计算机控制系统实验报告

合集下载

计算机控制系统性能分析

计算机控制系统性能分析

南京邮电大学自动化学院实验报告课程名称:计算机控制系统实验名称:计算机控制系统性能分析所在专业:自动化学生姓名:**班级学号:B************: ***2013 /2014 学年第二学期实验一:计算机控制系统性能分析一、 实验目的:1.建立计算机控制系统的数学模型;2.掌握判别计算机控制系统稳定性的一般方法3.观察控制系统的时域响应,记录其时域性能指标;4.掌握计算机控制系统时间响应分析的一般方法;5.掌握计算机控制系统频率响应曲线的一般绘制方法。

二、 实验内容:考虑如图1所示的计算机控制系统图1 计算机控制系统1. 系统稳定性分析(1) 首先分析该计算机控制系统的稳定性,讨论令系统稳定的K 的取值范围; 解:G1=tf([1],[1 1 0]);G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数 rlocus(G);//绘制系统根轨迹Root LocusReal AxisI m a g i n a r y A x i s-7-6-5-4-3-2-1012-2.5-2-1.5-1-0.500.511.522.5将图片放大得到0.750.80.850.90.9511.051.11.151.21.25-0.15-0.1-0.050.050.10.15Root LocusReal AxisI m a g i n a r y A x i sZ 平面的临界放大系数由根轨迹与单位圆的交点求得。

放大图片分析: [k,poles]=rlocfind(G)Select a point in the graphics window selected_point = 0.9905 + 0.1385i k =193.6417 poles =0.9902 + 0.1385i 0.9902 - 0.1385i 得到0<K<193(2) 假设不考虑采样开关和零阶保持器的影响,即看作一连续系统,讨论令系统稳定的K 的取值范围; 解:G1=tf([1],[1 1 0]); rlocus(G1);-1.2-1-0.8-0.6-0.4-0.200.2-0.8-0.6-0.4-0.20.20.40.60.8Root LocusReal AxisI m a g i n a r y A x i s由图片分析可得,根轨迹在S 平面左半面,系统是恒稳定的,所以: 0<K<∞(3) 分析导致上述两种情况下K 取值范围差异的原因。

控制系统的典型环节的模拟实验报告

控制系统的典型环节的模拟实验报告

控制系统的典型环节的模拟实验报告一、实验题目:控制系统的典型环节的模拟实验报告二、实验目的:1. 了解控制系统中的典型环节的特性;2. 学习如何模拟典型环节的动态响应;3. 分析和验证控制系统的稳态和动态特性。

三、实验设备和材料:计算机、MATLAB软件、控制系统模拟工具箱。

四、实验原理:控制系统在工程实践中常常包括传感器、执行器、控制器以及被控对象等多个环节。

典型环节主要包括惯性环节和一阶滞后环节。

1. 惯性环节:惯性环节指的是一种动态响应特性,常用一阶惯性环节来描述。

其传递函数表达式为:G(s) = K / (Ts + 1),其中K为增益,T为时间常数。

2. 一阶滞后环节:一阶滞后环节指的是一种静态响应特性,常用一阶滞后环节来描述。

其传递函数表达式为:G(s) = Ke^(-To s) / (Ts + 1),其中K为增益,To为滞后时间常数,T为时间常数。

五、实验步骤:1. 打开MATLAB软件,并导入控制系统模拟工具箱;2. 定义惯性环节的传递函数:G1 = tf([K],[T 1]);3. 定义一阶滞后环节的传递函数:G2 = tf([K*exp(-To)],[T 1]);4. 绘制惯性环节的阶跃响应曲线:step(G1);5. 绘制一阶滞后环节的阶跃响应曲线:step(G2);6. 根据实验结果,分析和比较两种环节的动态响应特性。

六、实验结果:1. 惯性环节的阶跃响应曲线呈现一定的超调和过渡时间,随着时间的增加逐渐趋于稳态;2. 一阶滞后环节的阶跃响应曲线较为平滑,没有显著的超调和过渡时间现象,但需要较长的调节时间才能达到稳态。

七、实验结论:控制系统中的典型环节具有不同的响应特性,惯性环节一般具有超调和过渡时间现象,而一阶滞后环节则响应相对平滑。

在实际应用中,可以根据具体的控制要求和实际环境选择适合的环节类型,以达到理想的控制效果。

八、实验心得:通过本次实验,我进一步了解了控制系统中的典型环节,学会了如何模拟和分析这些环节的特性。

北航计算机控制系统实验报告

北航计算机控制系统实验报告

北航计算机控制系统实验报告计算机控制系统实验报告实验一模拟式小功率随动系统的实验调试实验二 A/D、D/A接口的使用和数据采集实验三中断及采样周期的调试实验四计算机控制系统的实验调试姓名:陈启航学号: 13031144 同组人:吴振环陈秋鹏李恺指导教师:袁少强日期: 2016年6月16日实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1. 熟悉反馈控制系统的结构和工作原理,进一步了解位置随动系统的特点。

2. 掌握判别闭环系统的反馈极性的方法。

3. 了解开环放大倍数对稳定性的影响及对系统动态特性的影响,对静态误差的影响。

二、实验内容1. 连接元件构成位置随动系统;2. 利用计算机内的采样及显示程序,显示并分析输出的响应结果;3. 反复调试达到设计要求。

三、实验设备XSJ-3 小功率直流随动系统学习机一台、DH1718 双路直流稳压电源一台、4 1/2 数字多用表一台四、实验原理模拟式小功率随动系统如下图所示:1. 实验前需进行零位调整,反馈极性判断,反馈极性判断又包括速度反馈极性判断和位置反馈极性判断,须使反馈为负反馈。

2. 动态闭环实验系统调试。

按下面电路图连线,通过改变变阻器大小来改变闭环系统放大倍数,通过一路A/D把输出相应采入计算机进行绘图,同时测量输入电压和反馈电位计输入电压,算出稳态误差。

五、实验结果滑阻阻值(千欧)7.118.324.138.3比例系数 1 1.52.753.7 给定角度(度)30 60 120输出角度(度)38 66 129静差角度(度) 3 1 4静态误差(mv)-146.7-6.2-193.5过度过程曲线见下图1.K=1时的过渡过程曲线2.K=1.5时的过渡过程曲线3.K=2.75时的过渡过程曲线4.K=3.7时的过渡过程曲线六、思考题及实验感想1 如果速度反馈极性不对应如何处理?如果位置反馈极性不对应如何处理?答:首先判断测速机反馈极性。

在一级运放处加一电压,记住电机转向,然后断开输入,用手旋转电机按同一转向转动,测量测速机输出电压,如与前电机所加电压极性相同,则可将该信号接入运放二的负端;否则应把测速机输出极性倒置,即把另一信号接入运放二的负相端。

控制系统的频率特性分析实验报告

控制系统的频率特性分析实验报告

竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。

二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。

本实验应用频率特性测试仪测量系统或环节的频率特性。

图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关器件运算后在显示器中显示。

根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。

如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。

pid控制实验报告[最新版]

pid控制实验报告[最新版]

pid控制实验报告pid控制实验报告篇一:PID控制实验报告实验二数字PID控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。

因此连续PID控制算法不能直接使用,需要采用离散化方法。

在计算机PID控制中,使用的是数字PID控制器。

一、位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:Tu T ?kpeu=para; J=0.0067;B=0.1; dy=zeros= y= -+ = k*ts; %time中存放着各采样时刻rineu_1=uerror_1=error;%误差信号更新图2-1 Simulink仿真程序其程序运行结果如表2所示。

Matlab输出结果errori = error_1 = 表2 例4程序运行结果三、离散系统的数字PID控制仿真1.Ex5 设被控对象为G?num 仿真程序:ex5.m%PID Controller clear all; close all;篇二:自动控制实验报告六-数字PID控制实验六数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。

2.研究采样周期T对系统特性的影响。

3.研究I型系统及系统的稳定误差。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台三、实验内容1.系统结构图如6-1图。

图6-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e)/s Gp1(s)=5/((0.5s+1)(0.1s+1)) Gp2(s)=1/(s(0.1s+1))-TS 2.开环系统(被控制对象)的模拟电路图如图6-2和图6-3,其中图6-2对应GP1(s),图6-3对应Gp2(s)。

图6-2 开环系统结构图1 图6-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可使系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。

计算机控制系统实验报告

计算机控制系统实验报告

一、实验目的1. 理解计算机控制系统的基本原理和组成;2. 掌握计算机控制系统的基本操作和调试方法;3. 通过实验,加深对计算机控制理论的理解和应用。

二、实验仪器1. PC计算机一台;2. 计算机控制系统实验箱一台;3. 传感器、执行器等实验设备。

三、实验内容1. 计算机控制系统组成与原理;2. 传感器信号采集与处理;3. 执行器控制与调节;4. 计算机控制系统调试与优化。

四、实验步骤1. 熟悉实验设备,了解计算机控制系统实验箱的组成及功能;2. 连接实验设备,检查无误后启动实验软件;3. 根据实验要求,进行传感器信号采集与处理;4. 根据实验要求,进行执行器控制与调节;5. 对计算机控制系统进行调试与优化,观察系统响应和性能;6. 记录实验数据,分析实验结果。

五、实验结果与分析1. 计算机控制系统组成与原理实验过程中,我们了解了计算机控制系统的基本组成,包括传感器、控制器、执行器等。

传感器用于采集被控对象的物理量,控制器根据采集到的信号进行计算、处理,然后输出控制信号给执行器,执行器对被控对象进行调节。

2. 传感器信号采集与处理在实验中,我们使用了温度传感器采集环境温度信号。

通过实验,我们掌握了如何将模拟信号转换为数字信号,以及如何对采集到的信号进行滤波处理。

3. 执行器控制与调节实验中,我们使用了继电器作为执行器,根据控制器输出的控制信号进行开关控制。

通过实验,我们学会了如何设置执行器的参数,以及如何对执行器进行调节。

4. 计算机控制系统调试与优化在实验过程中,我们对计算机控制系统进行了调试与优化。

通过调整控制器参数,使得系统在满足控制要求的同时,具有良好的动态性能和稳态性能。

六、实验总结本次实验使我们对计算机控制系统有了更深入的了解,掌握了计算机控制系统的基本原理和操作方法。

通过实验,我们提高了动手能力和实际操作能力,为今后从事相关领域工作奠定了基础。

七、实验报告1. 实验名称:计算机控制系统实验2. 实验日期:XXXX年XX月XX日3. 实验人员:XXX、XXX4. 实验指导教师:XXX5. 实验内容:计算机控制系统组成与原理、传感器信号采集与处理、执行器控制与调节、计算机控制系统调试与优化6. 实验结果与分析:详细描述实验过程中遇到的问题、解决方法及实验结果7. 实验心得体会:总结实验过程中的收获和体会(注:以上实验报告仅供参考,具体实验内容和结果可能因实际情况而有所不同。

计算机控制技术实验报告

计算机控制技术实验报告

计算机控制技术实验报告实验一系统认识及程序调试练习实验目的1.掌握TD-ACC+实验教学系统联机软件中的各菜单功能,熟练掌握其中的程序编辑、编译、链接、加载及调试方法。

2.了解TD-ACC+实验教学系统的系统资源及硬件操作环境。

实验设备PC 机一台,TD-ACC+实验系统一套实验内容1.阅读“第一部分i386EX 系统板介绍”,了解TD-ACC+实验教学系统的构成;2.读懂实验程序,对实验程序进行编辑、编译、链接、加载及调试练习。

实验原理调试下列程序:在显示器上显示一行26个英文字母,换行后重复进行。

第一种实现方法:显示两行字母之间的延时时间采用软件延时方式。

实验程序1(采用软件延时方式)CODE SEGMENTASSUME CS:CODESTART: MOV CX,001AH ;显示字符个数(26)→CXMOV AH, 01MOV AL, 13INT 10H ;显示换行CALL DELAY ;调用延时子程序MOV AL,41H ;送字符‘A’的ASCⅡ码AGAIN: MOV AH,01 ;显示一个字符INT 10HINC AL ;下一显示字符的ASCⅡ码LOOP AGAIN ;连续显示26个字母JMP START ;重复进行DELAY: PUSH CX ;延时子程序MOV CX,0FFFFH DEL1: PUSH AX POP AX LOOP DEL1POP CX RET CODE ENDSEND START第二种实现方法:显示两行字母之间的间隔时间用内部定时器8254进行控制,时间到由定时器的OUT 端发出脉冲信号到中断控制器8259的中断信号输入端,向CPU 请求中断,在中断程序中完成显示一行字母的功能。

硬件接线如图1-1,用排线将i386内部1#定时器输出OUT1连接到8259的一个中断请求端IRQ7。

8254与8253类似,它们的编程方式是兼容的,其控制字格式如下:SC 1 SC 0——所选计数器 0 0 计数器0 0 1 计数器1 1 0 计数器2 1 1 无意义 RW 1 RW 0——读/写格式 0 0 锁定当前计数值(供CPU 读取) 0 1 只读/写低8位 1 0 只读/写高8位 1 1 先读/写低8位,后读/写高8位M 2 M 1M 0——工作方式选择 0 0 0 方式0 0 0 1 方式1 X 1 0 方式2 X 1 1 方式3 1 0 0 方式4 1 0 1 方式5 BCD ——计数格式 0 计数器按二进制格式计数 1 计数器按BCD 码格式计数实验程序2(采用定时中断方式) CODE SEGMENTASSUME CS:CODESTART: MOV AX,OFFSET IRQ7;填写8259的7号中断矢量入口地址的偏移量 MOV SI,003CH ;填写8259中断7的中段矢量 MOV [SI],AX ;填偏移量矢量 MOV AX,CS ;填写8259中断矢量入口地址的段地址 MOV SI,003EH ;填写7号中断段地址矢量 MOV [SI],AXCLI ;关系统总中断 CALL SYSINTI ;调用系统初始化子程序 MOV DX,0F043H MOV AL,076H ;初始化1#定时器 OUT DX,ALMOV DX,0F041H图1-1MOV AL,10H ;定时10ms时间常数低8位OUT DX,AL ;写1#定时器定时常数的低字节MOV X,0F041HMOV AL,27H ;定时10ms时间常数高8位OUT DX,AL ;写1#定时器定时常数的高字节MOV BX,64HMOV AH, 01MOV AL, 13INT 10H ;显示换行AGAIN: STI ;打开系统总中断HLT ;停机等待直到有中断产生JMP AGAIN ;继续IRQ7: DEC BXJNZ FINISHMOV BX,64HMOV CX,001AHMOV AL,41HAGAIN1: MOV AH,01INT 10HINC ALLOOP AGAIN1MOV AH, 01MOV AL, 13INT 10HFINISH: MOV AL,20H ;中断结束OUT 20H,ALIRET ;中断返回SYSINTI: MOV AX,8000H ;系统初始化子程序(已保存在机器中)OUT 23H,AL ;扩展IO使能XCHG AL,AHOUT 22H,ALOUT 22H,AXMOV DX,0F822H ;初始化管脚配置P2CFG,配置CS0#MOV AL,70HOUT DX,ALMOV DX,0F824H ;初始化管脚配置P3CFG,配置主片IRQ7MOV AL,0B2HOUT DX,ALMOV DX,0F832H ;初始化管脚配置INTCFGMOV AL,0AHOUT DX,ALMOV DX,0F834H ;初始化管脚配置TMRCFGMOV AL,15H ;将GATE1接VCCOUT DX,ALMOV AL,11H ;初始化主片8259OUT 20H,ALMOV AL,08HOUT 21H,ALMOV AL,04HOUT 21H,ALMOV AL,01HOUT 21H,ALMOV AL,6FH ;写主片8259的中断屏蔽字,允许主片的IRQ7(用OUT 21H,AL 户程序使用)和IRQ4(系统通讯用)MOV AL,11H ;初始化从片8259OUT 0A0H,ALMOV AL,30HOUT 0A1H,ALMOV AL,02HOUT 0A1H,ALMOV AL,01HOUT 0A1H,ALMOV AL,0FFHOUT 0A1H,ALRETCODE ENDSEND START实验步骤1.打开微机及实验系统电源。

智能控制实验报告

智能控制实验报告

一、实验目的1. 了解智能控制的基本原理和方法。

2. 掌握智能控制系统的设计和实现方法。

3. 熟悉智能控制实验平台的操作和应用。

二、实验原理智能控制是利用计算机技术、控制理论、人工智能等知识,实现对复杂系统的自动控制。

实验主要涉及以下原理:1. 模糊控制:利用模糊逻辑对系统进行控制,实现对系统不确定性和非线性的处理。

2. 专家控制:通过专家系统对系统进行控制,实现对系统复杂性和不确定性的处理。

3. 神经网络控制:利用神经网络强大的学习能力和泛化能力,实现对系统的自适应控制。

三、实验器材1. 实验平台:智能控制实验箱2. 传感器:温度传感器、湿度传感器、压力传感器等3. 执行器:电机、继电器、阀门等4. 控制器:单片机、PLC等5. 信号线、连接线等四、实验内容1. 模糊控制器设计(1)建立模糊控制模型:根据实验要求,确定输入、输出变量和模糊控制规则。

(2)设计模糊控制器:根据模糊控制规则,设计模糊控制器,包括模糊化、去模糊化等环节。

(3)仿真实验:利用仿真软件对模糊控制器进行仿真实验,验证控制效果。

2. 专家控制器设计(1)建立专家系统:收集专家知识,构建专家系统。

(2)设计专家控制器:根据专家系统,设计专家控制器,实现对系统的控制。

(3)仿真实验:利用仿真软件对专家控制器进行仿真实验,验证控制效果。

3. 神经网络控制器设计(1)建立神经网络模型:根据实验要求,确定神经网络的结构和参数。

(2)训练神经网络:利用实验数据对神经网络进行训练,提高网络的控制能力。

(3)设计神经网络控制器:根据训练好的神经网络,设计神经网络控制器,实现对系统的控制。

(4)仿真实验:利用仿真软件对神经网络控制器进行仿真实验,验证控制效果。

五、实验步骤1. 熟悉实验平台,了解各模块的功能和操作方法。

2. 根据实验要求,设计模糊控制器、专家控制器和神经网络控制器。

3. 利用仿真软件对控制器进行仿真实验,验证控制效果。

4. 分析实验结果,对控制器进行优化和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机控制系统实验报告学院:核自院姓名:李擂专业:电气工程及其自动化班级:电气四班学号:201006050407实验一采样实验一.实验目的了解模拟信号到计算机控制的离散信号的转换—采样过程。

二.实验原理及说明采样实验框图如图4-3-1所示。

计算机通过模/数转换模块以一定的采样周期对B5单元产生的正弦波信号采样,并通过上位机显示。

在不同采样周期下,观察比较输入及输出的波形(失真程度)。

图4-3-1 采样实验框图计算机编程实现以不同采样周期对正弦波采样,调节函数发生器(B5)单元的“设定电位器1”旋钮,并以此作为A/D采样周期T。

改变T 的值,观察不同采样周期下输出波形与输入波形相比的复原程度(或失真度)。

对模拟信号采样首先要确定采样间隔。

采样频率越高,采样点数越密,所得离散信号就越逼近于原信号。

采样频率过低,采样点间隔过远,则离散信号不足以反映原有信号波形特征,无法使信号复原,。

合理的采样间隔应该是即不会造成信号混淆又不过度增加计算机的工作量。

采样时,首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;信号采样要有足够的长度,这不但是为了保证信号的完整,而且是为了保证有较好的频率分辨率。

在信号分析中,采样点数N一般选为2m的倍数,使用较多的有512、1024、2048、4096等。

三、实验内容及步骤采样实验框图构成如图4-3-1所示。

本实验将函数发生器(B5)单元“方波输出”作为采样周期信号,正弦波信号发生器单元(B5)输出正弦波,观察在不同的采样周期信号对正弦波采样的影响。

实验步骤:(1)将函数发生器(B5)单元的正弦波输出作为系统输入,方波输出作为系统采样周期输入。

①在显示与功能选择(D1)单元中,通过上排右按键选择“方波/正弦波”的指示灯亮,(B5)模块“方波输出”测孔和“正弦波输出”测孔同时有输出。

‘方波’的指示灯也亮,调节B5单元的“设定电位器1”,使之方波频率为80Hz左右(D1单元右显示)。

②再按一次上排右按键,“正弦波”的指示灯亮(‘方波’的指示灯灭),B5的量程选择开关S2置上档,调节“设定电位器2”,使之正弦波频率为0.5Hz(D1单元右显示)。

调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出电压= 2.5V左右(D1单元左显示)。

(3)构造模拟电路:按图4-3-1安置短路套及测孔联线,表如下。

(4)运行、观察、记录:①再运行LABACT程序,选择微机控制菜单下的采样和保持菜单下选择采样实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可选用本实验配套的虚拟示波器(B3)单元的CH1测孔测量波形②在显示与功能选择(D1)单元中,按上排右按键选择“方波/正弦波”的指示灯亮,‘方波’的指示灯也亮,调节B5单元的“设定电位器1”,慢慢降低采样周期信号频率,观察输出波形。

图4-3-2是不同采样周期(78Hz和10Hz)下的输出波形。

图4-3-2 不同采样周期(78Hz和10Hz)下的输出波形四.实验报告要求:按下表记录下各种频率的采样周期下的输出波形。

50HZ40HZ30HZ20HZ10HZ5HZ实验二采样/保持器实验一.实验目的1. 了解判断采样/保持控制系统稳定性的充要条件。

2.了解采样周期T对系统的稳定性的影响。

3.掌握控制系统处于临界稳定状态时的采样周期T的计算。

4.用MATLAB验证临界稳定状态时的采样周期5.观察和分析采样/保持控制系统在不同采样周期T时的瞬态响应曲线。

二.实验原理及说明1.判断采样/保持控制系统稳定性的充要条件线性连续系统的稳定性的分析是根据闭环系统特征方程的根在S平面上的位置来进行的。

如果特征方程的根都在左半S平面,即特征根都具有负实部,则系统稳定。

采样/保持控制系统的稳定性分析是建立在Z变换的基础之上,因此必须在Z平面上分析。

S平面和Z平面之间的关系是:S平面左半平面将映射到Z平面上以原点为圆心的单位圆内,S平面的右半平面将映射到Z平面上以原点为圆心的单位圆外。

所以采样/保持控制系统稳定的充要条件是:系统特征方程的根必须在Z平面的单位圆内。

只要其中有一个特征根在单位圆外,系统就不稳定;当有一个根在Z平面的单位圆上而其他根在单位圆内时,系统就处于临界稳定。

也就是说,只要特征根的模均小于1,则系统稳定;若有一个特征根的模大于1,则系统不稳定。

2.采样周期T对系统的稳定性的影响闭环采样/保持控制系统原理方块图如图4-3-3所示:图4-3-3 闭环采样/保持控制系统原理方块图从采样实验中知道采样输出仅在采样点上有值,而在采样点之间无值。

如其输出以前一时刻的采样值为参考基值进行外推,即可使两个采样点之间为连续信号过度。

可以完成上述功能的装置或者器件就称为保持器。

因为数/模转换器(D/A)具有两极输出锁存能力,所以具有零阶保持器的作用。

使用了采样保持器后,采样点间的信号是外推而得的,实际上已含有失真的成份,因此,采样周期信号频率过低将会影响系统的稳定性。

采样周期T可由用户在界面上直接修改,在不同采样周期下,观察、比较输出的波形。

三.实验内容及步骤闭环采样/保持控制系统实验构成电路如图4-3-4所示,积分环节(A3单元)的积分时间常数Ti=R 1*C 1=0.1S ,惯性环节(A5单元)的惯性时间常数 T=R 2*C 2=0.5S ,增益K=R2/R3=5。

图4-3-4 闭环采样/保持控制系统实验构成电路实验步骤:注:‘S ST ’用‘短路套’短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。

(连续的正输出宽度足够大的阶跃信号)① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② B5的量程选择开关S2置下档,调节“设定电位器1”,OUT 正输出宽度 > 6秒。

(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V 左右(D1单元右显示)。

(2)构造模拟电路:按图4-3-4安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:① 运行LABACT 程序,选择微机控制菜单下的采样和保持菜单下选择采样/保持实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,运行实验程序,使用虚拟示波器CH1通道观察A5A 单元输出OUTA (C )的波形。

②该实验的显示界面的采样周期T (界面右上角)可由用户点击“停止”键后,在界面上直接修改,以期获得理想的实验结果,改变这些参数后,只要再次点击“开始”键,即可使实验机按照新的控制参数运行。

③采样周期T 设定为10ms 、30ms 和 50ms ,使用虚拟示波器CH1通道观察A5A 单元输出OUTA (C )的波形,见图4-3-8。

观察相应实验现象。

记录波形,并判断其稳定性。

10ms30ms50ms图4-3-8 采样周期为10ms 、30ms 、50ms时的输出端(C)波形注:由于元器件的误差,把采样周期设定为临界稳定状态(T=0.04秒)时,实验现象不一定是等幅振荡。

四.实验报告要求:按下表改变图4-3-4所示的实验被控系统,画出系统模拟电路图。

调整输入矩形波宽度≥6秒,电压幅度= 2.5V。

计算和观察被测对象的临界稳定采样周期T,填入实验报告。

实验三微分与微分平滑一.实验目的1.了解微分反馈的原理及对被控对象的影响。

2.掌握微机控制系统实现微分反馈的方法。

3.观察和分析微分运算中的采样周期T与微分系数T d对系统阶跃响应性能的影响。

4.观察和分析微分平滑运算中的采样周期T与微分系数Td对系统阶跃响应性能的影响。

二.实验原理及说明微分与平滑原理方块图如图4-4-1所示。

其中环节D(Z)即为利用计算机实现的微分运算环节。

R为阶跃输入信号,C为系统输出。

图4-4-1 微分与平滑原理方块图微分是正反馈,当取合适的微分系数时,会使系统响应加快,用于被控对象为惯性环节的系统,特别是惯性时间常数较大的系统,有明显的校正作用。

三.实验内容及步骤微分与微分平滑系统实验构成如图4-4-2所示,1.分别选择微分算法和微分平滑算法,设置微分系数T d和反馈系数K D和采样周期T,观察输出端(C)波形。

2.改变图4-4-2中被控对象的惯性时间常数,设置微分系数T d和反馈系数K D和采样周期T,观察输出端(C)波形,测量时域特性,填入实验报告。

实验步骤:注:‘S ST’用‘短路套’短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。

(连续的正输出宽度足够大的阶跃信号)①在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

②B5的量程选择开关S2置下档,调节设“定电位器1”,OUT正输出宽度> 3秒。

(D1单元左显示)。

图4-4-2 微分与平滑实验构成③调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V左右(D1单元右显示)。

(2)构造模拟电路:按图4-4-2安置短路套及测孔联线,表如下。

(a)安置短路套(b)测孔联线(3)运行、观察、记录:运行LABACT程序,在微机控制---平滑与数字滤波菜单下分别选择微分或微分平滑实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件。

该实验的显示界面下方“计算公式”栏的微分系数Td 和显示界面右上方“采样周期”栏的T均可由用户点击“开始”前,或在点击“停止”键后,在界面上直接修改,以期获得理想的实验结果,改变这些控制系数后,只要再次点击“开始”键,即可使实验机按照新的控制系数运行。

1).微分算法实验运行微分实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件。

运行后,用虚拟示波器CH1观察系统输出,用CH2观察数字调节器D(Z)输出及微分噪音幅度。

用CH1观察系统阶跃响应输出点C(k)(A5单元输出端OUT)的波形。

与不加微分反馈环节情况下(即需将微分反馈线断开,即B2的OUT2到A2的H2联线断开),输出点C(k)的波形相比较,系统的过渡过程时间将明显缩短,可绘制出两者的输出曲线。

由于受微分正反馈的影响,其响应速度将加快,可适当调整T d为微分系数,T为采样周期,使系统输出达到要求,绘制出输出曲线。

该实验的显示界面中已设定采样周期T=80mS,“计算公式”栏:微分系数Td=0.75S 微分算法实验结果见图4-4-3,其中:图4-4-3a 不加微分反馈输出曲线(只需把测孔联线表中的微分反馈线断开即可)图4-4-3 b 加微分反馈输出曲线图4-4-3a 不加微分反馈输出曲线图4-4-3 b 加微分反馈输出曲线实验报告要求:1.图4-4-2中被控对象的惯性时间常数为To=1S ,采样周期T =80ms ,按下表改变微分系数T d2.图4-4-2中被控对象的惯性时间常数改为To=0.2S ,采样周期T =15ms ,按下表改变微分系数T d注:反馈系数TK dD 大,每个采样周期中数字调节器D(Z)输出的变化值(微分噪音幅度)也会大。

相关文档
最新文档