高中数学第二章条件概率教案1新选修23

合集下载

高中数学 2.2.1 条件概率学案 新人教A版选修2-3(2021年整理)

高中数学 2.2.1 条件概率学案 新人教A版选修2-3(2021年整理)

2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3的全部内容。

2.2。

1 条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=错误!为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=错误!,P(A)=错误!,则P(B|A)=________.【解析】由P(B|A)=P ABP A=错误!=错误!.【答案】错误!2.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=错误!=0。

5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球"为A;事件“第二次抽到黑球"为B。

高中条件概率数学教案

高中条件概率数学教案

高中条件概率数学教案
一、教学目标:
1. 了解条件概率的定义及基本概念;
2. 掌握条件概率的计算方法;
3. 能够应用条件概率解决实际问题。

二、教学内容:
1. 条件概率的概念和性质;
2. 条件概率的计算方法;
3. 应用条件概率解决实际问题。

三、教学重点和难点:
1. 理解条件概率的定义及性质;
2. 掌握条件概率的计算方法。

四、教学过程:
1. 导入:通过一个生活中的例子引入条件概率的概念;
2. 讲解条件概率的定义及性质;
3. 案例分析:通过几个实际问题,引导学生理解条件概率的计算方法;
4. 练习:设计一些练习题,让学生巩固所学知识;
5. 实际应用:通过一些实际案例让学生应用所学知识解决问题。

五、教学方法:
1. 示范教学法:通过案例分析,引导学生理解条件概率的计算方法;
2. 合作学习法:让学生在小组合作中解决问题,激发他们的学习兴趣;
3. 实践教学法:通过实际案例让学生应用所学知识解决问题,提高他们解决实际问题的能力。

六、教学工具:
1. 教科书;
2. 讲义;
3. 黑板、彩色粉笔;
4. 计算器。

七、教学评估:
1. 课堂练习:通过课堂练习考察学生掌握程度;
2. 作业:布置相应作业以巩固所学知识;
3. 课后小测:设计一些小测验,检验学生对条件概率的掌握情况。

八、教学反思:
1. 教学过程中要结合生活中的实际例子,让学生更容易理解概念;
2. 要注重培养学生的实际问题解决能力,引导学生主动思考和探究。

3. 要及时总结教学经验,不断完善教学内容和方法。

【B版】人教课标版高中数学选修2-3《条件概率》教案1

【B版】人教课标版高中数学选修2-3《条件概率》教案1

2.2.1 条件概率一、我们的目标定位:(1)理解条件概率的定义;(2)掌握条件概率的计算方法;(3)能解决条件概率相应一些的问题。

二、重点难点:【教学重点】:1.条件概率的计算方法。

2.条件概率的应用。

【教学难点】:条件概率的应用。

三、我们一起来研究(一)课题引入小游戏:摸球3个兵乓球,2个白色的,1个黄色的,现分别由三名同学无放回地抽取一个,摸到黄色的就中奖。

1、请问最后一名同学中奖的概率是否比第一位小?2、如果已经知道第一名同学没中奖,那么最后一名摸球同学的中奖的概率是多少?(二)新课探究1、条件概率的定义:一般地,设A,B为两个事件,且P(A)>0,P(B|A)为在事件A发生的条件下,事件B发生的________,其中P(B|A)读作________________,P(A|B)的含义是什么?2、条件概率的性质:(1)有界性:______________________。

(2)可加性:______________________。

3、条件概率的计算合作探究:根据上面摸奖的例子,想一想怎样求条件概率?你能否得到求条件概率的公式?请合作解决(1)利用古典概型计算P(B|A)=_________________ 关键:_____________________ (2)利用公式计算P(B|A)= _________________ 关键:_____________________ 4、概率P(B|A)与P(AB)的区别与联系P(AB) P(B|A)联系区别事件发生顺序样本空间大小(三)应用与探索【例1】在5道题中有3道理科题和2道文科题。

如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。

【巩固练习1】(1)掷两颗骰子,求“已知第一颗为6点,则掷出点数之和不小于9”的概率;(2)掷两颗骰子,求“已知掷出点数之和不小于9,则第一颗掷出6点”的概率。

最新人教版高中数学选修2-3《条件概率》示范教案

最新人教版高中数学选修2-3《条件概率》示范教案

最新人教版高中数学选修2-3《条件概率》示范教案2.2 二项分布及其应用2.2.1 条件概率整体设计:本章节介绍条件概率的概念及其在概率理论中的重要性。

为了方便学生理解,教材采用简单的例子,通过探究,逐步引导学生理解条件概率的思想。

课时分配:本节课程安排为1课时。

教学目标:知识与技能:通过具体情境的分析,学生将了解条件概率的定义,并掌握简单的条件概率计算方法。

过程与方法:本节课程旨在发展学生的抽象思维和概括能力,提高他们解决实际问题的能力。

情感、态度与价值观:本节课程旨在让学生了解数学来源于实际,应用于实际的唯物主义思想。

重点难点:本节课程的重点在于让学生理解条件概率的定义,难点在于应用概率计算公式。

教学过程:探究活动:本节课程采用抓阄游戏的方式,三张奖券中只有一张能中奖,由三名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是否比前两名同学小。

活动结果:XXX:如果抽到中奖奖券用“Y”表示,没有抽到用“N”表示,那么三名同学的抽奖结果共有三种可能:XXX,XXX和XXX。

用B表示事件“最后一名同学抽到中奖奖券”,则B仅包含一个基本事件XXX。

由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B)=1/3.因此,三名同学抽到中奖奖券的概率是相同的。

法二:(利用乘法原理)记XXX表示:“第i名同学抽到中奖奖券”的事件,i=1,2,3,则有P(A1)=1/2,P(A2)=1/3,P(A3)=1/3.提出问题:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?设计意图:引导学生深入思考,小组内同学合作讨论,得出以下结论,教师因势利导。

学情预测:一些学生缺乏用数学语言来表述问题的能力,教师可适当辅助完成。

师生共同指出:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有XXX和XXX。

而“最后一名同学抽到中奖奖券”包含的基本事件仍是XXX。

由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B|A),其中A表示事件“第一名同学没有抽到中奖奖券”。

高中数学 第二章 概率 2.2.1 条件概率教案 新人教B版选修2-3-新人教B版高二选修2-3数学

高中数学 第二章 概率 2.2.1 条件概率教案 新人教B版选修2-3-新人教B版高二选修2-3数学
(2)如果B和C是两个互斥事件,则 .
3.条件概率公式:。
二、条件概率的简单应用
例1.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率?
例2.设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,问它能活到25岁的概率是多少?
教学过程设计
教材处理
师生活动
例3.甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?
(2)甲地为雨天时乙地也为雨天的概率是多少?
条件概率练习:
1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:
(2)从2号箱取出红球的概率是多少?
10.某4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率.
板书设计:
教学日记:
A. B. C. D.
3.由“0”、“1”组成的三位数码组中,若用A表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)=( )
A. B. C. D.
4.根据历年气象统计资料,某地四月份吹东风的概率为 ,下雨的概率为 ,既吹东风又下雨的概率为 .则在吹东风的条件下下雨的概率为( )
(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率
条件概率
教学过程设计
教材处理
师生活动
课堂检测:
1.下列式子成立的是( )

高中数学 第二章 概率 2.2.1 条件概率教案 新人教B版选修2-3(2021年整理)

高中数学 第二章 概率 2.2.1 条件概率教案 新人教B版选修2-3(2021年整理)

辽宁省本溪满族自治县高中数学 第二章 概率 2.2.1 条件概率教案 新人教B 版选修2-3
1
条件概

辽宁省本溪满族自治县高中数学 第二章 概率 2.2.1 条件概率教案 新人教B 版选修2-3 辑整理:
议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉

例3。

知道
地同
雨天
条件1。


依次科题
2。

0~9密码(1)任
(2)如
的概
3.某

7。

100件件,已知第
________
.8。


1~是不大于9.1号箱中
个红球,现
2号箱随机(1)从红球的概率
(2)
10.某校
班分成4个
班任选一个
(1)求(2)已知选
板书设计:
辽宁省本溪满族自治县高中数学第二章概率 2.2.1 条件概率教案新人教B版选修2-3
教学
目标
1。

高中数学 第二章 概率 2.3.1 条件概率学案 苏教版选修2-3-苏教版高二选修2-3数学学案

2.3.1 条件概率学习目标 1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.知识点一条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.梳理(1)条件概率的概念一般地,对于两个事件A和B,在已知________发生的条件下________发生的概率,称为事件B发生的条件下事件A的条件概率,记为________.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=________.②利用条件概率,有P(AB)=________________.知识点二条件概率的性质1.任何事件的条件概率都在______之间,即________________________________________________________________________.2.如果B 和C 是两个互斥的事件,则P (B ∪C |A )=____________________.类型一 求条件概率 命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;(2)求这个代表恰好是团员代表的概率;(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.反思与感悟 用定义法求条件概率P (B |A )的步骤(1)分析题意,弄清概率模型.(2)计算P (A ),P (AB ).(3)代入公式求P (B |A )=P (AB )P (A ). 跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________. 命题角度2 缩小基本事件范围求条件概率引申探究1.在本例条件下,求乙抽到偶数的概率.2.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).例2 集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.反思与感悟 将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.类型二条件概率的综合应用例3 把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的球是红球,则称试验成功,求试验成功的概率.反思与感悟当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P(B∪C|A)=P(B|A)+P(C|A)便可求得较复杂事件的概率.跟踪训练3 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?1.已知P (AB )=310,P (A )=35,则P (B |A )=________. 2.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到的一个甲厂的合格灯泡的概率是________.3.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取两次,每次取1件,已知第二次取得一等品,则第一次取得的是二等品的概率为________.4.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是________.5.抛掷红、蓝两颗骰子,记事件A 为“蓝色骰子的点数为4或6”,事件B 为“两颗骰子的点数之和大于8”,求:(1)事件A 发生的条件下事件B 发生的概率;(2)事件B 发生的条件下事件A 发生的概率.1.P(A|B)表示事件A在“事件B已发生”这个附加条件下的概率,与没有这个附加条件的概率是不同的.也就是说,条件概率是在原随机试验的条件上再加上一定的条件,求另一事件在此“新条件”下发生的概率.2.若事件A,C互斥,则P[A∪C|B]=P(A|B)+P(C|B).答案精析问题导学知识点一思考1 P (A )=93100,P (B )=90100, P (AB )=85100. 思考2 事件A |B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P (A |B )=8590. 思考3 P (A |B )=P (AB )P (B ). 梳理 (1)事件B 事件A P (A |B ) (2)①P (AB )P (B ) ②P (A |B )P (B ) 知识点二1.0和1 0≤P (B |A )≤12.P (B |A )+P (C |A )题型探究例1 解 设A ={在班内任选1名学生,该学生属于第一小组},B ={在班内任选1名学生,该学生是团员}.(1)P (A )=1040=14. (2)P (B )=1540=38. (3)P (AB )=440=110. (4)方法一 P (A |B )=P (AB )P (B )=11038=415. 方法二 P (A |B )=n (AB )n (B )=415.跟踪训练1 解析 P (A )=C 23+C 22C 25=25, P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=11025=14. 例2 解 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35. 引申探究1.解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35. 2.解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.所以P (B |A )=212=16. 跟踪训练2 解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .根据分步计数原理得n (A )=A 14A 15=20,n (AB )=A 24=12. 所以P (B |A )=n (AB )n (A )=1220=35. 例3 解 设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则容易求得P (A )=710,P (B )=310, P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15.事件“试验成功”表示为AR ∪BR ,又事件AR 与事件BR 互斥,故由概率的加法公式,得 P (AR ∪BR )=P (AR )+P (BR )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59. 跟踪训练3 解 记事件A =“最后从2号箱中取出的球是红球”, 事件B =“从1号箱中取出的球是红球”,则P (B )=42+4=23,P (B )=1-P (B )=13, P (A |B )=3+18+1=49,P (A |B )=38+1=13, 从而P (A )=P (AB )+P (A B )=P (A |B )P (B )+P (A |B )P (B )=49×23+13×13=1127. 当堂训练1.122.0.6653.254.235.解 抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为6×2=12,所以P (A )=1236=13. 由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8, 所以事件B 的基本事件数为4+3+2+1=10,所以P (B )=1036=518. 事件AB 的基本事件数为6,故P (AB )=636=16. 由条件概率公式,得(1)P (B |A )=P (AB )P (A )=1613=12. (2)P (A |B )=P (AB )P (B )=16518=35.。

高中数学教案条件概率

高中数学教案条件概率一、教学目标:1. 理解条件概率的定义和性质。

2. 学会计算条件概率。

3. 能够应用条件概率解决实际问题。

二、教学内容:1. 条件概率的定义:在事件A已经发生的条件下,事件B发生的概率称为条件概率,记作P(B|A)。

2. 条件概率的性质:(1) P(B|A) = P(A∩B) / P(A)(2) 0 ≤P(B|A) ≤1(3) P(B|A) ≠P(B)三、教学重点与难点:1. 教学重点:条件概率的定义和性质,条件概率的计算方法。

2. 教学难点:条件概率的计算方法,如何正确运用条件概率解决实际问题。

四、教学方法:1. 采用讲授法,讲解条件概率的定义、性质和计算方法。

2. 运用案例分析法,让学生通过实际例子学会计算条件概率。

3. 运用练习法,让学生在课堂上和课后巩固所学知识。

五、教学过程:1. 导入:通过一个简单的概率问题引入条件概率的概念。

2. 讲解:讲解条件概率的定义、性质和计算方法。

3. 案例分析:分析几个实际例子,让学生学会计算条件概率。

4. 练习:布置一些练习题,让学生在课堂上和课后巩固所学知识。

六、教学评估:1. 课堂提问:通过提问了解学生对条件概率的理解程度。

2. 练习题:布置课堂练习题,检查学生掌握条件概率计算方法的情况。

3. 课后作业:布置相关课后作业,评估学生对课堂所学知识的巩固程度。

七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏。

2. 针对学生的疑惑,进行答疑和辅导。

八、课后作业:1. 复习条件概率的定义、性质和计算方法。

2. 完成课后练习题,巩固所学知识。

3. 思考如何将条件概率应用到实际问题中。

九、拓展与延伸:1. 研究条件概率在实际问题中的应用,如统计学、概率论等领域。

2. 了解贝叶斯定理与条件概率的关系,进一步拓展知识面。

十、教学计划:1. 下一节课内容:独立事件的概率。

2. 教学目标:理解独立事件的定义,学会计算独立事件的概率。

3. 教学方法:讲授法、案例分析法、练习法。

高中数学第2章概率1条件概率课件选修23高二选修23数学课件


第十五页,共三十七页。
解:设事件 A:从 2 号箱中取出的是红球;事件 B:从 1 号箱
中取出的是红球.
P(B)=2+4 4=23,P(-B )=1-P(B)=13.
(1)P(A|B)=5+3+3+1 1=49.
(2)因为 P(A|-B )=5+33+1=13,
所以 P(A)=P(AB)+P(A-B )=P(A|B)P(B)+P(A|-B )·P(-B )=49×23
12/9/2021
第十九页,共三十七页。
P(-A -B C)=P(C|-A -B )·P(-A -B )=P(C|-A -B )·P(-B |-A )·P(-A )=148 ×1159×1260=24805, P(A-B C)=P(C|A-B )·P(A-B )=P(C|A-B )·P(-B |A)·P(A)=138×1169 ×240=2885,
2.1 号箱中有 2 个白球和 4 个红球,2 号箱中有 5 个白球和 3 个红球,现随机地从 1 号箱中取出一球放入 2 号 箱,然后从 2 号箱中随机取出一球. (1)在从 1 号箱中取出的是红球的条件下,从 2 号箱中取出红球 的概率是多少? (2)从 2 号箱中取出红球的概率是多少?
12/9/2021
12/9/2021
第七页,共三十七页。
利用定义求条件概率 某地区气象台统计,该地区下雨的概率是145,刮三级以 上风的概率为125,既刮三级以上的风又下雨的概率是110,设 A 为下雨,B 为刮三级以上的风. 求:(1)P(A|B);(2)P(B|A).
12/9/2021
第八页,共三十七页。
【解】 由题意知 P(A)=145,P(B)=125,
第2章 概 率
2.3 独立性

高中数学第二章概率1条件概率课件选修23高二选修23数学课件


12/12/2021
第十九页,共三十七页。
解答
反思与感悟
将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A
中仅包含有限个基本事件,每个基本事件发生的概率相等(xiāngděng),从而可以在
缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=
nnAAB,这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.
PAB P(A|B)= . PB
②利用条件概率,有P(AB)=
P(A|B)P(B) .
12/12/2021
第九页,共三十七页。
知识点二 条件概率(gàilǜ)的性质
1.任何事件的条件概率都在 0和1 之间,即 0≤P(B|A)≤1 . 2.如果(rúguǒ)B和C是两个互斥的事件,则 P(B∪C|A)= P(B|A)+P(C|A).
从而 P(A)=P(AB)+P(A B )=P(A|B)P(B)+P(A|B )P( B )
=4912×/12/223021+13×13=1217.
第二十六页,共三十七页。
解答
12/12/2021
当堂 训练 (dānɡ tánɡ)
第二十七页,共三十七页。
1.已知
P(AB)=130,P(A)=53,则
解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1), (6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中(qízhōng)甲、乙抽到的两数之和等于7的 情形有(5,2),(6,1),共2个.
所以 P(B|A)=122=16.
n(A)=A14A15=20,
n(AB)=A24=12.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1条件概率
(第一课时)
教学目标:
了解条件概率及其应用 教学重点:
了解条件概率及其应用 教学过程 一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数

则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个
数值的情形.
3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,
ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 ξ x 1 x 2 … x i … P P 1 P 2 …
P i

4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ
5.X 1 0 P p q
6.超几何分布:在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m
则()m M m
n N n
M
N
C C P X m C --==.此时我们称随机变量X 服从超几何分布 二、讲解新课:
任一个随机试验都是在某些基本条件下进行的,在这些基本条件下某个事件A 的发生具有某种概率. 但如果除了这些基本条件外还有附加条件,所得概率就可能不同.这些附加条件可以看成是另外某个事件B 发生.
条件概率这一概念是概率论中的基本工具之一. 给定一个概率空间,并希望知道某一事件A 发生的可能性大小. 尽管我们不可能完全知道试验结果,但往往会掌握一些与事件A 相关的信息,这对我们的判断有一定的影响. 例如,投掷一均匀骰子,并且已知出现的是偶数点,那么对试验结果的判断与没有这一已知条件的情形有所不同. 一般地,在已知另一事件B 发生的前提下,事件A 发生的可能性大小不一定再是()P A .
已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .
在某种情况下,条件的附加意味着对样本空间进行压缩,相应的概率可在压缩的样本空间内直接计算.
例1 盒中有球如表. 任取一球,记A ={取得蓝球},B ={取得玻璃球}, 显然这是
古典概型. Ω包含的样本点总数为16,A 包含的样本点总数为11,故11()16P A =
.

果已知取得为玻璃球,这
就B 是发生条件下A 发生的条件概率,记作(|)P A B . 在B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,也即把样本空间压缩到玻璃球全体. 而在B 发生条件下A 包含的样本点数为蓝玻璃球数,故
42(|)63P A B =
=
.
一般说来,在古典概型下,都可以这样做.但若回到原来的样本空间,则当
()0P B ≠,有
(|) B A P A B B AB B 在发生的条件下包含的样本点数

在发生的条件下样本点数包含的样本点数

包含的样本点数 AB P AB B P B 包含的样本点数/总数()


包含的样本点数/总数().
这式子对几何概率也成立. 由此得出如下的一般定义.
定义1 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概
率”,记作P(A | B),定义为
(|)P AB P A B P B ()

().
(1)
例2 甲乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为
20%,乙为18%,两市同时下雨的天数占12%. 求:
① 乙市下雨时甲市也下雨的概率;② 甲乙两市至少一市下雨的概率.
解 分别用A ,B 记事件{甲下雨}和{乙下雨}. 按题意有,()20%P A =,
()18%P B =,()12%P AB =.
① 所求为
()122
(|)()183P AB P A B P B =
==
.
② 所求为
()()()()P A B P A P B P AB =+-U 20%18%12%26%=+-=.
课堂小节:本节课学习了条件概率的定义 课堂练习: 课后作业:。

相关文档
最新文档