2013-2014版高中数学(人教A版)选修1-1配套Word版活页训练第一章 常用逻辑用语1-1-2

合集下载

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是()A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是()A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有()A .0个B .1个C .2个D .3个 4.下列说法中正确的是()A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ?是q ?的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ?不为零,则,a b 都不为零”的逆否命题是。

人教A版高中数学选修1-1习题精选(含答案)

人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

高中数学人教A版选修1-1习题:第一章1.1-1.1.1命题 Word版含答案

高中数学人教A版选修1-1习题:第一章1.1-1.1.1命题 Word版含答案

第一章常用逻辑用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,在这4句诗中,可作为命题的是( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:“红豆生南国”是陈述句,意思是“红豆生长在南方”,故本句是命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.答案:A2.下列命题为真命题的是( )A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2解析:很明显A正确;B中,由x2=1,得x=±1,所以B是假命题;C中,当x=y<0时,结论不成立,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.答案:A3.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a、b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题为( )A.①③B.①②③C.①③④D.①④解析:①显然错误,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中函数y=x3是幂函数,不是指数函数,④是假命题.答案:C4.命题“垂直于同一条直线的两个平面平行”的条件是( )A .两个平面B .一条直线C .垂直D .两个平面垂直于同一条直线解析:把命题改为“若p 则q ”的形式为若两个平面垂直于同一条直线,则这两个平面平行,则条件为“两个平面垂直于同一条直线”.答案:D5.下列语句中命题的个数为( )①若a ,G ,b 成等比数列,则G 2=ab .②4-x 2≥0.③梯形是中心对称图形.④π>2吗?⑤2016年是我人生中最难忘的一年!A .2B .3C .4D .5解析:依据命题的概念知④和⑤不是陈述句,故④⑤不是命题;再从“能否判断真假”的角度分析:②不是命题.只有①③为命题,故选A.答案:A二、填空题6.下列语句:①2是无限循环小数;②x 2-3x +2=0;③当x =4时,2x >0;④把门关上!其中不是命题的是________.解析:①是命题;②不是命题,因为语句中含有变量x ,在没给变量x 赋值的情况下,无法判断语句的真假;③是命题;④是祈使句,不是命题.答案:②④7.已知命题“f (x )=cos 2ωx -sin 2ωx 的最小正周期是π”是真命题,则实数ω的值为________. 解析:f (x )=cos 2ωx -sin 2ωx =cos 2ωx ,所以⎪⎪⎪⎪⎪⎪2π2ω=π,解得ω=±1. 答案:±18.下列命题:①若xy =1,则x ,y 互为倒数;②二次函数的图象与x 轴有公共点;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题是________(写出所有真命题的编号).解析:对于②,二次函数图象与x 轴不一定有公共点;对于③,平行四边形不是梯形. 答案:①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断其真假.(1)末位数字是0的整数能被5整除;(2)偶函数的图象关于y 轴对称;(3)菱形的对角线互相垂直.解:(1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称,为真命题.(3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.10.已知:A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A 、B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”.由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”.由命题为真命题可知1+a 5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x>1,则x >25”. B 级 能力提升1.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .1D .-3解析:C 中,当a =1时,Δ=12-4×1×1=-3<0,方程无实根,其余3项中,a 的值使方程均有实根.答案:C2.①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a//b ,则k =-3;③非零向量a 和b 满足|a|=|b|=|a -b|,则a 与a +b 的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).解析:取a =0,满足a·b =a·c ,但不一定有b =c ,故①不正确;当a=(1,k),b=(-2,6),a//b时,6+2k=0,所以k=-3,则②正确;非零向量a和b满足|a|=|b|=|a-b|时,|a|,|b|,|a-b|构成等边三角形,所以a 与a+b的夹角为30°,因此③错误.答案:②3.把下列命题改写成“若p,则q”的形式,并判断真假.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。

2013-2014版高中数学(人教A版)选修1-1活页规范训练 3-1-1变化率问题 Word版含解析]

2013-2014版高中数学(人教A版)选修1-1活页规范训练 3-1-1变化率问题 Word版含解析]

第三章导数及其应用3.1变化率与导数3.1.1变化率问题双基达标(限时20分钟)1.函数y=f(x)在x0到x0+Δx之间的平均变化率f(x0+Δx)-f(x0)Δx中,Δx不可能是().A.大于0 B.小于0C.等于0 D.大于0或小于0答案 C2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.3解析=(3+2.12)-(3+22)0.1=4.1.答案 B3.函数y=x2+x在x=1到x=1+Δx之间的平均变化率为().A.Δx+2 B.2Δx+(Δx)2C.Δx+3 D.3Δx+(Δx)2解析ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+(1+Δx)-(12+1)Δx=Δx+3.答案 C4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.解析 Δy =⎝ ⎛⎭⎪⎫2+12-(2+1)=-12.答案 -125.一个作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体在t =0到t =2之间的平均速度为________.解析 物体在t =0到t =2之间的平均速度为(3×2-22)-02-0=1.答案 16.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在下列区间上f (x )及g (x )的平均变化率;(1)[-3,-1];(2)[0,5].解 (1)函数f (x )在区间[-3,-1]上的平均变化率为f (-1)-f (-3)(-1)-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2,g (x )在区间[-3,-1]上的平均变化率为g (-1)-g (-3)(-1)-(-3)=[-2×(-1)]-[-2×(-3)]2=-2.(2)函数f (x )在区间[0,5]上的平均变化率为 f (5)-f (0)5-0=(2×5+1)-(2×0+1)5=2,g (x )在区间[0,5]上的平均变化率为g (5)-g (0)5-0=-2×5-(-2×0)5=-2.综合提高 (限时25分钟)7.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx 等于( ). A .4 B .4x C .4+2ΔxD .4+2(Δx )2解析 Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2Δx=4+2Δx .答案 C8.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]内相应的平均速度为( ).A .2Δt +4B .-2Δt -4C .4D .-2Δt 2-4Δt解析 =4-2(1+Δt )2-(4-2×12)Δt =-4Δt -2(Δt )2Δt=-2Δt -4. 答案 B9.已知圆的面积S 与其半径r 之间的函数关系为S =πr 2,其中r ∈(0,+∞),则当半径r ∈[1,1+Δr ]时,圆面积S 的平均变化率为________. 解析 当r ∈[1,1+Δr ]时,圆面积S 的平均变化率为ΔS Δr =π(1+Δr )2-πΔr =π+2π·Δr +(Δr )2π-πΔr =2π+πΔr .答案 2π+πΔr10.国家环保局在规定的排污达标的日期前, 对甲、乙两家企业进行检查,其连续检测结果如图所示.治污效果更好的企业是(其中W 表示排污量)________. 解析ΔW Δt =W (t 1)-W (t 2)Δt,在相同的时间内,由图可知甲企业的排污量减少的多,∴甲企业的治污效果更好. 答案 甲企业11.假设在生产8到30台机器的情况下,生产x 台机器的成本是c (x )=x 3-6x 2+15x (元),而售出x 台的收入是r (x )=x 3-3x 2+12x (元),则生产并售出10台至20台的过程中平均利润是多少元?解 由题意,生产并售出x 台机器所获得的利润是:L (x )=r (x )-c (x )=(x 3-3x 2+12x )-(x 3-6x 2+15x )=3x 2-3x ,故所求的平均利润为:L =L (20)-L (10)20-10=87010=87(元).12.(创新拓展)婴儿从出生到第24个月的体重变化如图,试分别计算第一年与第二年婴儿体重的平均变化率.解第一年婴儿体重平均变化率为11.25-3.7512-0=0.625(千克/月);第二年婴儿体重平均变化率为14.25-11.2524-12=0.25(千克/月).。

2013-2014版高中数学(人教A版)三活页规范训练 1章高考真题含解析

2013-2014版高中数学(人教A版)三活页规范训练 1章高考真题含解析

第一章解三角形本章归纳整合高考真题1.(2011·天津高考)阅读下边的程序框图,运行相应的程序,则输出i的值为( ).A.3B.4 C. 5 D.6解析本小题考查程序框图等基础知识,考查分析问题、解决问题的能力,难度较小.由a=1,i=0→i=0+1=1,a=1×1+1=2→i=1+1=2,a=2×2+1=5→i=2+1=3,a=3×5+1=16→i=3+1=4,a=4×16+1=65>50,∴输出4。

答案B答案C2.(2012·北京高考)执行如图所示的程序框图,输出的S值为( ).A.2 B.4 C.8 D.16解析初始:k=0,S=1,第一次循环:由0<3,得S=1×20=1,k=1;第二次循环:由1〈3,得S=1×21=2,k=2;第三次循环:由2〈3,得S=2×22=8,k=3。

经判断此时要跳出循环.因此输出的S值为8。

答案C3.(2012·安徽高考)如图所示,程序框图(算法流程图)的输出结果是( ).A.3 B.4 C.5 D.8解析由程序框图依次可得,x=1,y=1→x=2,y=2→x=4,y=3→x=8,y=4→输出y=4.答案B4.(2012·广东高考)执行如图所示的程序框图,若输入n的值为6,则输出s的值为().A.105 B.16 C.15 D.1解析i=1,s=1;i=3,s=3;i=5,s=15,i=7时,输出s=15.答案C5.(2012·福建高考)阅读下图所示的程序框图,运行相应的程序,输出的S值等于( ).A.-3 B.-10 C.0 D.-2解析(1)k=1,1<4,S=2×1-1=1;。

2013-2014版高中数学(人教A版)选修1-1活页规范训练 3-2-2-2导数的运算法则 Word版含解析]

第2课时 导数的运算法则双基达标 (限时20分钟)1.函数y =cos x 1-x 的导数是( ). A.-sin x +x sin x (1-x )2 B.x sin x -sin x -cos x (1-x )2 C.cos x -sin x +x sin x (1-x )2 D.cos x -sin x +x sin x 1-x 解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2 =cos x -sin x +x sin x (1-x )2. 答案 C2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ).A.193B.103C.133D.163解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103.答案 B3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x,则f ′(x )等于( ). A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )2解析 令1x =t ,则f (t )=1t 1+1t =11+t ,∴f (x )=11+x ,f ′(x )=⎝ ⎛⎭⎪⎫11+x ′=-1(1+x )2. 答案 D4.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________.解析 s ′=(t sin t )′=sin t +t cos t ,∴s ′(2)=sin 2+2cos 2.答案 sin 2+2cos 25.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b 等于________.解析 ∵f ′(x )=4x 3+2ax -b ,由⎩⎨⎧f ′(0)=-13,f ′(-1)=-27⇒⎩⎨⎧-b =-13,-4-2a -b =-27.∴⎩⎨⎧a =5,b =13.∴a +b =5+13=18.答案 186.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.解 ∵(e x )′=e x ,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,∴所求切线方程为y -e x 0=e x 0(x -x 0).∵切线过原点,∴-e x 0=-x 0·e x 0,x 0=1.∴切点为(1,e),斜率为e.综合提高 (限时25分钟)7.函数y =(x -a )(x -b )在x =a 处的导数为( ).A .abB .-a (a -b )C .0D .a -b解析 ∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ),∴y ′|x =a =2a -(a +b )=a -b .答案 D8.函数y =x 2+a 2x (a >0)在x =x 0处的导数为0,那么x 0=( ).A .aB .±aC .-aD .a 2解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a . 答案 B9.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是________.解析 由已知f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π3,又θ∈⎣⎢⎡⎦⎥⎤0,5π12.∴π3≤θ+π3≤3π4,∴22≤sin ⎝⎛⎭⎪⎫θ+π3≤1,∴2≤f ′(1)≤2. 答案 [2,2]10.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为________.解析 f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,∴y -10=7(x -1),当y =0时,x =-37.答案 -3711.求下列函数的导数:(1)y =x 2sin x +2cos x ;(2)y =e x +1e x -1; (3)y =lg x x .解 (1)y ′=(x 2sin x )′+(2cos x )′=(x 2)′sin x +x 2(sin x )′+2(cos x )′=2x sin x +x 2cos x -2sin x .(2)法一 y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x(e x -1)2. 法二 y =e x +1e x -1=e x -1+2e x -1=1+2e x -1, y ′=-2e x(e x -1)2. (3)y ′=⎝ ⎛⎭⎪⎫lg x x ′=(lg x )′x -(lg x )·(x )′x 2=1x ln 10·x -lg x x 2=1-ln 10·lg x x 2·ln 10. 12.(创新拓展)已知函数f (x )=ax -6x 2+b的图象在点M (-1,f (-1))处的切线方程为x +2y +5=0.求函数y =f (x )的解析式.解 由函数f (x )的图象在点M (-1,f (-1))处的切线方程为x +2y +5=0,知-1+2f (-1)+5=0,即f (-1)=-2,由切点为M 点得f ′(-1)=-12.∵f ′(x )=a (x 2+b )-2x (ax -6)(x 2+b )2, ∴⎩⎪⎨⎪⎧-a -61+b =-2,a (1+b )-2(a +6)(1+b )2=-12, 即⎩⎨⎧a =2b -4,a (1+b )-2(a +6)(1+b )2=-12, 解得a =2,b =3或a =-6,b =-1(由b +1≠0,故b =-1舍去).所以所求的函数解析式为f (x )=2x -6x 2+3.。

(人教版)数学高中选修1-1同步练习 (全书完整版)

(人教版)高中数学选修1-1(全册)同步练习汇总►基础梳理1.命题的定义.一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.♨思考:如何判断一个语句是不是命题? 答案:判断一个语句是不是命题,就是要看它是否符合“是陈述句”和“可以判断真假”这两个条件.2.命题的结构.本章中我们只讨论“若p ,则q ”这种形式的命题.我们把这种形式的命题中的p 叫做命题的条件,把q 叫做命题的结论.►自测自评1.下列语句是命题的是①(填序号). ①π2是无限不循环小数 ②3x ≤5③什么是“温室效应”? ④明天给我买本《金版学案》解析:选项①,“π2是无限不循环小数”是陈述句,并且它是真的,所以是命题;选项②,因为无法判断“3x ≤5”的真假,所以选项②不是命题;选项③是疑问句,选项④是祈使句,故都不是命题.2.语句“若a >b ,则a +c >b +c ”(C ) A .不是命题 B .是假命题 C .是真命题 D .不能判断真假3.把命题“垂直于同一平面的两条直线互相平行”改成“若p ,则q ”的形式:若两条直线垂直于同一个平面,则这两条直线互相平行.1.下列语句是命题的是(B )①72+1≠50 ②5-x =0 ③存在x ∈R ,使x 2-4>0 ④平行于同一条直线的两条直线平行吗?A .①②B .①③C .②④D .③④2.下列命题中是真命题的是(B ) A.3是有理数 B .22是实数C .e 是有理数D .{x |x 是小数}R3.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两相等,则该四棱柱为直四棱柱;④若四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的序号是________. 答案:②④4.将下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)正n 边形(n ≥3)的n 个内角全相等; (2)方程x 2-x +1=0有两个实根; (3)菱形的对角线互相垂直; (4)偶函数的图象关于y 轴对称.答案:(1)若n (n ≥3)边形是正多边形,则它的n 个内角全相等.真命题. (2)若一个方程是x 2-x +1=0,则它有两个实根.假命题. (3)若一个四边形是菱形,则它的对角线互相垂直.真命题. (4)若一个函数是偶函数,则它的图象关于y 轴对称.真命题.1.下列语句中,是命题的个数是(B )①求证:3是无理数 ②-5∈Z ③5是无理数 ④x 2-4x +7≥0.A .1个B .2个C .3个D .4个 2.下列四个命题中是真命题的为(C ) A .若sin A =sin B ,则∠A =∠B B .若lg x 2=0,则x =1C .若a >b ,且ab >0,则1a <1bD .若b 2=ac ,则a 、b 、c 成等比数列 3.下列说法正确的是(D )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30 ℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题 解析:A 写成“若p 则q ”的形式,B 是命题,C 假命题. 4.(2013·肇庆二模)对于平面α和直线m ,n ,下列命题中假命题的个数是(D )①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ∥α,n ⊂a ,则m ∥n ④若m ∥n ,n ∥α,则m ∥αA .1个B .2个C .3个D .4个5.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确的是(C ) A .若AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC 6.(2013·广州二模)对于任意向量a 、b 、c ,下列命题中正确的是(D ) A .|a ·b |=|a ||b | B .|a +b |=|a |+|b | C .(a ·b )c =a (b ·c ) D .a ·a =|a |27.命题“末位数字是0或5的整数,能被5整除”,条件p :________________________________________________________________________;结论q :________________________________________________________________________;是________命题(填“真”或“假”). 解析:“末位数字是0或5的整数,能被5整除”改写成“若p ,则q ”的形式为:若一个整数的末位数是0或5,则这个数能被5整除,为真命题.答案:一个整数的末位数是0或5 这个数能被5整除 真8.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 得-3≤a <0.∴-3≤a ≤0. 答案:[-3,0]9.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条体对角线两两相等,则四棱柱为直四棱柱.其中,真命题的序号是________. 答案:②④10.已知定义在R 上的偶函数f (x )满足条件:f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下面关于f (x )的命题:①f (x )是周期函数;②f (x )的图象关于直线x =-1对称;③f (0)≤f (1);④f (2)=f (0);⑤f (x )在[1,2]上是减函数.其中正确的命题序号是________. 答案:①②④11.将下列命题改成“若p ,则q ”的形式,并判断其真假. (1)正n 边形(n ≥3)的n 个内角全相等; (2)方程x 2-x +1=0有两个实根; (3)菱形的对角线互相垂直; (4)偶函数的图象关于y 轴对称.答案:(1)若n (n ≥3)边形是正多边形,则它的n 个内角全相等.真命题. (2)若一个方程是x 2-x +1=0,则它有两个实根.假命题. (3)若一个四边形是菱形,则它的对角线互相垂直.真命题. (4)若一个函数是偶函数,则它的图象关于y 轴对称.真命题.12.已知p :x 2+mx +1=0有两个不等的负根,q :4x 2+4(m -2)x +1=0无实根.若p ,q 一真一假,求m 的取值范围.解析:当p 为真命题时, ⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,x 1·x 2=1>0,∴m >2.当q 为真命题时,Δ=42(m -2)2-16<0, ∴1<m <3.若p 、q 一真一假,则, p 真q 假或p 假q 真, ①若p 真q 假, ∴⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3, ∴m ≥3.②若p 假q 真,∴⎩⎪⎨⎪⎧m ≤2,1<m <3, ∴1<m ≤2.综上m 的取值范围是(1,2]∪[3,+∞). 13.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解析:因为A ∩B =∅是假命题,所以A ∩B ≠∅. 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2都非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2≥0,x 1x 2≥0,即⎩⎪⎨⎪⎧m ∈U ,4m ≥0,2m +6≥0,解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m |m ≥32在全集U 中的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}.►体验高考1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,是真命题的是(D ) A .①和② B .②和③ C .③和④ D .②和④解析:①中没有强调这两条直线是相交的. ③中这两条直线也可以相交或是异面. 2.设a ,b 为正实数,现有下列命题: ①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中真命题有____________(写出所有真命题的序号). 答案:①④►基础梳理1.四种命题的概念.(1)一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.(2)如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题.(3)如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆否命题.2.四种命题的相互关系.3.四种命题的真假性.由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.,►自测自评1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是(A)A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数2.在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是(D) A.1或2或3或4B.1或3C.0或4D.0或2或43.若命题p的逆命题为q,命题q的否命题为r,则p是r的逆否命题.解析:设p为:“若m,则n”,则q为:“若n,则m”,所以r为:“若綈n,则綈m”.故p是r的逆否命题.1.“若x,y∈R且(x-1)2+(y-1)2=0,则x,y全为1”的否命题是(B)A.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y全不为1B.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y不全为1C.若x,y∈R且x,y全为1,则(x-1)2+(y-1)2=0D.若x,y∈R且xy≠1,则(x-1)2+(y-1)2=02.下列命题中,不是真命题的是(D)A.“若b2-4ac>0,则二次方程ax2+bx+c=0有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“x2=9,则x=3”的否命题D.“内错角相等”的逆命题3.命题“a,b是实数,若|a-1|+|b-1|=0,则a=b=1”,用反证法证明时反设为:________________________________________________________________________.答案:若a≠1或b≠14.已知命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.答案:逆命题:已知,a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题.否命题:已知,a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题.逆否命题:已知,a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.5.已知函数y=f(x)是R上的增函数,对a,b∈R,若f(a)+f(b)≥f(-a)+f(-b)成立,证明a+b≥0.证明:原命题的逆否命题为:a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).以下证明其逆否命题:若a+b<0,则a<-b,b<-a,又因为y=f(x)是R上的增函数,所以f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.又因为原命题和逆否命题有相同的真假性,所以求证成立.1.否定结论“至多有两个解”的说法中,正确的是(C)A.有一个解B.有两个解C.至少有三个解D.至少有两个解2.下列说法中正确的是(D)A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真解析:否命题和逆命题是互为逆否命题,有着一致的真假性.3.已知原命题“若两个三角形全等,则这两个三角形面积相等”,那么它的逆命题、否命题、逆否命题中,真命题的个数是(B)A.0个B.1个C.2个D.3个4.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2+x-6>0”的否命题;④“若ab是无理数,则a、b是无理数”的逆命题.其中真命题的个数是(B)A.0个B.1个C.2个D.3个5.命题“若c>0,则函数f(x)=x2+x-c有两个零点”的逆否命题的是:________________________________________________________________________ ________________________________________________________________________,则c ≤0.答案:若函数f (x )=x 2+x -c 没有两个零点6.若命题p 的否命题是q ,命题q 的逆命题是r ,则r 是p 的逆命题的________. 解析:本题主要考查四种命题的相互关系.显然,r 与p 互为逆否命题. 答案:否命题 7.(x -1)(x +2)=0的否定形式是________________________________________________________________________.答案:(x -1)(x +2)≠0 8.命题“若a >b ,则2a >2b -1”的否命题为________________________________________________________________________________________________________________________________________________. 答案:若a ≤b ,则2a ≤2b -1 9.有下列五个命题:①“若a 2+b 2=0,则ab =0”的逆否命题; ②“若a >b ,则ac >bc ”的逆命题③“若a <b <0,则1a >1b”的逆否命题;④“若1a <1b <0,则ab <b 2”的逆否命题;⑤“若b a >ab,则a <b <0”的逆命题其中假命题有________.解析:①逆否命题为“若ab ≠0,则a 2+b 2≠0”,这是一个真命题. ②逆命题为“若ac >bc ,则a >b ”,这是一个假命题. ③原命题是一个真命题,所以逆否命题也为真命题.④若1a <1b<0,则b <a <0,则ab >b 2故原命题为真命题,所以逆否命题也为真命题.⑤逆命题为“若a <b <0,则b a >ab”.若a <b <0,则⎩⎪⎨⎪⎧-a >-b >0,1b <1a<0,则⎩⎪⎨⎪⎧-a >-b >0,-1b >-1a >0,故a b >b a . 故这是一个假命题. 答案:②⑤10.若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.证明(用反证法):假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,而a +b +c =⎝⎛⎭⎫x 2-2y +π2+⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3,显然a +b +c >0,这与假设a +b +c ≤0相矛盾. 因此a ,b ,c 中至少有一个大于0.►体验高考1.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(C )A .3个B .2个C .1个D .0个解析:本小题主要考查四种命题的真假,易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题有一个,选C.2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是(A ) A .若a +b +c ≠3,则a 2+b 2+c 2<3 B .若a +b +c =3,则a 2+b 2+c 2<3 C .若a +b +c ≠3,则a 2+b 2+c 2≥3 D .若a 2+b 2+c 2≥3,则a +b +c =33.命题“若一个数是负数,则它的平方是正数”的逆命题是(B ) A .若一个数是负数,则它的平方不是正数 B .若一个数的平方是正数,则它是负数 C .若一个数不是负数,则它的平方不是正数 D .若一个数的平方不是正数,则它不是负数 4.命题“若p 则q ”的逆命题是(A )A .若q 则pB .若綈p 则綈qC .若綈q 则綈pD .若p 则綈q5.命题“若a =π4,则tan α=1”的逆否命题是(C )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4►基础梳理1.充分条件和必要条件. 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p ⇒q ,并且说p 是q 的充分条件,q 是p 的必要条件.2.充要条件.一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时我们说,p 是q 的充分必要条件,简称充要条件.显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p ⇔q ,那么p 与q 互为充要条件.♨思考:如何从集合与集合之间的关系上理解充分条件、必要条件和充要条件?答案:对于集合A ={x |p (x )},B ={x |q (x )},分别是使命题p 和q 为真命题的对象所组成的集合.,►自测自评1.已知集合A ,B ,则“A ⊆B ”是“A ∩B =A ”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件 2.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的充分不必要条件. 解析:由a =2能得到(a -1)(a -2)=0,但由(a -1)·(a -2)=0得到a =1或a =2,而不是a =2,所以a =2是(a -1)(a -2)=0的充分不必要条件.1.在△ABC 中,“A >30°”是“sin A >12”的(B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当A =170°时,sin 170°=sin 10°<12,所以“过不去”;但是在△ABC 中,sinA >12⇒30°<A <150°⇒A >30°,即“回得来”. 2.(2014·湛江一模)“x >2”是“(x -1)2>1”的(B ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.“b 2=ac ”是“ a ,b ,c 成等比数列”的________条件.解析:因为当a =b =c =0时,“b 2=ac ”成立,但是a ,b ,c 不成等比数列; 但是“a ,b ,c 成等比数列”必定有“b 2=ac ”. 答案:必要不充分4.求不等式ax 2+2x +1>0恒成立的充要条件. 解析:当a =0时,2x +1>0不恒成立. 当a ≠0时,ax 2+2x +1>0恒成立 ⇔⎩⎪⎨⎪⎧a >0,Δ=4-4a <0⇔a >1. ∴不等式ax 2+2x +1>0恒成立的充要条件是a >1.5.已知p :x 2-2(a -1)x +a (a -2)≥0,q :2x 2-3x -2≥0,若p 是q 的必要不充分条件,求实数a 的取值范围.解析:令M ={x |2x -3x -2≥0} ={x |(2x +1)(x -2)≥0}⇒⎩⎨⎧⎭⎬⎫x |x ≤-12或x ≥2 N ={x |x 2-2(a -1)x +a (a -2)≥0}={x |(x -a )[x -(a -2)]≥0}⇒{x |x ≤a -2或x ≥a },已知q ⇒p 且p ⇒/ q ,得M ?N .所以⎩⎪⎨⎪⎧a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2⇔32≤a <2或32<a ≤2⇔32≤a ≤2.即所求a 的取值范围是⎣⎡⎦⎤32,2.1.(2013·深圳二模)设x ,y ∈R ,则“x ≥1且y ≥2”是“x +y ≥3”的(A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.“直线与平面α内无数条直线垂直”是“直线与平面α垂直”的(B ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.若等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N )”的(D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:可以借助反例说明:①如数列:-1,-2,-4,-8,…公比为2,但不是增数列;②如数列:-1,-12,-14,-18,…是增数列,但是公比为12<1.4.(2013·东莞二模)已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的(A )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.已知直线a 、b 和平面α,则a ∥b 的一个必要不充分条件是(D )A .a ∥α,b ∥αB .a ⊥α,b ⊥αC .a ∥α,b ⊂αD .a 、b 与平面α成等角6.圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是(B ) A .k ∈(-2, 2) B .k ∈(-3, 3)C .k ∈(-∞,-2)∪(2,+∞)D .k ∈(-∞,-3)∪(3,+∞)解析:本小题主要考查直线和圆的位置关系.依题意知圆x 2+y 2=1与直线y =kx +2没有公共点⇔d =21+k 2>1⇔k ∈(-3,3).7.已知命题p :不等式x 2+1≤a 的解集为∅,命题q :f (x )=a x (a >0且a ≠1)是减函数,则p 是q 的____________________.解析:命题p 相当于命题:a <1,命题q 相当于:0<a <1.所以,p 是q 的必要不充分条件.答案:必要不充分条件8.已知条件p :x 2+x -2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是________.解析:令A ={x |x 2+x -2>0}={x |x >1或x <-2},B ={x |x >a },∵p 是q 的充分不必要条件,∴B ?A ,∴a ≥1.答案:a ≥19.指出下列各组命题中,p 是q 的什么条件. (1)在△ABC 中,p :∠A >∠B ,q :BC >AC ; (2)p :a =3,q :(a +2)(a -3)=0;(3)p :a <b ,q :ab<1.答案:(1)充要条件 (2)充分不必要条件(3)既不充分也不必要条件10.是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;如果不存在,请说明理由.解析:由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎨⎧⎭⎬⎫x |x <-p 4.当B ⊆A 时,即-p4≤-1.即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.11.已知p :-2≤-1- x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,求实数m 的取值范围.分析:(1)用集合的观点考察问题,先写出綈p 和綈q ,然后,由綈q ⇒綈p ,但綈p ⇒/綈q 来求m 的取值范围;(2)将綈p 是綈q 的必要不充分条件转化为p 是q 的充分不必要条件再求解. 解析:方法一 由x 2-2x +1-m 2≤0, 得1-m ≤x ≤1+m ,∴綈q :A ={x |x >1+m ,或x <1-m ,m >0}.由-2≤1-x -13≤2,得-2≤x ≤10,∴綈p :B ={x |x >10,或x <-2}.∵綈p 是綈q 的必要不充分条件,结合数轴∴A ?B ⇔⎩⎪⎨⎪⎧m >0,1-m ≤-2,解得m ≥9.1+m ≥10.方法二 ∴綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p ⇒/ 綈q .∴p ⇒q ,且q ⇒/ p ,即p 是q 的充分不必要条件. 结合数轴∵p :C ={x |-2≤x ≤10},q :D ={x |1-m ≤x ≤1+m ,m >0}∴C ?D ,∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2,∴m ≥9.所以实数m 的取值范围是{m |m ≥9}.12.求证:关于x 的一元二次不等式ax 2-ax +1>0对于一切实数x 都成立的充要条件是0<a <4.证明:ax 2-ax +1>0(a ≠0)恒成立 ⇔⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0⇔0<a <4. ►体验高考 1.(2014·安徽卷)“x <0”是“ln(x +1)<0”的(B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由ln(x +1)<0得-1<x <0,故选B. 2.(2014·广东卷)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,则“a ≤b ”是“sin A ≤sin B ”的(C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:a ≤b ⇔2R sin A ≤2R sin B ⇔sin A ≤sin B . 3.(2014·浙江卷)设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的(A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2014·北京卷)设a 、b 是实数,则“a >b ”是“a 2>b 2”的(D ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 5.(2013·福建卷)设点P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的(A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若x =2且y =-1,则x +y -1=0;反之,若x +y -1=0,x ,y 有无数组解,如x =3,y =-2等,不一定有x =2且y =-1,故选A.6.设x ∈R ,则“x >12”是“2x 2+x -1>0”的(A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件►基础梳理 1.且(and ).(1)定义:一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p ∧q .读作“p 且q ”.(2)当p ,q 两个命题都为真命题时,p ∧q 就为真命题;当p ,q 两个命题中只要有一个命题为假命题时,p ∧q 就为假命题.2.或(or ).(1)定义:一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p ∨q .读作“p 或q ”.(2)当p ,q 两个命题中,只要有一个命题为真命题时, p ∨q 就为真命题;当p ,q 两个命题都为假命题时,p ∨q 就为假命题.3.非(not ). (1)定义:一般地,对一个命题p 全盘否定,就得到一个新命题,记作綈p .读作“非p ”或“p 的否定”.(2)若p 为真命题时,则綈p 必为假命题;若p 为假命题,则綈p 为真命题.4.复合命题真值表.复合命题的真假可通过真值表加以判断:p q 非p p 或q p 且q 真 真 假 真 真真假假真假假真真真假假假真假假联结词,后确定被联结的简单命题);(2)判断各个简单命题的真假;(3)结合真值表推断复合命题的真假.5.复合命题的否定.(1)命题的否定:“綈p”是命题“p”的否定,命题“綈p”与命题“p”的真假正好相反.(2)命题(p∧q)的否定:命题(p∧q)的否定是“綈p∨綈q”.(3)命题(p∨q)的否定:命题(p∨q)的否定是“綈p∧綈q”.6.常用词语及其否定.原词语等于大于(>)小于(<)是都是否定词语不等于不大于(≤)不小于(≥)不是不都是原词语至多有一个至少有一个至多有n个否定词语至少有两个一个也没有至少有n+1个原词语任意的任意两个所有的能否定词语某个某两个某些不能1.命题:“不等式(x-2)(x-3)<0的解为2<x<3”,使用的逻辑联结词的情况是(B)A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”2.命题p与非p(C)A.可能都是真命题B.可能都是假命题C.一个是真命题,另一个是假命题D.只有p是真命题3.若命题p:2是偶数,命题q:2是3的约数,则下列命题中为真的是(C)A.非pB.p且qC.p或qD.非p且非q4.若xy=0,则x=0或y=0;若xy≠0,则x≠0且y≠0(填“且”或“或”).1.以下判断正确的是(B)A.若p是真命题,则“p∧q”一定是真命题B.命题“p∧q”是真命题,则命题p一定是真命题C.命题“p∧q”是假命题时,命题p一定是假命题D.命题p是假命题时,命题“p∧q”不一定是假命题2.若p、q是两个简单命题,且“p∨q”的否定是真命题,则必有(B)A.p真q真B.p假q假C.p真q假D.p假q真3.若命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x |x >-b a .命题q :不等式(x -a )(x -b )<0的解集为{x |a <x <b }.则“p ∧q ”,“p ∨q ”,“綈p ”形式的复合命题中的真命题是________. 答案:綈p4.分别写出由下列命题构成的“p ∨q ”,“p ∧q ”,“綈p ”形式的命题,并判断真假. (1)p :3是无理数,q :3>1;(2)p :平行四边形对角线互相平分,q :平行四边形的对角线互相垂直. 解析:(1)p ∧q :3是无理数且3>1;真命题. p ∨q :3是无理数或3>1;真命题.綈p :3不是无理数;假命题.(2)p ∧q :平行四边形的对角线互相平分且垂直;假命题. p ∨q :平行四边形的对角线互相平分或互相垂直;真命题. 綈p :平行四边形的对角线不互相平分;假命题.5.(1)已知命题p :2x 2-3x +1≤0和命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围;(2)已知命题s :方程x 2+(m -3)x +m =0的一根在(0,1)内,另一根在(2,3)内.命题t :函数f (x )=ln(mx 2-2x +1)的定义域为全体实数.若s ∨t 为真命题,求实数m 的取值范围.解析:(1)对于命题p :2x 2-3x +1≤0,解得12≤x ≤1.对于命题q :x 2-(2a +1)x +a (a +1)≤0,解得a ≤x ≤a +1,∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p 且綈pD /⇒綈q ,得p ⇒q 且q ⇒/ p .所以⎩⎪⎨⎪⎧a ≤12a +1≥1解得⎩⎪⎨⎪⎧a ≤12a ≥0即0≤9 ≤12所以实数的取值范围是0≤a ≤12.(2)对于命题s :方程x 2+(m -3)x +m =0的一根在(0.1)内,另一根在(2,3)内, 设g (x )=x 2+(m -3)x +m ,则 ⎩⎪⎨⎪⎧g (0)>0,g (1)<0,g (2)<0,g (3)>0, 即⎩⎪⎨⎪⎧m >0,1+m -3+m <0,4+2m -6+m <0,9+3m -9+m >0.解得0<m <23.对于命题t :函数f (x )=ln(mx 2-2x +1)的定义域为全体实数,则有⎩⎪⎨⎪⎧m >0,Δ=4-4m <0,解得m >1.又s ∨t 为真命题,即s 为真命题或t 为真命题.故所求实数m 的取值范围为0<m <23或m >1.1.已知命题p :∅⊆{0},q :{1}∈{1,2},由它们构成的“p ∨q ”,“p ∧q ”和“綈p ”形式的命题中,真命题有(B )A .0个B .1个C .2个D .3个2.命题p :a 2+b 2<0(a ,b ∈R );命题q :a 2+b 2≥0(a ,b ∈R ),下列结论中正确的是(A ) A .“p ∨q ”为真 B .“p ∧q ”为真 C .“綈p ”为假 D .“綈q ”为真 3.如果命题“p 且q ”是假命题,“非p ”是真命题,那么(D ) A .命题p 一定是真命题 B .命题q 一定是真命题 C .命题q 一定是假命题D .命题q 可能是真命题也可能是假命题解析:因为“非p ”是真命题,所以命题p 为假,所以无论q 是真或是假“p 且q ”都是假命题.所以应选D.4.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为(A ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③ D .①④ 5.(2013·汕头一模)设α、β为两个不同的平面,m 、n 为两条不同的直线,m ⊂α,n ⊂β,有两个命题:p :若α∥β,则m ∥n ;q :若n ⊥α,则α⊥β,那么(D )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题解析:由已知得,p 是假命题,q 是真命题,则非p 是真命题,故“p 或q ”是真命题,A 错;“p 且q ”是假命题,B 错;“非p 或q ”是真命题,C 错;“非p 且q ”为真命题,D 正确.6.(2013·江门一模)设命题p :函数y =sin ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位得到的曲线关于y 轴对称;命题q :函数y =|3x -1|在[-1,+∞)上是增函数,则下列判断错误的是(D ) A .p 为假 B .綈q 为真 C .p ∧q 为假 D .p ∨q 为真解析:函数y =sin ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位得到的图象的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=sin ⎝⎛⎭⎫2x +2π3,它是非奇非偶函数,它的图象不关于y 轴对称,故p 是假命题;函数y =|3x -1|,由图象可知在(0,+∞)上是增函数,在(-∞,0)上是减函数,故q 也是假命题.綈q 为真命题,p ∧q 为假命题,p ∨q 也是假命题,故D 是不正确的.7.命题p :菱形的对角线互相垂直,则p 的否命题是________________________________________________________________________, 綈p 是________________________________________________________________________.答案:不是菱形的四边形,其对角线不互相垂直 菱形的对角线不互相垂直 8.已知命题p :(x +2)(x -6)≤0,命题q :-3≤x ≤7,若“p 或q ”为真命题,“p 且q ”为假命题,则实数x 的取值范围为________.解析:由题条件可知p 与q 一真一假,p 为真命题时,x 满足-2≤x ≤6,∴满足条件的x 的范围是[-3,-2)∪(6,7].答案:[-3,-2)∪(6,7]9.设有两个命题.命题p :不等式x 2-(a +1)x +1≤0的解集是∅;命题q :函数f (x )=(a +1)x 在定义域内是增函数.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围.解析:对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解这个不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题. 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1. 综上所述,a 的取值范围是(-3,0]∪[1,+∞).10.设p :函数f (x )=lg ⎝⎛⎭⎫ax 2-x +14a 的定义域为R ;q :关于x 的不等式3x -9x <a 对一切正实数均成立.如果“p ∨q ”为真,且“p ∧q ”为假,求实数a 的取值范围解析:若p 为真,即ax 2-x +14a >0恒成立,则⎩⎪⎨⎪⎧a >0,Δ<0,有⎩⎪⎨⎪⎧a >0,1-a 2<0,∴a >1. 令y =3x -9x=-⎝⎛⎭⎫3x -122+14,由x >0得3x >1,∴y =3x -9x 的值域是(-∞,0).∴若q 为真,则a ≥0.由“p ∨q ”为真,且“p ∧q ”为假,知p ,q 一真一假. 当p 真q 假时,a 不存在;当p 假q 真时,0≤a ≤1. 综上,a 的取值范围是[0,1]. ►体验高考 1(2014·湖南卷)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题:①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是(C ) A .①③ B .①④ C .②③ D .②④ 2.(2013·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为(A )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降在指定范围”的否命题,即“p ∧q ”的否定.选A.3.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是(C )A .p 为真B .綈q 为假C .p ∨q 为假D .p ∧q 为真。

2013-2014版高中数学(人教A版)选修1-1配套活页训练第一章 常用逻辑用语1、4含解析

1.4全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定双基达标(限时20分钟)1.下列命题中,不是全称命题的是().A.任何一个实数乘以0都等于0B.自然数都是正整数C.每一个向量都有大小D.一定存在没有最大值的二次函数解析D选项是特称命题.答案D2.以下四个命题既是特称命题又是真命题的是( ).A.锐角三角形的内角是锐角或钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使错误!>2解析A中锐角三角形的内角都是锐角,所以是假命题;B中x=0时,x2=0,所以B既是特称命题又是真命题;C中因为错误!+(-错误!)=0,所以C是假命题;D中对于任一个负数x,都有错误!<0,所以D是假命题.答案B3.下列命题中的假命题是().A.∀x∈R,2x-1〉0 B.∀x∈N*,(x-1)2>0C.∃x0∈R,lg x0<1 D.∃x0∈R,tan x0=2解析A中命题是全称命题,易知2x-1>0恒成立,故是真命题;B中命题是全称命题,当x=1时,(x-1)2=0,故是假命题;C中命题是特称命题,当x=1时,lg x=0,故是真命题;D中命题是特称命题,依据正切函数定义,可知是真命题.答案B4.命题p:∃x0∈R,x错误!+2x0+4〈0的否定綈p:________.解析特称命题“∃x0∈M,p(x0)”的否定是全称命题“∀x∈M,綈p(x)”.故填∀x∈R,x2+2x+4≥0.答案∀x∈R,x2+2x+4≥05.对任意x>3,x>a恒成立,则实数a的取值范围是________.解析对任意x〉3,x>a恒成立,即大于3的数恒大于a,∴a≤3.答案(-∞,3]6.判断下列命题的真假,并写出命题的否定:(1)有一个实数a,使不等式x2-(a+1)x+a>0恒成立;(2)对任意实数x,不等式|x+2|≤0成立;(3)在实数范围内,有些一元二次方程无解.解(1)对于方程x2-(a+1)x+a=0的判别式Δ=(a+1)2-4a=(a-1)2≥0,则不存在实数a,使不等式x2-(a+1)x+a〉0恒成立,所以命题为假命题.它的否定为:对任意实数a,使x2-(a+1)x +a>0不恒成立.(2)当x=1时,|x+2|〉0,所以原命题是假命题,它的否定为:存在实数x,使|x+2|〉0。

2013-2014版高中数学(人教A版)选修1-1配套活页训练第一章 常用逻辑用语1-1-2含解析

1。

1。

2四种命题双基达标(限时20分钟)1.命题“若a∉A,则b∈B”的否命题是().A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉A解析注意“∈”与“∉”互为否定形式.答案B2.命题“若A∩B=A,则A∪B=B”的逆否命题是().A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A解析注意“A∩B=A”的否定是“A∩B≠A".答案C3.命题“对于正数a,若a>1,则lg a>0"及其逆命题、否命题、逆否命题四种命题中真命题的个数为( ).A.0 B.1 C.2 D.4解析原命题“对于正数a,若a〉1,则lg a〉0”是真命题;逆命题“对于正数a,若lg a〉0,则a〉1”是真命题;否命题“对于正数a,若a≤1,则lg a≤0"是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1。

”是真命题.答案D4.“若x、y全为零,则xy=0”的否命题为__________.解析由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0"的否命题为“若x、y不全为零,则xy≠0”.答案若x、y不全为零,则xy≠05.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.解析原命题为真命题,逆命题“当△ABC是等腰三角形时,AB =AC"为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.答案26.将命题“正数a的平方大于零"改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.解原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.综合提高(限时25分钟)7.命题“若a>b,则ac2>bc2(a,b,c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为().A.0 B.2 C.3 D.4解析原命题“若a>b,则ac2>bc2(a,b,c∈R)”为假命题,逆命题“若ac2>bc2,则a〉b(a,b,c∈R)”为真命题,否命题“若a≤b,则ac2≤bc2,(a,b,c∈R)”为真命题,逆否命题“若ac2≤bc2,则a≤b (a,b,c∈R)”为假命题.答案B8.有下列四个命题:①“若x+y=0,则x,y互为相反数"的否命题;②“若a〉b,则a2〉b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等"的逆命题.其中真命题的个数是________.解析①“若x+y≠0,则x,y不互为相反数",是真命题.②“若a2≤b2,则a≤b",取a=0,b=-1,a2≤b2,但a〉b,故是假。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2四种命题
双基达标(限时20分钟)
1.命题“若a∉A,则b∈B”的否命题是().
A.若a∉A,则b∉B B.若a∈A,则b∉B
C.若b∈B,则a∉A D.若b∉B,则a∉A
解析注意“∈”与“∉”互为否定形式.
答案 B
2.命题“若A∩B=A,则A∪B=B”的逆否命题是().
A.若A∪B=B,则A∩B=A
B.若A∩B≠A,则A∪B≠B
C.若A∪B≠B,则A∩B≠A
D.若A∪B≠B,则A∩B=A
解析注意“A∩B=A”的否定是“A∩B≠A”.
答案 C
3.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为().
A.0 B.1 C.2 D.4
解析原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lg a ≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1.”是真命题.答案 D
4.“若x、y全为零,则xy=0”的否命题为__________.
解析由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy =0”的否命题为“若x、y不全为零,则xy≠0”.
答案若x、y不全为零,则xy≠0
5.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.
解析原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为
假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.
答案 2
6.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.
解原命题可以写成:若a是正数,则a的平方大于零;
逆命题:若a的平方大于零,则a是正数;
否命题:若a不是正数,则a的平方不大于零;
逆否命题:若a的平方不大于零,则a不是正数.
综合提高(限时25分钟)
7.命题“若a>b,则ac2>bc2(a,b,c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为().
A.0 B.2 C.3 D.4
解析原命题“若a>b,则ac2>bc2(a,b,c∈R)”为假命题,逆命题“若ac2>bc2,则a>b(a,b,c∈R)”为真命题,否命题“若a≤b,则ac2≤bc2,(a,b,c∈R)”为真命题,逆否命题“若ac2≤bc2,则a≤b(a,b,c∈R)”为假命题.
答案 B
8.有下列四个命题:
①“若x+y=0,则x,y互为相反数”的否命题;
②“若a>b,则a2>b2”的逆否命题;
③“若x≤-3,则x2-x-6>0”的否命题;
④“同位角相等”的逆命题.
其中真命题的个数是________.
解析①“若x+y≠0,则x,y不互为相反数”,是真命题.
②“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题.
③“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而
x=4>-3,不是不等式的解,故是假命题.
④“相等的角是同位角”是假命题.
答案 1
9.命题“正数的绝对值等于它本身”的逆命题是________.
解析将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.
答案绝对值等于它本身的数是正数
10.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是().A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
解析同时否定原命题的条件和结论,得到的否命题为“若f(x)不是奇函数,则f(-x)不是奇函数”.
答案 B
11.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.
解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.
否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.
逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.
原命题、逆命题、否命题、逆否命题均为真命题.
12.(创新拓展)某同学认为一个命题的否命题就是给原命题的条件和结论中加个“不”字或去个“不”字,并对题目“写出命题‘若△ABC不是等腰三角形,则它的任何两个内角不相等’的逆命题、否命题及逆否命题,并判断它们的真假.”作了如下解答:
所给命题的逆命题:△ABC的任何两个内角不相等,则它不是等腰三角形.(真)
否命题:若△ABC是等腰三角形,则它的任何两个内角相等.(假)
逆否命题:若△ABC的任何两个内角相等,则它是等腰三角形.(真)
你认为该同学的做法对吗?
解不对,这是因为原命题的结论是“△ABC的任何两个内角不相等”,若否定它,则应是“△ABC有两个内角相等”,也就是说,“△ABC有两个内角相等”足以把“△ABC的任何两个内角不相等”否定了,且这种写法中实际上也包含着“△ABC的任何两个内角相等”的情况,只是不强作要求就是了.
这样,其逆否命题的写法也应做相应的修正.
综上分析可知原命题的否命题并非是单纯把原命题的条件与结论中的“不”字去掉,而应写成“若△ABC是等腰三角形,则它有两个内角相等”(真),逆否命题应写成“若△ABC中有两个内角相等,则它是等腰三角形”(真).。

相关文档
最新文档