相似三角形知识点归纳(全)

合集下载

相似三角形知识点大总结

相似三角形知识点大总结

相似三角形知识点大总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段的长度分别为,那么就说这两条线段的比是,或写成.注:在求线段比时,线段单位要统一。

(2)在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说是的第四比例项,那么应得比例式为:.②a、d叫比例外项,b、c叫比例内项, a、c叫比例前项,b、d叫比例后项,d叫第四比例项,如果b=c,即 那么b叫做a、d的比例中项, 此时有。

(3)黄金分割:把线段分成两条线段,且使是的比例中项,即,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.即 简记为:注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①;②.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如,除了可化为,还可化为,,,,,,.(2) 更比性质(交换比例的内项或外项):(3)反比性质(把比的前项、后项交换): .(4)合、分比性质:.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:等等.(5)等比性质:如果,那么.注:①此性质的证明运用了“设法”(即引入新的参数k)这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:;其中.知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD∥BE∥CF,可得等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C /。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a bc da b c d a d b c a c ()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质:①基本性质:a bc dadbc ②合比性质:±±a b c d a b b c d d③等比性质:……≠……a bc dm nb dn a c m bdna b()03. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2CF l3可得EF BC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EBC由DE ∥BC 可得:AC AEABAD EAEC ADBD ECAE DBAD 或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

初中相似三角形知识点归纳

初中相似三角形知识点归纳

初中相似三角形知识点归纳分享借鉴.初中相似三角形知识点11.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形.2.相似三角形的表示方法:用符号∽ 表示,读作相似于 .3.相似三角形的相似比:相似三角形的对应边的比叫做相似比.4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.从表中可以看出只要将全等三角形判定定理中的对应边相等的条件改为对应边成比例就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的`斜边和一条直角边对应成比例,那么这两个直角三角形相似.7.相似三角形的性质定理:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2初中相似三角形知识点21.相似三角形的定义对应角相等.对应边成比例的两个三角形叫做相似三角形.如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c即三边边长对应比例相同.2.相似三角形判定对应角相等,对应边成比例的两个三角形叫做相似三角形.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)判定定理4:两三角形三边对应平行,则两三角形相似.判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似.其他判定:由角度比转化为线段比:h1/h2=Sabc3.相似三角形性质(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.初中相似三角形知识点3一.平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边.二.相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例.三.相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形.2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边.高.中线.角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应.3. 判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似.四.三角形相似的证题思路:五.利用相似三角形证明线段成比例的一般步骤:一定:先确定四条线段在哪两个可能相似的三角形中;二找:再找出两个三角形相似所需的条件;三证:根据分析,写出证明过程.如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等. 六.相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例.2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改对应边相等成对应边成比例.初中相似三角形知识点。

中考数学《相似三角形》知识点及练习题

中考数学《相似三角形》知识点及练习题

相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。

两角法:两角分别相等的两个三角形相似。

边角法:两边成比例且夹角相等的两个三角形相似。

三边法:三边对应成比例的两个三角形相似。

4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。

5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。

相似三角形的知识点总结

相似三角形的知识点总结

相似三角形的知识点总结相似三角形是几何学中的重要概念,它在实际生活中有着广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在相似三角形中,对应角度相等,对应边的比例相等。

相似三角形的知识点包括相似比例、相似条件、相似性质以及相似定理等。

下面将逐一介绍这些知识点。

1. 相似比例:相似三角形的对应边的比例相等。

即若两个三角形ABC和DEF相似,则有AB/DE = AC/DF = BC/EF。

2. 相似条件:两个三角形相似的条件有三种情况:a) 两个三角形的对应角度相等;b) 两个三角形的两个对应角度相等,且两个对应边的比例相等;c) 两个三角形的一个对应角度相等,且两个对应边的比例相等。

3. 相似性质:相似三角形具有以下性质:a) 相似三角形的对应角度相等;b) 相似三角形的对应边的比例相等;c) 相似三角形的对应角的平分线相交于一点;d) 相似三角形的内角平分线相交于一点。

4. 相似定理:相似三角形的定理有多个,其中一些重要的定理包括:a) AA相似定理:若两个三角形的两个对应角度相等,则两个三角形相似;b) SSS相似定理:若两个三角形的对应边的比例相等,则两个三角形相似;c) SAS相似定理:若两个三角形的一个对应角度相等,且两个对应边的比例相等,则两个三角形相似;d) 勾股定理的相似定理:若两个直角三角形的两条直角边分别成比例,则两个三角形相似。

相似三角形的知识点对于解决实际问题非常重要。

例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量阴影的长度和角度,计算出高楼的高度。

又如,在地图上测量两地的距离时,我们可以利用相似三角形的性质,通过测量地图上两地的距离和角度,计算出实际距离。

相似三角形是几何学中的重要概念,它在解决实际问题中有着广泛的应用。

通过掌握相似三角形的知识点,我们可以更好地理解几何学中的相似性质,从而应用于实际生活中的测量和计算中。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳
1.三角形的定义:三角形是有三条边组成的一种多边形。

2.三角形分类:按照角的夹角大小,可将三角形分为直角三角形、钝
角三角形和锐角三角形;按照三角形边长的不同,可将三角形分为等边三
角形、等腰三角形和不等边三角形;按照三角形三个内角和外角是否相等,可将三角形分为直角等腰三角形、等腰直角三角形、等腰锐角三角形、直
角普通三角形、锐角普通三角形、等边普通三角形等。

3. 三角形的图形特征:三角形的三个角都是120°,两个内角加在
一起等于外角,两条内角相加等于180°,三条边的长度相加等于180° Viva。

4.相似三角形:两个三角形是相似三角形当且仅当它们有相同的外角
或者内角,或者有两条边和角度都相同。

5.相似三角形的特征:它们有相同的外角,或者有两条边和角度都相同,它们的边都是同比例缩放,模型可以表示为两个相似三角形之间的比值。

6.相似三角形的应用:相似三角形可以用来计算三角形的边长,可以
用来解决有关距离、体积的问题,也可以用来研究角的大小和线段的长度
之间的关系。

九年级数学相似三角形知识点

九年级数学相似三角形知识点

九年级数学相似三角形知识点咱来唠唠九年级数学里的相似三角形知识点哈。

一、相似三角形是啥玩意儿呢?简单来说,相似三角形就像是三角形家族里的“克隆兄弟”,它们形状相同,但大小可能不一样。

就好比你用放大镜看一个小三角形,放大后的三角形和原来的小三角形就是相似的。

二、相似三角形的判定方法1. 两角对应相等- 如果两个三角形有两个角分别相等,那这两个三角形就相似。

这就像是两个人,只要他们在两个关键的地方(角度)长得一样,那他们就有相似之处。

比如说三角形ABC和三角形DEF,要是∠A = ∠D,∠B = ∠E,那这两个三角形就相似啦。

2. 两边对应成比例且夹角相等- 想象一下,两个三角形的两条边的长度比例是一样的,而且这两条边所夹的角也相等。

就像两根一样比例的小棍,它们夹着相同角度的话,那这两个三角形也是相似的。

比如在三角形ABC和三角形DEF中,AB/DE = AC/DF,并且∠A = ∠D,那这两个三角形就相似喽。

3. 三边对应成比例- 这个就更好理解啦,三个边的长度比例都一样的两个三角形肯定相似。

就好比三个小伙伴,他们的身高、臂长、腿长的比例都相同,那他们就是相似的三角形啦。

如果AB/DE = BC/EF = AC/DF,那么三角形ABC和三角形DEF就是相似三角形。

三、相似三角形的性质1. 对应边成比例- 相似三角形的对应边的比例是相等的。

就像前面说的那些判定方法里的边的比例一样。

如果三角形ABC相似于三角形DEF,那么AB/DE = BC/EF = AC/DF,这个比例是固定的哦。

2. 对应角相等- 因为相似三角形形状相同嘛,所以它们的对应角肯定是相等的。

∠A = ∠D,∠B = ∠E,∠C = ∠F。

3. 相似三角形的周长比等于相似比- 相似比就是对应边的比例。

比如说相似三角形ABC和DEF的相似比是k (AB/DE = k),那么它们的周长比也是k。

就好比两个相似的图形,一个大一个小,大的图形的周长是小的图形周长的k倍。

相似三角形知识点归纳

相似三角形知识点归纳

初三数学《相似三角形》知识提纲一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。

③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠0则…………a c e m b d f n a b mn k++++++++===4、黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长(三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=,=, =.nm b a =(4)上述结论也适合下列情况的图形:二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形》—中考考点归纳与典型例题
知识点1 有关相似形得概念
(1)形状相同得图形叫相似图形,在相似多边形中,最简单得就是相似三角形、
(2)如果两个边数相同得多边形得对应角相等,对应边成比例,这两个多边形叫做相似多 边形、相似多边形对应边长度得比叫做相似比(相似系数)、
知识点2 比例线段得相关概念、比例得性质
(1)定义: 在四条线段中,如果得比等于得比,那么这四条线段叫做成比例线段,简称比例线段、 注:①比例线段就是有顺序得,如果说就是得第四比例项,那么应得比例式为:、 ② 核心内容:
(2)黄金分割:把线段分成两条线段,且使就是得比例中项,即,叫做把线段黄金分割,点叫做线段得黄金分割点,其中≈0、618、即 简记为:
注:①黄金三角形:顶角就是360
得等腰三角形 ②黄金矩形:宽与长得比等于黄金数得矩形 (3)合、分比性质:。

注:实际上,比例得合比性质可扩展为:比例式中等号左右两个比得前项,后项之间 发生同样与差变化比例仍成立、如:等等、
(4)等比性质:如果,
那么、
知识点3 比例线段得有关定理
平行线分线段成比例定理:三条平行线截两条直线,
已知A D∥BE ∥C F,
可得
AB DE AB DE BC EF BC EF AB BC
BC EF AC DF AB DE AC DF DE EF =====
或或或或等。

特别在三角形中:
由DE ∥B C可得:
知识点4 相似三角形得概念
(1)定义:对应角相等,对应边成比例得三角形,叫做相似三角形、相似用符号“∽”表示,读作“相似于” 。

相似三角形对应边得比叫做相似比(或相似系数)、相似三角形对应角相等,对应边成比例、
注:①对应性:即把表示对应顶点得字母写在对应位置上 ②顺序性:相似三角形得相似比就是有顺序得。

③两个三角形形状一样,但大小不一定一样、 ④全等三角形就是相似比为1得相似三角形、
(2)三角形相似得判定方法
B
1、平行法:(图上)平行于三角形一边得直线与其它两边(或两边得延长线)相交,所构成得三角形与原三角形相似。

2、判定定理1:简述为:两角对应相等,两三角形相似。

AA
3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似。

SAS
4、判定定理3:简述为:三边对应成比例,两三角形相似。

SS S
5、判定定理4:直角三角形中,“HL" 全等与相似得比较:
如图,Rt △AB C中,∠BAC=90°,A D就是斜边BC 上得高,
则 ∽ ==> AD 2
=BD·DC,
∽ ==> AB 2
=BD ·B C ,
∽ ==> A C2
=CD ·BC 。

知识点5 相似三角形得性质
(1)相似三角形对应角相等,对应边成比例、 (2)相似三角形周长得比等于相似比、
(3)相似三角形对应高得比,对应中线得比与对应角平分线得比都等于相似比。

(4)相似三角形面积得比等于相似比得平方、
知识点6 相似三角形得几种基本图形:
(1
) 如图:称为“平行线型”得相似三角形(有“A型"与“X型”图)
(2) 如图:其中∠1=
∠2,则△A DE ∽△AB C称为“斜交型”得相似三角形。

(有“反A 共角型”、
“反A 共角共边型"、 “蝶型”)
A
B C D
E 12A A B
B C C D D E E 12412B (3)B
(3)一线三等角得变形:
知识点7 等积式证明题常用方法归纳:
(1)总体思路:“等积”变“比例”,“比例"找“相似”
(2)找相似:通过“横找"“竖瞧”寻找三角形,即横向瞧或纵向寻找得时候一共各有三个不同得字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能就是相似得,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证得所需得结论、
(3)找中间比:若没有三角形(即横向瞧或纵向寻找得时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用得“替换”方法有这样得三种:等线段代换、等比代换、等积代换、
即:找相似找不到,找中间比。

方法:将等式左右两边得比表示出来。

(4) 添加辅助线:若上述方法还不能奏效得话,可以考虑添加辅助线(通常就是添加平行线)构成
比例、
注:添加辅助平行线就是获得成比例线段与相似三角形得重要途径。

平面直角坐标系中通常就是作垂线(即得平行线)构造相似三角形或比例线段。

知识点8 相似多边形得性质
(1)相似多边形周长比,对应对角线得比都等于相似比、
(2)相似多边形中对应三角形相似,相似比等于相似多边形得相似比、
(3)相似多边形面积比等于相似比得平方、
注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,熟练掌握相似三角形知识就是基础与关键、
知识点9 位似图形有关得概念与性质
(1) 位似图形就是相似图形得特例,位似图形不仅相似,而且对应顶点得连线相交于一点。

(2) 位似图形一定就是相似图形,但相似图形不一定就是位似图形、
(3) 位似图形得对应边互相平行或共线、
(4)位似图形具有相似图形得所有性质、
位似图形得性质:
①位似图形上任意一对对应点到位似中心得距离之比等于相似比。

②在平面直角坐标系中,如果位似就是以原点为位似中心,相似比为k,那么位似图形对应点得坐标比等于k或-k、(若位似中心不就是原点,则向坐标轴作垂直构造直角三角形,利用相似解决或就是先平移到原点,求出对应点得坐标再平移回去)
第7题图
知识点一:平行线成比例定理 典型例题
例1、如图,平行四边形中
例2。

如图,平行四边形ABC D得对角线AC 与BD 相交于O,E 就是CD 得中点,AE交B D
于F,则DF:FO=_____。

跟踪练习1:如图,平行四边形ABCD 中,O 1、O 2、O 3为对角线BD 上三点,且BO 1=O 1O2=O 2O 3=O 3D,连结AO 1并延长交B

于点E,连结EO 3并延长交AD 于F,则AD:F D等于( )、
A、19:2; B 、9:1; C 、8:1; D 、7:1
2、如图,在平行四边形A BCD 中R 在BC 得延长线上,AR 交BD 于P,交CD 于Q,若DQ ∶C
Q =4:3,则AP ∶P R=
3、(2015•湖南株洲,第7题3分)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别就是B 、D、F ,且A B=1,C D=3,那么EF 得长就是ﻩ( )ﻩﻩﻩﻩﻩﻩ A 。

B、ﻩ C、ﻩ D、ﻩﻩﻩ
ﻩﻩﻩ
4、(2015•甘肃武威,第9题3分)如图,D、E分别就是△ABC得边AB、BC上得点,DE∥AC,若S△BD
=1:3,则S△DOE:S△AOC得值为( ) ﻩﻩﻩ
E:S△CDE
A、ﻩ
B、ﻩ
C、ﻩD。

ﻩﻩﻩﻩ

ﻩﻩﻩ
5、(2015•四川乐山,第5题3分)如图,∥∥,两条直线与这三条平行线分别交于点A、B、C与D、E、
F、已知,则得值为( )ﻩﻩﻩﻩﻩﻩﻩﻩ
ﻩﻩﻩﻩﻩﻩ
A、B、C、D、ﻩﻩﻩﻩﻩﻩ
知识点二、相似三角形得判定
典型例题
例1、如图,CD就是Rt△ABC斜边上得中线,过点D垂直于直线AB得直线交BC与点F,交AC得延长线于点E,求证:

例3、如图,在⊿ABC 中,AD 就是角平分线,E就是AD 上得一点,且CE = CD,求证:
例4、已知,如图,在△AB C中,∠C =600,AD ⊥BC 于D,BE ⊥AC 于E,试说明△CDE ∽△CBA 、
课后自我练习
1、如图,在△ABC 中,AD 为中线,CF 为任意直线且交AD 于点E,交AB 于点F,
求证: =
2、 如图,已知,试说明:AB ·EC=AC ·BD 。

3、 在△ABC 中,M 就是AC 边得中点,且AE =BA,连接EM,并延长交BC 得延长线于D,
A
B D
E
求证: BC =2CD
4、已知,如图,F 为 ABCD 边DC 延长线上一点,连结A F,交BC 于G,交BD于E,试说
明AE 2=E G·EF
5、已知:在△ABC 中,∠B AC=900 A D⊥BC 于D,P 为AD 中点,BP 延长线交A C于E,EF ⊥BC 于F , 求证: EF 2=A E·A C
A B C
F G E D。

相关文档
最新文档