可能产生可观的粉尘。
为了有效实现生产清洁电能目标,降低生产中污染物排放量,在电厂的输煤系统中,必须对粉尘治理工作给予高度关注,并以当前工作为基础,分析产生煤粉尘的原因,然后探讨具体防治对策,只有这样才能真正加强煤粉尘的处理。
一、粉尘类型及成因(一)粉尘类型对于粉尘的类型来说,首先最常见的就是原始粉尘,各种粉尘主要是运输和煤矿中,产生的煤粉细颗粒。
对于煤炭而言,粉尘主要有无数小颗粒组成,是自身所含物质,在输煤系统运行时,这些小颗粒会在此期间,与原料分离并在空气中漂浮。
加工粉尘也是常见粉尘,主要将原始煤矿产,进行进一步加强利用,确保煤块的规格符合相关标准,从而对原料利用碎煤机,进行处理和分析,在此期间形成的小粉尘[1]。
随着发电厂各项工作的展开,开始启动燃煤炉,并进行运行时,必须对其完成数次翻转。
下降时输煤管道和煤之间会形成碰撞,而在各种动作的影响下,颗粒较大的煤燃料,会碎成大小不一、形状不定的颗粒,并在此过程中产生粉尘,而这种粉尘即为运转粉尘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火电厂输煤系统粉尘超标原因分析与抑尘改造实践
引言
某电厂两台1050MW机组投产后,由于落煤管设计不合理、导料槽不密封、抑尘设施效果差等问题造成输煤系统转运站煤尘长期超标,不符合职业卫生标准,严重威胁设备安全运行和作业人员健康。
该厂通过专项分析,并实施综合抑尘技改解决问题。
1 设备简介
某电厂2×1050MW机组卸煤段皮带机带宽B=1800mm,速度V=3.5m/s。
上煤段皮带机带宽B=1400mm,速度V=2.5m/s。
原设计主要采取以下除尘措施:
一是采用传统的四方型落煤管和导料槽;
二是皮带机头部护罩和尾部导料槽安装喷淋抑尘;
三是对落差≥4m的落料点导料槽上部布置缓冲锁气器;
四是各导料槽均设有多管冲击式除尘器进行除尘。
2 原输煤系统煤尘防治效果及煤尘超标原因分析
受各种因素影响,该厂转运站多处总粉尘允许质量浓度实测值长期处于15~20 mg/m3区间,不符合《火力发电厂运煤设计技术规程》[1]规定的当煤中游离二氧化硅含量(质量分数)低于10%时,总粉尘允许质量浓度不超过4 mg/m3的行业要求,具体分析如下:
1)落煤管形状、流线设计不合理。
物料在内部折角处撞击产生煤尘颗粒和形成高速诱导风形成正压外泄煤尘。
另由于折角易导致煤湿时粘煤、堵煤,落料点不正致皮带跑偏、撒煤等故障。
2)传统导料槽整体密封性差。
导料槽两侧及导料槽出口处由于皮带的跳动、物料的运动易造成密封性不佳,以及导料槽出口风速高,造成煤尘外溢。
3)水冲激除尘器除尘效果差。
该除尘器由于离落料点较远及设计的抽风量不足,无法将槽内混合空气完全抽走。
4)水喷淋效果差。
原导料槽尾部和头部护罩处水喷淋颗粒大,捕捉煤尘能力差,产生扬尘。
3 技改方案
技改主要针对T6、T7转运站及碎煤机楼共七台皮带机采取改装抑尘防堵曲线落煤管(以下简称曲线落煤管)、沉降式导料槽以及微米级干雾抑尘,拆除原缓冲锁气器、冲激式除尘器和水喷淋抑尘设施的综合技改方案,具体如下:3.1 曲线落煤管改造
1)曲线落煤管主要包含头部集流导流装置、落煤管本体和给料匙等装置。
2)头部集流导流装置:取消原煤流挡板,新型头部集流导流装置导流挡板采用曲线下伸至皮带机头部漏斗内,使物料以较小的冲击角度与头部集流导流装置渐变接触,以非常小冲击角度收集并限制运动的物料流,在导流挡板的引导下逐渐改变流动方向,使物料朝输送机系统下方设备平缓流动;物料在头部集流导流装置的作用下得到汇集,能够汇聚“排队”运动,从而有效减小诱导风、抑制煤尘的产生,并最大程度降低物料速度的损失,避免物料在头部漏斗位置发生堆积堵塞。
3)落煤管本体:落煤管采用弧形流线型、“U”形截面结构设计,总体设计保证物料的汇集输送,结合落差的大小设置诱导风抑制系统和缓冲物料冲击系统,
避免采用传统落煤管时直接落料对受料皮带造成直接冲击的现象;落煤管的设计保证所有落料点和胶带对中,运行期间不发生落料点不正常现象。
4)给料匙:给料匙安装于落煤管最底部,用于接收物料流并将其放在受料带式输送机上。
给料匙确保物料的移动方向与受料带式输送机运行方向相同,且其速度接近受料带的带速,以有效减少煤尘的产生。
给料匙出口采用向前扩容设计,其两侧深入导料槽内侧,对一条胶带只有一个落料点的,给料匙尾部距离胶带不高于150 mm,双边各留50 mm距离;对后点落料点则要充分估计煤流的高度设计,给料匙具有导正落料的作用,从而减少对胶带的冲击、磨损、偏心加载、衬板磨损等问题。
5)落煤管、集流导流装置和给料匙冲击面内衬高铬双金属耐磨复合钢板,总厚度不低于24mm(12mm基材+12mm堆焊);堆焊表面硬度(HRC)为58~60,含碳量w (C)不低于4%~5%,含铬量w (Cr)不低于32%,耐磨性能是普通耐磨钢6~10倍以上。
磨损面内衬采用不小于25mm厚、Al2O3含量(质量分数)95%以上的纯陶瓷耐磨材料;集料斗、中间过渡段管壁和给料匙内耐磨陶瓷内衬光滑顺畅、耐磨损、能抗强力冲击、易安装且不易脱落。
6)曲线落煤管总体技术采用Solid Works三维立体设计建模技术,借助于先进的颗粒学仿真软件EDEM,对散状物料输送过程中颗粒体系的行为特征进行较真实模拟,从而优化物料通道。
通过落煤管的优化设计从源头上解决原落煤管转运时产生的煤尘大、容易堵料及胶带跑偏等问题,确保物料转运安全、高效顺畅、清洁。
3.2 沉降式导料槽改造
1)沉降式导料槽包含侧板、顶板、支撑槽钢、耐磨衬板、防溢裙板、迷踪式挡帘及下部的托辊、支撑板(条)部分。
2)导料槽内部:内侧全长采用500mm×230mm×16mm螺栓连接的聚氨酯耐磨密封衬板,衬板最低距离胶带不大于5mm,可起到一级密封,有效防止侧板磨穿并保护防溢裙板。
导料槽两侧均安装高密度橡胶和超高分子聚氨酯防溢裙板,可起到二级密封,以上措施可确保导料槽两侧的完全密封。
3)导料槽下部:该型导料槽胶带下设置托辊+支撑板(条)的组合方式。
支撑板(条)与皮带机支架连接,维护人员无需进入导料槽即可直接在导料槽外更换皮带下部的支撑板(条)。
支撑板(条)表面采用大于400万超高分子量聚乙烯材质、表面平滑、不伤皮带、具有良好的耐磨和防火性能,实现对皮带的连续支撑,不出现漏煤、漏粉现象。
4)导料槽降尘原理:高速诱导风一部分透过阻风帘进入循环区,另一部分过循环泄压装置泄压并改变风向,在装置出风口与进入循环区的诱导风形成对冲,从而降低风速,同时这部分风可以促进循环区的煤尘局部循环起来,再经过循环降尘区进行二级循环降速;在导料槽内加装迷踪式天然橡胶胶条挡帘和PU 阻风帘,促使诱导风走S型走道,从而有效降低风速和吸附、控制煤尘。
3.3 微米级干雾抑尘改造
1)本次改造加装两套微米级干雾抑尘系统,每套干雾抑尘系统主要由干雾主机、空压机、水气分配器、万向节总成(含喷头)等设备及储气罐、水管线、压缩空气管线、全自动反冲洗过滤器、增压泵、自动控制系统等配套部分组成。
2)干雾抑尘主机:干雾抑尘机由电控系统、多功能控制系统、流量控制系统组成。
主机将气、水过滤后,以设定的气压、水压、气流量、水流量按开关程序控制阀打开或关闭,经管道输送到万向节中去,实现喷雾抑尘。
3)空压机:采用箱式结构、螺杆式压缩机。
碎煤机楼、T6转运站空压机功率分别为37kW、55kW,分别可供46、68个喷头运行。
4)水气分配器:通过水气分配器实现水、气、电主管线与万向节总成的连接,并根据现场情况通过PLC控制实现各万向节总成分别喷雾。
5)万向节总成:由喷头、喷头固定座、万向节接头、防护钢管、水、气连接管组成。
单落煤点的导料槽按落煤点后、落煤点前、导料槽近出口共三组、每组两个喷头共六个喷头设置,尾部滚筒设置两个对吹喷头,头部护罩设置四个喷头。
6)微米级干雾抑尘系统通过压力将液体供给万向节总成,液体和压缩气体在万向节喷雾器总成内部混合,产生超声波震荡功能的微米级、漫射型喷雾。
喷雾颗粒直径1~10μm,对悬浮在空气中尤其是5μm以下的可吸入颗粒进行有效地吸附,使皮带机头部护罩、导料槽内部及尾部滚筒处的煤尘受重力作用沉降,从而达到整体抑尘作用。
技改后落煤管和导料槽横向结构如图1所示:
4 结语
将传统方形落煤管、普通导料槽转运设施和水冲激除尘器、水喷淋的抑尘设备改造成防堵抑尘曲线落煤管、沉降式导料槽和微米级干雾抑尘系统的抑尘组合,可以大幅将转运站总粉尘允许浓度降低至《火力发电厂运煤设计技术规程》规定的4mg/m3以下,治理了安全隐患,同时解决电厂转运湿煤时容易粘煤、堵煤,因落料点不正导致的跑偏、撒煤,以及直接落料冲击、损坏皮带等现象,有效提高输煤系统安全、文明生产水平。