2020年中考数学 一轮复习专题:平面直角坐标系与函数(含答案)
备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案坐标与图形性质单选题专训1、(2016南通.中考真卷) 平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A .B .C .D .2、(2016苏州.中考真卷) 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E 的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)3、(2017福州.中考模拟) 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为()A . a=bB . 2a﹣b=1C . 2a+b=﹣1D . 2a+b=14、(2017玉田.中考模拟) 如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A . 1个B . 2个C . 3个D . 4个5、(2017保定.中考模拟) 如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)6、(2016石家庄.中考模拟) 如图所示,等腰直角三角形ABC与等腰直角三角形A′B′C′是位似图形,位似中心为点O,位似比1:2,点A的坐标为(1,0),点C的坐标为(0,1),则点B′的坐标为()A . (2,2)B . (﹣2,2)C . (﹣2,﹣2)D . (2,2)或(﹣2,﹣2)7、(2019通州.中考模拟) 已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,a+1)落在△ABC内部(不含边界),则a 的取值范围是()A . ﹣3<a<2B .C .D . ﹣2<a<28、(2019.中考模拟) 抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A . ≤a≤1B . ≤a≤2C . ≤a≤1D . ≤a≤29、(2019温州.中考模拟) 如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A,B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A . 3B . 4C . 5D . 1010、(2018湖州.中考模拟) 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A . 向右平移了3个单位B . 向左平移了3个单位C . 向上平移了3个单位D . 向下平移了3个单位11、(2019山东.中考模拟) 直线y=- x+ 与x轴,y轴交于A、B两点,若把△AB0沿直线AB翻折,点O落在第一象限的C处,则C点的坐标为()A .B .C .D .12、(2017新泰.中考模拟) 已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A .B .C .D .13、(2017历下.中考模拟) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A . ()2016B . ()2017C . ()2016D . ()201714、(2017曹.中考模拟) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A 的坐标为(1,),则点C的坐标为()A . (﹣,1)B . (﹣1,)C . (,1)D . (﹣,﹣1)15、(2017三门峡.中考模拟) 如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A . 2π﹣4B . 4π﹣8C .D .16、(2019黄石.中考真卷) 如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A .B .C .D .17、(2017福田.中考模拟) 如图,已知E′(2,﹣1),F′(,),以原点O 为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A . (﹣4,2)B . (4,﹣2)C . (﹣1,﹣1)D . (﹣1,4)18、(2011河池.中考真卷) 如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是()A . 外切B . 相交C . 内含D . 外离19、(2019重庆.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A . 16B . 20C . 32D . 4020、(2016平武.中考模拟) 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . ﹣3C . ﹣4D . 421、(2017南充.中考真卷) 如图,等边△OAB的边长为2,则点B的坐标为()A . (1,1)B . (,1)C . (,)D . (1,)22、(2017五华.中考模拟) 阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A . (4,60°)B . (4,45°)C . (2 ,60°)D . (2 ,50°)23、(2019西藏自治区.中考真卷) 已知点是直线与双曲线(为常数)一支的交点,过点作轴的垂线,垂足为,且,则的值为()A .B .C .D .24、(2020丰南.中考模拟) 如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C 的个数是()A . 2B . 3C . 4D . 525、(2020宜昌.中考模拟) 将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是()A . (4,2)B . (2,4)C . (,3)D . (3,)26、(2020琼海.中考模拟) 如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A . (,2)B . (,1)C . (,2)D . (,1)27、(2020河南.中考真卷) 如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A .B .C .D .28、(2020荆州.中考真卷) 如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .B .C .D .29、(2021荆州.中考模拟) 如图,直径为10的⊙A经过点和点,点是轴右侧⊙A优弧上一点,,则点的坐标为()A .B .C .D .30、如图,矩形的边,分别在x轴、y轴的正半轴上,点D在的延长线上.若,,以O为圆心、长为半径的弧经过点B,交y轴正半轴于点E,连接,。
2020年中考数学一轮复习第3章函数及其图象(付)

第三章函数及其图象第一节平面直角坐标系姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)2.(2018·湖南岳阳中考)函数y=x-3中自变量x的取值范围是( )A.x>3 B.x≠3C.x≥3 D.x≥03.(2017·山东济宁中考)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )A.① B.③C.②或④ D.①或③4.(2019·易错题)函数y=xx-2中自变量x的取值范围是__________.5.在平面直角坐标系中,点P(3,-x2-1)在第______象限.6.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC 绕点A顺时针旋转90°,则旋转后点C的坐标是______________.7.(2019·改编题)如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2 019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________________.8.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.9.定义:直线l 1与l 2交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,点P(-3,2)关于直线y =x 对称的点的坐标是( ) A .(-3,-2) B .(3,2) C .(2,-3)D .(3,-2)11.(2019·改编题)如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…,根据以上规律,那么 M 2 019的坐标为_________________________.12.(2019·创新题)【阅读】在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22).【运用】(1)如图,矩形ONEF的对角线交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E 的坐标为(4,3),则点M的坐标为________;(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C 构成平行四边形的顶点,求点D的坐标.13.(2018·浙江台州中考)甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s 内,两人相遇的次数为( )A.5 B.4C.3 D.2参考答案【基础训练】1.A 2.C 3.D 4.x≠2 5.四 6.(2,1) 7.(-1,1)8.解:(1)图中格点△A′B′C′是由格点△ABC 向右平移7个单位长度得到的. (2)如图,过点F 作FG∥直线a ,交DE 于点G.如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),那么格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =12×5×1+12×5×1=5.【拔高训练】 9.C 10.C 11.( -21 009,21 009)12.解:(1)(2,32)(2)设点D 的坐标为(x ,y),若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合, ∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎪⎨⎪⎧x =1,y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=1+32,2+y 2=4+12,解得⎩⎪⎨⎪⎧x =5,y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合, ∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎪⎨⎪⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5). 【培优训练】 13.B第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2B .y =2xC .y =x2D .y =x +122.若一次函数y =3x +b 的图象经过点(-1,2),则b 的值为( ) A .-7B .-1C .2D .53.(2018·陕西中考)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0)D .(6,0)4.(2019·易错题)已知y 关于x 的函数y =(m -2)x +m 2-4,当m________时,该函数为一次函数;当m__________时,该函数为正比例函数.5. (2019·易错题)已知一次函数y =(1-m)x +m -2,当__________时,y 随x 的增大而增大.6.把直线y =-x -1沿y 轴向上平移2个单位,所得直线的函数表达式为________________. 7.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b>kx -1的解集为____________.8. (2019·易错题)对于一次函数y =kx +b ,当1≤x≤4时,3≤y≤6,则kb 的值是____________.9.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.10.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( )A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<211.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为____________.12.如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB 与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.13.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3.请判断点P 3是否在直线l 上,并说明理由.参考答案【基础训练】1.C 2.D 3.B 4.≠2 =-2 5.m<1 6.y =-x +1 7.x>-1 8.2或-7 9.解:(1)把x =2代入y =12x 得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =12x -4,∴x=0时,y =-4,∴B(0,-4). 将y =-2代入y =12x -4,得x =4,∴点C 的坐标为(4,-2).设直线l 2的表达式为y =kx +b(k≠0), ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的表达式为y =-32x +4.(2)∵y=-32x +4,∴x=0时,y =4,∴D(0,4).∵B(0,-4),∴BD=8, ∴△BDC 的面积=12×8×4=16.【拔高训练】10.D 11.(43,0) 12.(94,94)【培优训练】13.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上.第三节 一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg 的这种水果.已知水果店每售出1 kg 该水果可获利润10元,未售出的部分每1 kg 将亏损6元,以x(单位:kg ,2 000≤x≤3 000)表示A 酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 ________ 2:50首尔时间________ 12:15 ________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB.(1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22=2.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600,当2 600<x≤3 000时,y=2 600×10=26 000.(2)由题意得16x-15 600≥22 000,解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.2.解:(1)22 2 2 5(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3,∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3, ∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.第四节 反比例函数姓名:________ 班级:________ 用时:______分钟1.(2018·浙江宁波模拟)若y =(m +1)x m -2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.以下各点中,与点(-2,6)在同一个反比例函数图象上的是( ) A .(6,2) B .(-2,-6) C .(3,4)D .(4,-3)3.(2019·易错题)已知点A(1,y 1),B(2,y 2),C(-3,y 3)都在反比例函数y =4x 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 2<y 1<y 3D .y 3<y 2<y 14.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,反比例函数y =3x的图象经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .135.(2018·江西中考)在平面直角坐标系中,分别过点A(m ,0),B(m +2,0)作x 轴的垂线l 1和l 2,探究直线l 1,直线l 2与双曲线y =3x的关系,下列结论中错误的是( )A .两直线中总有一条与双曲线相交B .当m =1时,两直线与双曲线的交点到原点的距离相等C .当-2<m <0时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 6. (2019·易错题)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在第二、四象限;③y 随x 的增大而增大;④当x>-1时,则y>8.其中错误的结论有( ) A .3个B .2个C .1个D .0个7.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连结AO ,AB ,且AO =AB ,则S △AOB =______.8.如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连结OA ,OB ,过点B 作BD⊥y 轴,垂足为点D ,交OA 于点C ,若OC =CA.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.9.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )10.如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是______________;点P n 的坐标是______________(用含n 的式子表示).11.如图,已知点A(4,0),B(0,43),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED =2,点G 为边FD 的中点.(1)求直线AB 的函数表达式;(2)如图1,当点D 与点A 重合时,求经过点G 的反比例函数y =kx (k≠0)的函数表达式;(3)在三角尺滑动的过程中,经过点G 的反比例函数的图象能否同时经过点F ?如果能,求出此时反比例函数的表达式;如果不能,说明理由.12.(2018·江苏泰州中考)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=kx (x>0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A′. (1)设a =2,点B(4,2)在函数y 1,y 2的图象上. ①分别求函数y 1,y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图1,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA′B 的面积为16,求k 的值;(3)设m =12,如图2,过点A 作AD⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.参考答案【基础训练】1.A 2.D 3.D 4.C 5.D 6.B 7.68.解:(1)∵反比例函数的表达式为y =a x ,且反比例函数经过点B(3,2),∴2=a3,即a =6.∴反比例函数的表达式为y =6x .如图,过点A 作AE⊥y 轴于点E , ∵过点B 作BD⊥y 轴,OC =CA ,∴CD 是△AOE 的中位线,即OE =2OD =4. 又∵点A 在反比例函数y =6x 的图象上,∴点A 的坐标为(32,4).∵一次函数的表达式为y =kx +b ,且经过A ,B 两点,根据题意,得 ⎩⎪⎨⎪⎧3k +b =2,32k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =6, ∴一次函数的表达式为y =-43x +6.(2)∵CD 是△AOE 的中位线,∴CD=12AE =34,∴BC=BD -CD =3-34=94.∴S △AOB =S △ABC +S △BOC =12BC·OE=12×94×4=92.【拔高训练】 9.A10.(3+2,3-2) (n +n -1,n -n -1) 11.解:(1)设直线AB 的函数表达式为y =k′x+b. ∵点A(4,0),B(0,43),∴⎩⎨⎧4k′+b =0,b =43,解得⎩⎨⎧k′=-3,b =43,∴直线AB 的函数表达式为y =-3x +4 3.(2)∵在Rt△DEF 中,∠EFD=30°,ED =2,∴EF=23,DF =4. ∵点D 与点A 重合,∴点D(4,0), ∴点F(2,23),∴点G(3,3). ∵反比例函数y =kx 经过点G ,∴k=33,∴反比例函数的表达式为y =33x.(3)经过点G 的反比例函数的图象能同时经过点F ,理由如下: ∵点F 在直线AB 上, ∴设点F(t ,-3t +43).又∵ED=2,∴点D(t +2,-3t +23). ∵点G 为边FD 的中点. ∴G(t+1,-3t +33).若过点G 的反比例函数的图象也经过点F , 设此时反比例函数表达式为y =mx,则⎩⎪⎨⎪⎧-3t +33=mt +1,-3t +43=mt,整理得(-3t +33)(t +1)=(-3t +43)t , 解得t =32,∴m=1534,∴经过点G 的反比例函数的图象能同时经过点F ,这个反比例函数的表达式为y =1534x .【培优训练】12.解:(1)①由已知,点B(4,2)在y 1=kx (x >0)的图象上,∴k=8,∴y 1=8x.∵a=2,∴点A 坐标为(2,4),A′坐标为(-2,-4). 把B(4,2),A′(-2,-4)代入y 2=mx +n ,⎩⎪⎨⎪⎧2=4m +n ,-4=-2m +n , 解得⎩⎪⎨⎪⎧m =1,n =-2.∴y 2=x -2.②当y 1>y 2>0时,y 1=8x 图象在y 2=x -2图象上方,且两函数图象在x 轴上方,∴由图象得2<x <4.(2)如图,分别过点A ,B 作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连结BO.∵O 为AA′的中点, ∴S △AOB =12S △AA′B =8,∵点A ,B 在双曲线上, ∴S △AOC =S △BOD , ∴S △AOB =S 四边形ACDB =8.由已知得,点A ,B 坐标为(a ,k a ),(3a ,k3a ),∴12(k 3a +ka)·2a=8,解得k =6. (3)由已知A(a ,k a ),则A′为(-a ,-ka ).把A′代入到y 2=12x +n 中,则-k a =-12a +n ,∴n=12a -k a,∴A′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 纵坐标为a -ka ,∴AD=2ka-a.∵AD=AF ,∴点F 和点P 横坐标为a +2k a -a =2ka .∴点P 纵坐标为12·2k a +12a -k a =12a.∴点P 在y 1=kx (x >0)的图象上.第五节 二次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4D .y =(x -1)2+22.(2017·浙江丽水中考)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位3.(2018·湖南益阳中考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .b 2-4ac <0 D .a +b +c <04.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.6.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或347.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.(2018·山东德州中考)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )9.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.11.(2018·四川南充中考)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).参考答案【基础训练】 1.D 2.D 3.B4.y =-19(x +6)2+4 5.y =x 2+8x +14【拔高训练】 6.A 7.D 8.B9.解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.10.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=22CF =22(3-m),PE =22PG. 设x P =t(1<t<3),则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE+EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.【培优训练】 11.②④第六节 二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x m(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元. ∵968>952,∴当x =18时,W 最大=968元.(3)当1≤x<20时,令-2x 2+72x +320=870, 解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下, ∴11≤x≤25时,W≥870. 又∵11≤x<20,x 为正整数, ∴有9天利润不低于870元,当20≤x≤30时,令28x +112≥870, 解得x≥27114.∴27114≤x≤30.∵x 为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天. 【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P 与点P′(1,3)关于x 轴对称, ∴点P 的坐标为(1,-3).设原抛物线的表达式为y =a(x -1)2-3,∵其过点A(1-3,0), ∴0=a(1-3-1)2-3,解得a =1.∴原抛物线的函数表达式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD∥x 轴,P′(1,3)在CD 上, ∴C,D 两点纵坐标均为3.由(x -1)2-3=3,解得x 1=1-6,x 2=1+6,∴C,D 两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6. ∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为 y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E. 在Rt△BDE 中,同①可证∠AGO=∠DB O =∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2,即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。
中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念

中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
2023中考数学一轮复习专题3

专题3.2 平面直角坐标系与一次函数、反比例函数(基础篇)(真题专练)一、单选题1.(2021·黑龙江牡丹江·中考真题)如图,在平面直角坐标系中A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2021秒瓢虫在( )处.A .(3,1)B .(﹣1,﹣2)C .(1,﹣2)D .(3,﹣2)2.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是( )A .B .C .D .3.(2021·四川德阳·中考真题)下列函数中,y 随x 增大而增大的是( ) A .y =﹣2x B .y =﹣2x +3C .y 2x=(x <0) D .y =﹣x 2+4x +3(x <2)4.(2021·内蒙古呼和浩特·中考真题)在平面直角坐标系中,点()3,0A ,()0,4B .以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( ) A .147y x =-+B .144y x =-+C .142y x =-+D .4y =5.(2021·湖南娄底·中考真题)如图,直线y x b =+和4y kx =+与x 轴分别相交于点(4,0)A -,点(2,0)B ,则040x b kx +>⎧⎨+>⎩解集为( )A .42x -<<B .4x <-C .2x >D .4x <-或2x >6.(2021·黑龙江大庆·中考真题)已知反比例函数ky x=,当0x <时,y 随x 的增大而减小,那么一次的数y kx k =-+的图像经过第( ) A .一,二,三象限 B .一,二,四象限 C .一,三,四象限D .二,三,四象限7.(2021·福建·中考真题)如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()10k x b -+>的解集是( )A .2x >-B .1x >-C .0x >D .1x >8.(2021·辽宁朝阳·中考真题)如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣309.(2021·湖南湘西·中考真题)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为21y x 的函数图象.根据这个函数的图象,下列说法正确的是( )A .图象与x 轴没有交点B .当0x >时0y >C .图象与y 轴的交点是1(0,)2- D .y 随x 的增大而减小10.(2021·四川达州·中考真题)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<11.(2021·浙江杭州·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+二、填空题12.(2021·青海西宁·中考真题)在平面直角坐标系xOy 中,点A 的坐标是(–2)1-,,若//AB y轴,且9AB =,则点B 的坐标是________.13.(2021·广西河池·中考真题)从﹣2,4,5这3个数中,任取两个数作为点P 的坐标,则点P 在第四象限的概率是__________.14.(2021·辽宁丹东·中考真题)在函数y =中,自变量x 的取值范围_________. 15.(2021·湖北黄石·中考真题)将直线1y x =-+向左平移m (0m >)个单位后,经过点(1,−3),则m 的值为______.16.(2021·内蒙古呼和浩特·中考真题)正比例函数1y k x =与反比例函数2k y x=的图象交于A ,B 两点,若A 点坐标为-,则12k k +=__________.17.(2021·四川眉山·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.18.(2021·江苏苏州·中考真题)若21x y +=,且01y <<,则x 的取值范围为______. 19.(2021·山东青岛·中考真题)列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .20.(2021·江苏徐州·中考真题)如图,点,A D 分别在函数36,y y x x-==的图像上,点,B C 在x 轴上.若四边形ABCD 为正方形,点D 在第一象限,则D 的坐标是_____________.21.(2021·北京·中考真题)在平面直角坐标系xOy 中,若反比例函数(0)ky k x =≠的图象经过点()1,2A 和点()1,B m -,则m 的值为______________.22.(2021·湖南邵阳·中考真题)已知点()11,A y ,()22,B y 为反比例函数3y x=图象上的两点,则1y 与2y 的大小关系是1y ______2y .(填“>”“=”或“<”)23.(2021·广西河池·中考真题)在平面直角坐标系中,一次函数2y x =与反比例函数()0ky k x=≠的图象交于()11,A x y ,()22,B x y 两点,则12y y +的值是____________.24.(2021·江苏淮安·中考真题)如图(1),△ABC 和△A ′B ′C ′是两个边长不相等的等边三角形,点B ′、C ′、B 、C 都在直线l 上,△ABC 固定不动,将△A ′B ′C ′在直线l 上自左向右平移.开始时,点C ′与点B 重合,当点B ′移动到与点C 重合时停止.设△A ′B ′C ′移动的距离为x ,两个三角形重叠部分的面积为y ,y 与x 之间的函数关系如图(2)所示,则△ABC 的边长是___.三、解答题25.(2021·甘肃兰州·中考真题)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,1l ,2l 分别表示小军与观光车所行的路程()m y 与时间()min x 之间的关系. 根据图象解决下列问题:(1)观光车出发______分钟追上小军; (2)求2l 所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.26.(2021·河南·中考真题)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个; (2)第二次小李进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少? (3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算? (注:利润率100%=⨯利润成本)27.(2021·山东淄博·中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点. (1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.参考答案1.A【分析】根据点的坐标求出四边形ABCD 的周长,然后求出第2021秒是爬了第几圈后的第几个单位长度,从而确定答案.解: A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1)∴ 四边形ABCD 是矩形()1--2=1+2=3AB ∴=()=3--1=4BC343414AB BC CD AD ∴+++=+++=∴瓢虫转一周,需要的时间是14=72秒 2021=2887+5⨯ ,∴ 按A →B →C →D →A 顺序循环爬行,第2021秒相当于从A 点出发爬了5秒,路程是:52=10⨯个单位,10=3+4+3,所以在D 点()3,1 .故答案为:A【点拨】本题考查了点的变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021秒瓢虫爬完了多少个整圈的矩形,不成一圈的路程在第几圈第几个单位长度的位置是解题的关键. 2.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解:反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限, 0k ∴>△一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限. 观察选项只有D 选项符合. 故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键. 3.D【分析】一次函数当a >0时,函数值y 总是随自变量x 增大而增大,反比例函数当k >0时,在每一个象限内,y 随自变量x 增大而增大,二次函数根据对称轴及开口方向判断增减性.解:A .一次函数y =-2x 中的a =-2<0,y 随x 的增大而减小,故不符合题意. B .一次函数y =-2x +3中的a =-2<0,y 随自变量x 增大而减小,故不符合题意.C .反比例函数y =2x (x <0)中的k =2>0,在第三象限,y 随x 的增大而减小,故不符合题意.D .二次函数y =-x 2+4x +3(x <2),对称轴x =2ba-=2,开口向下,当x <2时,y 随x 的增大而增大,故符合题意. 故选:D .【点拨】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键. 4.A【分析】过点D 作DE x ⊥轴于点E ,先证明()ABO DAE AAS ≅,再由全等三角形对应边相等的性质解得(7,3)D ,最后由待定系数法求解即可. 解:正方形ABCD 中,过点D 作DE x ⊥轴于点E , 90ABO BAO BAO DAE ∠+∠=∠+∠=︒ABO DAE ∴∠=∠90,BOA AED AB AD ∠=∠=︒= ()ABO DAE AAS ∴≅ 3,4AO DE OB AE ∴==== (7,3)D ∴设直线BD 所在的直线解析式为(0)y kx b k =+≠, 代入()0,4B ,(7,3)D 得473b k b =⎧⎨+=⎩ 174k b ⎧=-⎪∴⎨⎪=⎩ 147y x ∴=-+,故选:A .【点拨】本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键. 5.A【分析】根据图像以及两交点(4,0)A -,点(2,0)B 的坐标得出即可. 解:△直线y x b =+和4y kx =+与x 轴分别相交于点(4,0)A -,点(2,0)B ,△观察图像可知040x b kx +>⎧⎨+>⎩解集为42x -<<,故选:A .【点拨】本题考查了一次函数与一元一次不等式组,能根据图像和交点坐标得出答案是解此题的关键. 6.B【分析】根据反比例函数的增减性得到0k >,再利用一次函数的图象与性质即可求解. 解:△反比例函数ky x=,当0x <时,y 随x 的增大而减小, △0k >,△y kx k =-+的图像经过第一,二,四象限, 故选:B .【点拨】本题考查反比例函数和一次函数的图象与性质,掌握反比例函数和一次函数的图象与性质是解题的关键. 7.C【分析】先平移该一次函数图像,得到一次函数()()10y k x b k =-+>的图像,再由图像即可以判断出 ()10k x b -+>的解集.解:如图所示,将直线()0y kx b k =+>向右平移1个单位得到 ()()10y k x b k =-+>,该图像经过原点,由图像可知,在y 轴右侧,直线位于x 轴上方,即y >0, 因此,当x >0时,()10k x b -+>, 故选:C .【点拨】本题综合考查了函数图像的平移和利用一次函数图像求对应一元一次不等式的解集等,解决本题的关键是牢记一次函数的图像与一元一次不等式之间的关系,能从图像中得到对应部分的解集,本题蕴含了数形结合的思想方法等. 8.A【分析】过A 点作AC △OB ,利用等腰三角形的性质求出点A 的坐标即可解决问题. 解:过A 点作AC △OB ,△AO =AB ,AC △OB ,OB =6, △OC =BC =3,在Rt △AOC 中,OA =5,△AC 4==,△A (﹣3,4),把A (﹣3,4)代入y =k x,可得k =﹣12 故选:A .【点拨】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A【分析】根据函数图象可直接进行排除选项.解:由图象可得:10x -≠,即1x ≠,A 、图象与x 轴没有交点,正确,故符合题意;B 、当01x <<时,0y <,错误,故不符合题意;C 、图象与y 轴的交点是()0,2-,错误,故不符合题意;D 、当1x <时,y 随x 的增大而减小,且y 的值永远小于0,当1x >时,y 随x 的增大而减小,且y 的值永远大于0,错误,故不符合题意;故选A .【点拨】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.10.C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可.解:△210k +>,△反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, △B (x 2,y 2),C (x 3,y 3)是双曲线k y x=上的两点,且320x x >>, △点B 、C 在第一象限,0<y 3<y 2,△A (x 1,y 1)在第三象限,△y 1<0,△132y y y <<.故选:C .【点拨】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.11.A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点拨】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.12.(2,8)-或(2,10)--【分析】由题意,设点B 的坐标为(-2,y ),则由AB =9可得(1)9y --=,解方程即可求得y 的值,从而可得点B 的坐标.解:△//AB y 轴△设点B 的坐标为(-2,y )△AB =9 △(1)9y --=解得:y =8或y =-10△点B 的坐标为(2,8)-或(2,10)--故答案为:(2,8)-或(2,10)--【点拨】本题考查了平面直角坐标系求点的坐标,解含绝对值方程,关键是抓住平行于坐标轴的线段长度只与两点的横坐标或纵坐标有关,易错点则是考虑不周,忽略其中一种情况.13.13【分析】先画树状图展示所有6种等可能的结果,利用第四象限点的坐标特征确定点P 在第四象限的结果数,然后根据概率公式计算,即可求解.解:画出树状图为:共有6种等可能的结果,它们是:(-2,4),(-2,5),(4,-2),(4,5),(5,4),(5,-2), 其中点P 在第四象限的结果数为2,即(4,-2),(5,-2),所以点P 在第四象限的概率为:2163= . 故答案为:13 . 【点拨】本题考查了列表法与树状图法求概率和点的坐标特征,通过列表法或树状图法列举出所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率是解题的关键.14.3x ≥【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:根据题意得:3020x x -≥⎧⎨-≠⎩,解得3x ≥ △自变量x 的取值范围是3x ≥.故答案为:3x ≥.【点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.3【分析】根据平移的规律得到平移后的解析式为()1y x m =-++,然后把点(1,−3)的坐标代入求值即可.解:将一次函数y =-x +1的图象沿x 轴向左平移m (m ≥0)个单位后得到()1y x m =-++, 把(1,−3)代入,得到:()311m -=-++,解得m =3.故答案为:3.【点拨】本题主要考查了一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.16.8-【分析】将A 点坐标为-分别代入正比例函数1y k x =与反比例函数2k y x =的解析式中即可求解.解:1y k x =和2k y x=过点A -12k ==-2(6k -=-12(2)(6)8k k +=-+-=-故答案为8-.【点拨】本题考查了待定系数法求正比例函数和反比例函数的解析式,有理数的加法运算,正确的实用待定系数法求解析式是解题的关键.17.32a <- 【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.解:一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<, 解得:32a <-, 故答案是:32a <-. 【点拨】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.18.102x << 【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.解:根据21x y +=可得y =﹣2x+1,△k =﹣2<0△01y <<,△当y =0时,x 取得最大值,且最大值为12, 当y =1时,x 取得最小值,且最小值为0, △102x << 故答案为:102x <<. 【点拨】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键. 19.240 【分析】由设,k t v=再利用待定系数法求解反比例函数解析式,把 2.5t =h 代入函数解析式求解v 的值,结合图象上点的坐标含义可得答案. 解:由题意设,k t v= 把()200,3代入得:2003600,k tv ==⨯=600,t v∴= 当 2.5t =h 时,6002402.5v ==km/h , 所以列车要在2.5h 内到达,则速度至少需要提高到240km/h ,故答案为:240km/h .【点拨】本题考查的是反比例函数的应用,掌握利用待定系数法求解反比例函数的解析式是解题的关键.20.(2,3)【分析】根据正方形和反比例函数图像上点的坐标特征,设D 点坐标为(m ,6m),则A 点坐标为(2m - ,6m ),进而列出方程求解. 解:△四边形ABCD 为正方形,△设D 点坐标为(m ,6m ),则A 点坐标为(2m - ,6m ), △m -(2m -)=6m ,解得:m =±2(负值舍去), 经检验,m =2是方程的解,△D 点坐标为(2,3),故答案是:(2,3).【点拨】本题主要考查反比例函数与平面几何的综合,掌握反比例函数图像上点的坐标特征,是解题的关键.21.2-【分析】由题意易得2k =,然后再利用反比例函数的意义可进行求解问题.解:把点()1,2A 代入反比例函数()0k y k x=≠得:2k =, △12m -⨯=,解得:2m =-,故答案为-2.【点拨】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.22.>【分析】根据反比例函数的性质,当反比例系数k >0,在每一象限内y 随x 的增大而减小可得答案. 解:△ 反比例函数的解析式为3y x =,k >0,△ 在每个象限内y 随x 的增大而减小,△ 1<2,△1y >2y .故答案为:>.【点拨】本题主要考查了反比例函数的性质,掌握反比例函数的性质是解题的关键. 23.0【分析】根据正比例函数和反比例函数的图像关于原点对称,则交点也关于原点对称,即可求得12y y +解:一次函数2y x =与反比例函数()0k y k x =≠的图象交于()11,A x y ,()22,B x y 两点, 一次函数2y x =与反比例函数()0k y k x=≠的图象关于原点对称, ∴12y y +0= 故答案为:0【点拨】本题考查了正比例函数和反比例函数图像的性质,掌握以上性质是解题的关键. 24.5【分析】在点B '到达B 之前,重叠部分的面积在增大,当点B '到达B 点以后,且点C '到达C 以前,重叠部分的面积不变,之后在B '到达C 之前,重叠部分的面积开始变小,由此可得出B 'C '的长度为a ,BC 的长度为a +3,再根据△ABC 的面积即可列出关于a 的方程,求出a 即可.解:当点B '移动到点B 时,重叠部分的面积不再变化,根据图象可知B 'C '=a ,A B C S '''∆=过点A '作A 'H △B 'C ',则A 'H 为△A 'B 'C '的高,△△A 'B 'C '是等边三角形,△△A 'B 'H =60°,△sin60°=A H A B '''=△A 'H ,△12A B C S a '''∆=⋅2= 解得a =﹣2(舍)或a =2,当点C '移动到点C 时,重叠部分的面积开始变小,根据图像可知BC =a +3=2+3=5,△△ABC 的边长是5,故答案为5.【点拨】本题主要考查动点问题的函数图象和三角函数,关键是要分析清楚移动过程可分为哪几个阶段,每个阶段都是如何变化的,先是点B '到达B 之前是一个阶段,然后点C '到达C 是一个阶段,最后B '到达C 又是一个阶段,分清楚阶段,根据图象信息列出方程即可. 25.(1)6;(2)300-4500y x =;(3)观光车比小军早8分钟到达观景点,理由见解析.【分析】(1)由图像可知,1l ,2l 的交点,即为两者到达同一位置,所以在21分钟时观光车追上小军,而观光车是在15分钟时出发的,所以观光车出发6分钟后追上小军;(2)设2l 所在直线对应的函数表达式为y kx b =+,将经过两点(15,0)和(21,1800)带入表达式y kx b =+,得300-4500y x =;(3)由图像可知,到达观景点需要3000m 的路程,小军到达观景点的时间为33min ,通过2l 所在直线对应的函数表达式300-4500y x =,可知,观光车到达观景点的时间为25min x =,因此观光车比小军早33min 25min 8min -=到达观景点.解:(1)由图像可知,在21min 时,1l ,2l 相交于一点,表示在21min 时,小军和观光车到达了同一高度,此时观光车追上了小军, 观光车是在15min 时出发,△21min-15min=6min ,△观光车出发6分钟后追上小军;(2)设2l 所在直线对应的函数表达式为y kx b =+,由图像可知,直线2l 分别经过(15,0)和(21,1800)两点,将两点带入2l 函数表达式y kx b =+得:150211800k b k b +=⎧⎨+=⎩ 解得:3004500k b =⎧⎨=-⎩△2l 函数表达式为300-4500y x =;(3)由图像可知,到达观景点需要3000m 的路程,小军到达观景点的时间为33min ,△观光车2l 函数表达式为300-4500y x =,△将=3000y 带入300-4500y x =,可知观光车到达观景点所需时间为=25min x , △33min-25min=8min ,△观光车比小军早8分钟到达观景点.答:(1)观光车出发6分钟追上小军;(2)2l 所在直线对应的函数表达式为300-4500y x =;(3)观光车比小军早8分钟到达观景点,理由见解析.【点拨】本题考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.26.(1)A 款20个,B 款10个;(2)A 款10个,B 款20个,最大利润是460元;(3)第二次更合算.理由见解析【分析】(1)根据题意列二元一次方程组,解方程组即可;(2)根据条件求得利润的解析式,再判断最大利润即可;(3)分别求出第一次和第二次的利润率,比较之后即可知道哪一次更合算.解:(1)设A ,B 两款玩偶分别为,x y 个,根据题意得:30{4030=1100x y x y +=+ 解得:2010x y =⎧⎨=⎩ 答:两款玩偶,A 款购进20个,B 款购进10个.(2)设购进A 款玩偶a 个,则购进B 款(30)a -个,设利润为y 元则(5640)(4530)(30)y a a =-+--=1615(30)a a +-=450+a (元) A 款玩偶进货数量不得超过B 款玩偶进货数量的一半1(30)2a a ∴≤- 10a ∴≤,又0,a ≥010,a ∴≤≤ 且a 为整数,10-<∴当10a =时,y 有最大值max 460.y ∴=(元)∴A 款10个,B 款20个,最大利润是460元.(3)第一次利润20(5640)10(4530)=470⨯-+⨯-(元)∴第一次利润率为:470100%=42.7%1100⨯ 第二次利润率为:460100%=46%1040+2030⨯⨯⨯ 42.7%46%<∴第二次的利润率大,即第二次更划算.【点拨】本题考查了二元一次方程组的应用,最大利润方案问题,利润率求解等问题,一次函数最值问题,理解题意,根据题意列出方程组是解题的关键.27.(1)11y x =-+,26y x =-;(2)152ABP S =;(3)20x -<<或3x > 【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP △以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-, △26y x=-, △点B 在反比例函数图象上,△26m -=-,解得:3m =,△()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩, △11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,△//BP x 轴,△3BP =,△点A 到PB 的距离为()325--=, △1153522ABP S =⨯⨯=; (3)由(1)及图象可得:当21k k x b x +<时,x 的取值范围为20x -<<或3x >. 【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.。
2020年深圳市中考数学一轮复习之平面直角坐标系补充练习解析版

2020年深圳市中考数学一轮复习之平面直角坐标系补充练习解析版一、选择题1.在平面直角坐标系中,点A(2,−3)位于哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知点P(a−3,2−a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是().A. B. C. D.3.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A. (0,5)B. (5,1)C. (2,4)D. (4,2)4.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是()A. (-1,2)B. (1,4)C. (3,2)D. (-1,0)5.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M 的坐标是()A. (3,−4)B. (4,−3)C. (−4,3)D. (−3,4)6.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A. (4,-3)B. (-4,3)C. (-3,4)D. (-3,-4)7.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在平面直角坐标系中,点(﹣3,2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A. (1,1)B. (0, √2 )C. ( −√2,0 )D. (﹣1,1)10.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)11.如图,等边△OAB 的边长为2,则点B 的坐标为( )A. (1,1)B. ( √3 ,1)C. ( √3 , √3 )D. (1, √3 )12.如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=3 √2 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A. 16B. 13C. 12D. 2313.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是( )A. 35B. 34C. 45D. 4314.如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是( )A. ( 32 ,3)、(﹣ 23 ,4)B. ( 32 ,3)、(﹣ 12 ,4)C. ( 74 , 72 )、(﹣ 23 ,4)D. ( 74 , 72 )、(﹣ 12 ,4)15.如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点A′、B′分别是点A 、B 的对应点,若点A′恰好落在直线PE 上,则a 的值等于( )A. 54B. 43C. 2D. 3 二、填空题16.平面直角坐标系中,点 P(−3,4) 到原点的距离是________.17.已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是________.18.若关于x 的一元二次方程 ax 2−x −14=0(a ≠0) 有两个不相等的实数根,则点 P(a +1,−a −3) 在第________象限.19.如图,在平面直角坐标系中,点 A 的坐标是________.20.已知点M (3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是________.21.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(-2,0)点D 在y 轴上,则点C 的坐标是________。
2020年中考数学一轮复习练习题 第13课时 平面直角坐标系(含答案)

第五章函数及其图象第13课时平面直角坐标系(65分)一、选择题(每题5分,共35分)1.[2018·扬州]在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4) B.(4,-3)C.(-4,3) D.(-3,4)2.[2018·成都]在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5) B.(-3,5)C.(3,5) D.(-3,-5)3.[2019·滨州]在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.[2019·嘉兴]如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2)C.(-2,1) D.(-2,-1)5.[2018·广安]已知点P(1-a,2a+6)在第四象限,则a的取值范围是()A.a<-3 B.-3<a<1 C.a>-3 D.a>16.[2019·金华]如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处7.[2019·荆州]如图,在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1)C.(2,1) D.(0,2)二、填空题(每题4分,共20分)8.[2019·陇南]中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点____________.9.[2019·广安]点M(x-1,-3)在第四象限,则x的取值范围是____________.10.[2019·济宁]已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标________________.11.[2019·泸州]在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a +b的值是________.12.[2019·福建]如图,在平面直角坐标系xOy中,已知▱OABC的三个顶点O(0,0),A(3,0),B(4,2),则第四个顶点是________.三、解答题(共10分)13.(10分)[2018·南宁]如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)(15分)14.(15分)[2018·枣庄]如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕点C按顺时针方向旋转90°后的三角形.(20分)15.(10分)[2019·菏泽]如图,在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,……,第n次移动到点A n,则点A2 019的坐标是()A.(1 010,0) B.(1 010,1)C.(1 009,0) D.(1 009,1)16.(10分)[2019·广安]如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°……按此规律进行下去,则点A2的坐标为____________.019参考答案1.C 2.C 3.A 4.A 5.A 6.D7.A8.(-1,1)9.x>110.答案不唯一,如(1,-1)11.412.(1,2)13.(1)略(2)略(3)△OA1B为等腰直角三角形14.(1)略(2)略(3)略15.C16.(-22 017,22 0173)。
2020年春数学中考一轮复习11.重庆数学 第11讲函数基础与平面直角坐标系

03 考场 ·笑傲全国题
一、选择题
1.(2019·眉山)函数y= xx−+12中自变量x的取值范围是( A)
A.x≥-2且x≠1 B.x≥-2 C.x≠1 D.-2≤x<1
2.(2019·海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),
平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为( C )
乙车到B地时,甲车距B地的距离为120-100=20(千米),
乙车返回与甲相遇时间为20÷(120+100)=111 (时), 因此甲、乙两车第二次相遇时甲行驶的时间是3+111=3141. 故选A.
变式训练
5.(2018·重庆模拟)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过 程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走
变式训练
3.(2018·重庆模拟)函数y=
x 中x的取值范.x≥-2且x≠0
B.x>-2且x≠0
C.x>-2
D.x≠0
4.(2018·重庆模拟)下列各曲线中表示y是x的函数的是( D )
焦点3 实际问题与函数图象的关系
样题3 甲、乙两车分别从A地、C地同时向B地匀速行驶(C在A、B两地之
A.(-1,-1) B.(1,0) C.(-1,0) D.(3,0)
3.(2019·随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很 不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌 龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列
函数图象可以体现这次比赛过程的是( B )
5.(2019·日 照 ) 如 图 , 在 单 位 为 1 的 方 格 纸 上 , △ A1A2A3 , △ A3A4A5 , △A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角 三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则
2020年九年级中考数学一轮复习 平面直角坐标系 练习(含答案)

2020年中考数学一轮复习平面直角坐标系一、单选题1.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为4,到y轴的距离为3,则点P的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)4.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)5.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<06.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)9.在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为())C.()D.(﹣1,1)A.(1,1)B.(010.直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(+1,+1)二、填空题11.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.14.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)三、解答题15.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为______,A n的坐标(用n的代数式表示)为______.(2)2020米长的护栏,需要两种正方形各多少个?16.已知△ABC中,点A(-1,2),B(-3,-2),((3,-3),试解決下列问题:(1)在直角坐标系中画出△ABC.(2)求△ABC的面积17.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C′分别是B、C的对应点).(2)(1)中所得的点B′,C′的坐标分别是,.(3)求出△ABC的面积.18.在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.19.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.答案1.C 2.B 3.A 4.C 5.B 6.B 7.C 8.C 9.D10.A11.3612.(-2,-2)13.0.14.1(21,2)n n --15.解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2, ∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3, ∴A 3(5+3,2),A n (()132333n -++++n L 个,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.16.解:(1)△ABC 如图所示:(2)△ABC的面积是13.17.(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标是;(5,3),点C′的坐标是:(8,4);故答案为(5,3),(8,4);(3)△ABC的面积为:6−12×1×2−12×1×2−12×3=52.18.(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.19.(1)解:如图1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵点C(0,-3),D(-4,-3),∴CD=4,且CD∥x轴,∴△BCD的面积=1212×4×3=6;故答案为-3,-4,6.(2)证明:如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如图3中,结论:BECBCO∠∠=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴BEC BCO∠∠=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学一轮复习专题:平面直角坐标系与函数(含答案)
1.在平面直角坐标系中,点A(2,-3)位于()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()
A.m=3,n=2
B.m=-3,n=2
C.m=2,n=3
D.m=-2,n=3
3.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是
()
A.(3,-4)
B.(4,-3)
C.(-4,3)
D.(-3,4)
4.在平面直角坐标系中,将点A(1,-2)先向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是()
A.(-1,1)
B.(-1,-2)
C.(-1,2)
D.(1,2)
5.在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.如图K9-1是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()
图K9-1
A.在南偏东75°方向处
B.在5 km处
C.在南偏东15°方向5 km处
D.在南偏东75°方向5 km处
7.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()
图K9-2
8.在平面直角坐标系中,点A的坐标为(1,√3),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为
()
A.(√3,1)
B.(√3,-1)
C.(2,1)
D.(0,2)
9.函数y=√x-2中自变量x的取值范围为.
10.在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a+b的值是.
11.在平面直角坐标系xOy中,▱OABC的三个顶点分别为O(0,0),A(3,0),B(4,2),则其第四个顶点C的坐标是.
12.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值.
(1)A,B两点关于y轴对称;
(2)A,B两点关于原点对称;
(3)AB∥x轴;
(4)A,B两点在第一、三象限的角平分线上.
13.如图K9-3,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;
(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);
(3)在(2)的条件下,直接写出点A1的坐标.
图K9-3
14.小红帮弟弟荡秋千(如图K9-4①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7 s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多长时间?
图K9-4
15.如图K9-5所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P
个单位长度,则第2019秒时,点P的坐标是()
从原点O出发沿这条曲线向右运动,速度为每秒π
2
图K9-5
A.(2018,0)
B.(2019,1)
C.(2019,-1)
D.(2020,0)
16.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图K9-6所示,则对应容器的形状为
()
图K9-6
图K9-7
【参考答案】
1.D
2.B点A与点B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B.
3.C平面直角坐标系中,点M在第二象限内,所以横坐标为负,纵坐标为正.由点M到x轴的距离为3,得纵坐标为3;由到y轴的距离为4,得横坐标为-4,所以M点的坐标为(-4,3),故选C.
4.A根据平面直角坐标系中点的平移与坐标的关系,向上平移3个单位长度,则点A的纵坐标加3,向左平移2个单位长度,则点A的横坐标减去2,则A'(1-2,-2+3),即A'(-1,1),故选A.
5.D m2是非负数,m2+1一定是正数,所以点P(-3,m2+1)在第二象限.关于原点对称的两个点横、纵坐标都互为相反数.由此得点P关于原点的对称点在第四象限.
6.D目标A的位置在南偏东75°方向5 km处,故选D.
7.B根据题意可知兔子先让乌龟跑了一段距离,但是比乌龟晚到终点,故选项B正确.
8.A如图,作AE⊥y轴于E,A'F⊥x轴于F.
∴∠AEO=∠OF A'=90°,∠AOE=∠AOA'=
∠A'OF=30°,
∴∠OAE=∠A'.
∵OA=OA',
∴△AOE≌△A'OF,
∴OF=OE=√3,A'F=AE=1,
∴A'(√3,1).故选A.
9.x≥210.4
11.(1,2)如图,过C,B分别作x轴的垂线,垂足分别为D,E,可证△OCD≌△ABE,∴CD=BE=2,OD=AE=1,∴C(1,2).
12.解:(1)当点A ,B 关于y 轴对称时,
有{x A =-x B ,y A =y B ,∴{a =-8,b =-5.
(2)当点A ,B 关于原点对称时,
有{x A =-x B ,y A =-y B
,∴{a =-8,b =5. (3)当AB ∥x 轴时,有{x A ≠x B ,y A =y B
,∴{a ≠8,b =-5. (4)当A ,B 两点位于第一、三象限的角平分线上时,有x A =y A 且x B =y B ,即a=-5,b=8.
13.解:(1)如图,△A 1B 1C 1为所作三角形.
(2)平面直角坐标系如图.
(3)点A 1的坐标为(2,6).
14.解:(1)∵对于每一个摆动时间t ,都有一个唯一的h 的值与其对应,∴变量h 是关于t 的函数.
(2)①h=0.5 m,它的实际意义是秋千摆动0.7 s 时,离地面的高度为0.5 m .
②2.8 s .
15.C 点P 运动一个半圆用时为2π2÷π2=2(秒).
∵2019=1009×2+1,∴2019秒时,P 在第1010个半圆的中点处,
∴此时点P 坐标为(2019,-1).
故选C .
16.C。