高中数学选修2-1新教学案:第三章空间向量与立体几何检测题

合集下载

高中数学选修2-1《空间向量与立体几何》测试题

高中数学选修2-1《空间向量与立体几何》测试题

高二数学空间向量测试题第一卷一 选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1、在以下命题中:①假设向量a 、b 共线,那么a 、b 所在的直线平行;②假设向量a 、b 所在的直线是异面直线,那么a 、b 一定不共面; ③假设a 、b 、c 三向量两两共面,那么a 、b 、c 三向量一定也共面;④三向量a 、b 、c ,那么空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 〔 〕A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a AB ===那么=CD ( )A .c b a -+B.c b a --C .c b a +--D .c b a ++-3、平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),那么顶点D 的坐标为( )A .)1,4,27(-B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4、a =(-1,-5,-2),b =(2,2,+x x ),假设b a ⊥,那么x =( )A .0B .314-C .-6D .±65、设a =(2,1,-m ),b =(n ,4,3-),假设b a //,那么m ,n 的值分别为( )A .43,8 B .43-,—8 C .43-,8 D .43,-8 6、向量a (0,2,1),b (-1,1,-2),那么a 与b 的夹角为( )A .0°B .45°C .90°D .180°7、假设斜线段AB 是它在平面α 内的射影长的2倍,那么AB 与α 所成的角为( )A .60°B .45°C .30°D .120°8、a =〔2,-1,3〕,b =〔-1,4,-2〕,c =〔7,5,λ〕,假设a 、b 、c 三向量共面,那么实数λ等于 〔 〕A .627 B. 637 C. 647 D. 6579、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 21=,这时二面角B -AD -C 的大小为( )A .60°B .45°C .90°D .120°10、矩形ABCD 中,AB =1,2=BC ,P A ⊥平面ABCD ,P A =1,那么PC 与平面ABCD 所成的角是( ) A .30°B .45°C .60°D .90°11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB那么△BCD 是 〔 〕 A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,那么直线PC 与平面APB所成角的余弦值为( )A .21 B .36 C .33 D .23第二卷二、填空题13、向量a =(4,-2,-4),b =(6,-3,2),那么a 在b 方向上的投影是______. 14、)1,1,2(),2,0,1(==AC AB ,那么平面ABC 的一个法向量为____________.15、∠BOC 在平面α 内,OA 是平面α 的一条斜线,假设∠AOB =∠AOC =60°,OA =OB =OC =a ,BC =2a ,那么OA 与平面α 所成的角是______.16、以下命题中:(1)0=⋅b a 那么a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a2)(q p ⋅;(4)假设a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,那么它们必垂直.其中真命题的序号是______.三、解答题17、如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示.MN18、如图,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,3=AB ,BC =1,P A =2,求直线AC与PB 所成角的余弦值.19、一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°,求这条线段与这个二面角的棱所成的角。

高中数学选修2-1第三章《空间向量与立体几何》单元检测卷含解析

高中数学选修2-1第三章《空间向量与立体几何》单元检测卷含解析

选修2-1第三章《空间向量与立体几何》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.空间四个点O 、A 、B 、C ,OA →,OB →,OC →为空间的一个基底,则下列说法不正确的是( ) A .O 、A 、B 、C 四点不共线 B .O 、A 、B 、C 四点共面,但不共线 C .O 、A 、B 、C 四点中任意三点不共线 D .O 、A 、B 、C 四点不共面2.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉等于( ) A .30° B .60° C .90° D .45°3.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( ) A .30° B .45° C .60° D .90°4.已知正方体ABCD —A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A .x =1,y =1B .x =1,y =12C .x =12,y =12D .x =12,y =135.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面A 1ECF 成60°角的对角线的数目是( )A .0B .2C .4D .66.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥ BD →.其中正确的个数是( )A .1B .2C .3D .47.已知a =(-3,2,5),b =(1,x ,-1)且a·b =2,则x 的值是( ) A .3 B .4 C .5 D .68.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定9.正三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90° 10.若向量a =(2,3,λ),b =⎝ ⎛⎭⎪⎫-1,1,63的夹角为60°,则λ等于( ) A.2312 B.612 C.23612 D .-2361211.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34C.⎝ ⎛⎭⎪⎫43,43,83D.⎝ ⎛⎭⎪⎫43,43,73 12.在正方体ABCD —A 1B 1C 1D 1中,平面A 1BD 与平面C 1BD 所成二面角的余弦值为( ) A.12 B.32 C.13 D.33第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________. 14.若A ⎝⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),则x ∶y ∶z =__________.15.平面α的法向量为m =(1,0,-1),平面β的法向量为n =(0,-1,1),则平面α与平面β所成二面角的大小为__________. 16.在直三棱柱ABC —A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,点D 是A 1C 1的中点,则异面直线AD 和BC 1所成角的大小为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图,已知ABCD —A 1B 1C 1D 1是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的34分点,设MN →=αAB →+βAD →+γAA 1→,试求α、β、γ的值.18.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为2a 的菱形,且SA =SC =2a ,SB =SD =2a ,点E 是SC 上的点,且SE =λa (0<λ≤2).(1)求证:对任意的λ∈(0,2],都有BD ⊥AE ;(2)若SC ⊥平面BED ,求直线SA 与平面BED 所成角的大小.19.( 本小题满分12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量ka +b 与ka -2b 互相垂直,求k 的值.20.(本小题满分12分)如图所示,在三棱锥S —ABC 中,SO ⊥平面ABC ,侧面SAB 与SAC 均为等边三角形,∠BAC =90°,O 为BC 的中点,求二面角A —SC —B 的余弦值.21.(本小题满分12分)如图,在底面是矩形的四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B到平面PCD的距离.22.(本小题满分12分)如图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证: AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P —AC —D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.选修2-1第三章《空间向量与立体几何》单元检测题参考答案【第1题解析】如果O 、A 、B 、C 四点共面,则OA ,OB ,OC 共面,则OA ,OB ,OC 不可能为空间的一个基底.故选B.【第4题解析】AE →=AA 1→+A 1E →=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12AB →+12AD →,由空间向量的基本定理知,x =y =12.故选C.【第5题解析】利用线面角的公式可以求得其中有BD ,11B D ,11,B A C D 四条直线对角线满足题意,由题得C 是正确答案,故选C.【第6题解析】∵AB →·AP →=-2-2+4=0,∴AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP ⊥AD ,②正确;由①②知AP →是平面ABCD 的法向量,∴③正确,④错误.故选C. 【第7题解析】32525x x -+-=∴=,故选C.【第8题解析】△BCD 中,BC →·BD →=(AC →-AB →)·(AD →-AB →)=AB →2>0.∴∠B 为锐角,同理,∠C ,∠D 均为锐角,∴△BCD 为锐角三角形.故选B. 【第9题解析】建系如图,设AB =1,则B (1,0,0),A 1(0,0,1),C 1(0,1,1).∴BA 1→=(-1,0,1),A C 1→=(0,1,1)∴cos 〈BA 1→,A C 1→〉==12·2=12.∴〈BA 1→,A C 1→〉=60°,即异面直线BA 1与AC 1所成的角等于60°.故选C.【第11题解析】∵Q 在OP 上,∴可设Q (x ,x,2x ),则QA →=(1-x ,2-x,3-2x ),QB →=(2-x,1-x,2-2x ).∴QA →·QB →=6x 2-16x +10,∴x =43时,QA →·QB →最小,这时Q ⎝ ⎛⎭⎪⎫43,43,83.故选C.【第12题解析】以点D 为原点,DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则A 1C →=(-1,1,-1),A C 1→=(-1,1,1).可以证明A 1C ⊥平面BC 1D ,AC 1⊥平面A 1BD .又cos 〈A C 1→,A 1C →〉=13,结合图形可知平面A 1BD 与平面C 1BD所成二面角的余弦值为13.故选C.【第13题解析】∵a =(1,1,x ),b =(1,2,1),c =(1,1,1),∴c -a =(0,0,1-x ),2b =(2,4,2). ∴(c -a )·(2b )=2(1-x )=-2,∴x =2. 故填2.【第14题解析】AB →=⎝ ⎛⎭⎪⎫1,-3,-74,AC →=⎝ ⎛⎭⎪⎫-2,-1,-74,由a ·AB →=0,a ·AC →=0,得⎩⎪⎨⎪⎧x =23y z =-43y ,x ∶y ∶z =23y ∶y ∶⎝ ⎛⎭⎪⎫-43y =2∶3∶(-4).故填2∶3∶(-4)【第15题解析】∵cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,∴〈m ,n 〉=120°,即平面α与β所成二面角的大小为60°或120°.故填60°或120°. 【第16题解析】建立如图所示坐标系,则AD →=(-1,1,-2), B C 1→=(0,2,-2), ∴cos 〈AD →,B C 1→〉=622·6=32,∴〈AD →,B C 1→〉=π6.即异面直线AD 和BC 1所成角的大小为π6.故填π6.【第18题答案】(1)证明见解析;(2)SA 与平面BED 所成的角为π6.【第18题解析】(1)证明 连结BD ,AC ,设BD 与AC 交于O .由底面是菱形,得BD ⊥AC . ∵SB =SD ,O 为BD 中点, ∴BD ⊥SO . 又AC ∩SO =O , ∴BD ⊥面SAC .又AE ⊂面SAC ,∴BD ⊥AE . (2)解 由(1)知BD ⊥SO ,同理可证AC ⊥SO ,∴SO ⊥平面ABCD .取AC 和BD 的交点O 为原点建立如图所示的坐标系,设SO =x ,则OA =4a 2-x 2,OB =2a 2-x 2. ∵OA ⊥OB ,AB =2a ,∴(4a 2-x 2)+(2a 2-x 2)=4a 2,解得x =a .∴OA =3a ,则A (3a,0,0),C (-3a,0,0),S (0,0,a ). ∵SC ⊥平面EBD ,∴SC →是平面EBD 的法向量. ∴SC →=(-3a,0,-a ),SA →=(3a,0,-a ). 设SA 与平面BED 所成角为α,则sin α=||||||SC SA SC SA ⋅⋅=|-3a 2+a 2|3+1a·3+1a =12, 即SA 与平面BED 所成的角为π6.(2)ka +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),ka -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4),∴ (k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0,∴k =-52或k =2.【第20题答案】二面角A —SC —B 的余弦值为33. 【第20题解析】以O 为坐标原点,射线OB ,OA ,OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图所示的空直角坐标系Oxyz .设B (1,0,0),则C (-1,0,0),A (0,1,0),S (0,0,1),SC 的中点M ⎝ ⎛⎭⎪⎫-12,0,12.【第21题答案】(1)证明见解析;(2)455. 【第21题解析】(1)证明 如图,以A 为原点,AD 、AB 、AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则依题意可知A (0,0,0),B (0,2,0),C (4,2,0),D (4,0,0),P (0,0,2).∴PD →=(4,0,-2),CD →=(0,-2,0),PA →=(0,0,-2).设平面PDC 的一个法向量为n =(x ,y,1),则⇒⎩⎪⎨⎪⎧ -2y =04x -2=0⇒⎩⎪⎨⎪⎧ y =0x =12,所以平面PCD 的一个法向量为⎝ ⎛⎭⎪⎫12,0,1. ∵PA ⊥平面ABCD ,∴PA ⊥AB ,又∵AB ⊥AD ,PA ∩AD =A ,∴AB ⊥平面PAD .∴平面PAD 的法向量为AB →=(0,2,0).∵n ·AB →=0,∴n ⊥AB →.∴平面PDC ⊥平面PAD .(2)由(1)知平面PCD 的一个单位法向量为n |n|=⎝ ⎛⎭⎪⎫55,0,255. ∴=⎪⎪⎪⎪⎪⎪ 4,0,0 ·⎝ ⎛⎭⎪⎫55,0,255=455,∴点B 到平面PCD 的距离为455.于是S (0,0,62a ),D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, OC →=⎝⎛⎭⎪⎫0,22a ,0, SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,∴OC →·SD →=0.∴OC ⊥SD ,即AC ⊥SD .(2)由题意知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量 OS →=⎝ ⎛⎭⎪⎫0,0,62a , 设所求二面角为θ,则cos θ==32, 故所求二面角P —AC —D 的大小为30°.。

数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

数学选修2-1苏教版:第3章 空间向量与立体几何 章末检测试卷(三)

章末检测试卷(三)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是________. 答案 5解析 ∵a ·b =-3+2x -5=2, ∴x =5.2.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)答案 -23a +12b +12c解析 如图,连结ON ,由向量的加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .3.设i ,j ,k 为单位正交基底,已知a =3i +2j -k ,b =i -j +2k ,则5a ·3b =________. 答案 -15解析 ∵a =(3,2,-1),b =(1,-1,2),∴5a ·3b =15a ·b =-15.4.设平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),则α,β的位置关系为________.考点 向量法求解平面与平面的位置关系 题点 向量法解决面面平行 答案 平行或重合解析 ∵平面α,β的法向量分别为u =(1,2,-2),v =(-3,-6,6),满足v =-3u ,∴α∥β或重合.5.若空间向量a ,b 满足|a |=|b |=1,且a 与b 的夹角为60°,则a ·a +a ·b =________. 答案 32解析 由空间向量数量积的性质,知a ·a =|a |2=1. 由空间向量数量积的定义,得a ·b =|a ||b |cos 〈a ,b 〉=1×1×cos60°=12,从而a ·a +a ·b =1+12=32.6.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 为________三角形. 答案 直角解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.7.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是________.(填序号)①⎝⎛⎭⎫1,1,12;②(1,2,1);③(1,1,1);④(2,-2,1). 答案 ①解析 由题意知,C (0,0,0),A (1,0,0),B (0,1,0),P (0,0,2),则P A →=(1,0,-2),AB →=(-1,1,0), 设平面P AB 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧ x -2=0,-x +y =0,解得⎩⎪⎨⎪⎧x =2,y =2,∴n =(2,2,1).又⎝⎛⎭⎫1,1,12=12n ,∴①正确. 8.已知Rt △ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为________. 答案 120°解析 如图,取CD 中点E ,在平面BCD 内过点B 作BF ⊥CD ,交CD 延长线于点F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB →2=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos 〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,又∵〈EA →,FB →〉∈[0°,180°], ∴〈EA →,FB →〉=120°. 即所求的二面角为120°.9.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,若以{AB →,AC →,AD →}为基底,则GE →=________.答案 -112AB →-13AC →+34AD →解析 GE →=AE →-AG →=AD →+DE →-23AM →=AD →+14DB →-13(AB →+AC →)=AD →+14AB →-14AD →-13AB →-13AC →=-112AB →-13AC →+34AD →.10.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AB =8,AD =6,AA ′=8,∠BAD =∠BAA ′=∠DAA ′=60°,则AC ′的长为________.答案 18解析 ∵AC ′—→=AC →+CC ′—→=AB →+AD →+AA ′—→,|AC ′—→|2=(AB →+AD →+AA ′—→)2=|AB →|2+|AD →|2+|AA ′—→|2+2(AB →·AD →+AB →·AA ′—→+AD →·AA ′—→) =82+62+82+2×(24+32+24)=324, ∴|AC ′—→|=324=18.11.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为________.答案105解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系S -xyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫0,0,12. 因为SM →=⎝⎛⎭⎫12,12,0, BN →=⎝⎛⎭⎫0,-1,12, 所以|SM →|=12,|BN →|=54, SM →·BN →=-12,cos 〈SM →,BN →〉=SM →·BN →|SM →| |BN →|=-105,因为异面直线所成的角为锐角或直角, 所以异面直线SM 与BN 所成角的余弦值为105. 12.如图所示,已知二面角αlβ的平面角为θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.答案3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.13.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 答案 ⎝⎛⎭⎫43,43,83解析 设Q (x ,y ,z ),因为Q 在OP →上,故有OQ →∥OP →, 设OQ →=λOP →(λ∈R ),可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),所以QA →·QB →=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23, 故当λ=43时,QA →·QB →取最小值,此时Q ⎝⎛⎭⎫43,43,83. 14.给出下列命题:①若AB →=CD →,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段; ②若a ·b <0,则〈a ,b 〉是钝角;③若a 为直线l 的方向向量,则λa (λ∈R )也是l 的方向向量;④非零向量a ,b ,c 满足a 与b ,b 与c ,c 与a 都是共面向量,则a ,b ,c 必共面. 其中不正确的命题为________.(填序号) 答案 ①②③④解析 ①错误,如在正方体ABCD -A 1B 1C 1D 1中,AB →=A 1B 1—→,但线段AB 与A 1B 1不重合;②错误,a ·b <0,即cos 〈a ,b 〉<0⇒π2<〈a ,b 〉≤π,而钝角的取值范围是⎝⎛⎭⎫π2,π;③错误,当λ=0时,λa =0不能作为直线l 的方向向量;④错误,在平行六面体ABCD -A 1B 1C 1D 1中,令AB →=a ,AD →=b ,AA 1—→=c ,则它们两两共面,但显然AB →,AD →,AA 1—→是不共面的. 二、解答题(本大题共6小题,共90分)15.(14分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0, ∴k =-52或k =2.16.(14分)已知空间内三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 与向量AB →,AC →都垂直,且|a |=3,求向量a 的坐标. 解 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12,又∵∠BAC ∈[0°,180°],∴∠BAC =60°,∴S =|AB →||AC →|sin60°=7 3. (2)设a =(x ,y ,z ),由a ⊥AB →,得-2x -y +3z =0, 由a ⊥AC →,得x -3y +2z =0, 由|a |=3,得x 2+y 2+z 2=3, ∴x =y =z =1或x =y =z =-1. ∴a =(1,1,1)或a =(-1,-1,-1).17.(14分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.(1)化简12AA 1—→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的点,且C 1N =14C 1B ,设MN→=αAB →+βAD →+γAA 1—→,试求α,β,γ的值.解 (1)取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连结EF ,则12AA 1—→+BC →+23AB → =EA 1—→+A 1D 1—→+D 1F —→=EF →. (2)MN →=MB →+BN → =12DB →+34BC 1—→ =12(DA →+AB →)+34(BC →+CC 1—→)=12AB →+14AD →+34AA 1—→, 所以α=12,β=14,γ=34.18.(16分)如图所示,已知直三棱柱(侧棱垂直于底面的三棱柱)ABC -A 1B 1C 1中,AC ⊥BC ,D 是AB 的中点,AC =BC =BB 1.(1)求证:BC 1⊥AB 1; (2)求证:BC 1∥平面CA 1D .证明 如图所示,以C 1为坐标原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1—→=(0,-2,-2),AB 1—→=(-2,2,-2), ∴BC 1—→·AB 1—→=0-4+4=0, 即BC 1—→⊥AB 1—→,故BC 1⊥AB 1. (2)取A 1C 的中点E ,连结DE . 由于E (1,0,1),∴ED →=(0,1,1),又BC 1—→=(0,-2,-2), ∴ED →=-12BC 1—→,且ED 与BC 1不共线,∴ED ∥BC 1,又ED ⊂平面CA 1D ,BC 1⊄平面CA 1D , ∴BC 1∥平面CA 1D .19.(16分)如图,已知四棱锥P -ABCD 中,P A ⊥底面ABCD ,且ABCD 为正方形,P A =AB =a ,点M 是PC 的中点.(1)求BP 与DM 所成的角的大小; (2)求二面角M -DA -C 的大小.解 (1)以A 为坐标原点,AB →,AD →,AP →为x 轴,y 轴,z 轴正方向,建立空间直角坐标系. 由已知得A (0,0,0),B (a,0,0),C (a ,a,0),D (0,a,0),P (0,0,a ),M ⎝⎛⎭⎫a 2,a 2,a 2.设直线BP 与DM 所成的角为θ. ∵BP →=(-a,0,a ),DM →=⎝⎛⎭⎫a 2,-a 2,a 2, ∴BP →·DM →=0.∴BP 与DM 所成的角θ=90°.(2)∵AP →=(0,0,a ),AB →=(a,0,0),AD →=(0,a,0), BP →=(-a,0,a ),∴BP →·AD →=0,AP →·AB →=0,AP →·AD →=0. 又由(1)知BP →·DM →=0,∴BP →是平面MDA 的法向量,AP →是平面ABCD 的法向量,则cos 〈BP →,AP →〉=BP →·AP →|BP →||AP →|=22.∴所求的二面角M -DA -C 的大小为45°.20.(16分)如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求PQ 的长;如果不存在,请说明理由.(1)证明 取AB 的中点O ,连结OD ,OE , 因为△ABE 是正三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形, 所以OD ∥BC .又AB ⊥BC ,所以AB ⊥OD ,又OE ∩OD =O ,所以AB ⊥平面ODE , 所以AB ⊥DE .(2)解 因为平面ABCD ⊥平面ABE ,AB ⊥OE ,OE ⊂平面ABE ,平面ABCD ∩平面ABE =AB . 所以OE ⊥平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点,OA ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (1,0,0),B (-1,0,0), D (0,0,1),C (-1,0,1), E (0,3,0),所以AD →=(-1,0,1),DE →=(0,3,-1).最新中小学教案、试题、试卷设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·DE →=0,n 1·AD →=0,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0, 令z 1=1,则x 1=1,y 1=33, 所以n 1=⎝⎛⎭⎫1,33,1, 同理可求得平面BCE 的一个法向量为 n 2=(-3,1,0),设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=⎪⎪⎪⎪33-373×2=77, 所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. (3)解 假设存在Q (x 2,y 2,0)满足题意,因为P ⎝⎛⎭⎫-12,32,12,所以PQ →=⎝⎛⎭⎫x 2+12,y 2-32,-12, 又CD →=(1,0,0),DE →=(0,3,-1), 所以⎩⎪⎨⎪⎧PQ →·CD →=0,PQ →·DE →=0,即⎩⎨⎧ x 2+12=0,3⎝⎛⎭⎫y 2-32+12=0, 解得⎩⎨⎧x 2=-12,y 2=33, 易知点Q ⎝⎛⎭⎫-12,33,0在△ABE 内, 所以△ABE 内存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.。

高中数学选修2-1章末检测卷12:第三章 空间向量与立体几何

高中数学选修2-1章末检测卷12:第三章 空间向量与立体几何

第三章综合测试时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.若向量a 与b 不共线,a·b ≠0,且c =a -⎝⎛⎭⎫a·a a·b b ,则a 与c 的夹角为( ) A .0 B .π6C.π3D .π2[[答案]] D[[解析]] a·c =|a |2-⎝⎛⎭⎫a·a a·b (a·b )=|a |2-a·a =0,∴a ⊥b . 2.对于任意向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),给出下面两个命题: ①a ∥b ⇔a 1b 1=a 2b 2=a 3b 3;②若a 1=a 2=a 3=1,则a 为单位向量. 其中正确命题的个数为( )A .0B .1C .2D .3 [[答案]] A[[解析]] 由a 1b 1=a 2b 2=a 3b 3⇒a ∥b 但a ∥b ⇒/ a 1b 1=a 2b 2=a 3b 3;若a 1=a 2=a 3=1,则|a |=3,∴①②都不正确.故选A.3.与向量(-3,-4,5)共线的单位向量是( ) A .(3210,4210,-22)和(-3210,-4210,22)B .(3210,4210,-22)C .(-3210,-4210,22)D .(3210,4210,22)和(-3210,-4210,-22)[[答案]] A[[解析]] 所求的单位向量e 与(-3,-4,5)方向相同或相反,且|e |=1,求得(3210,4210,-22)和(-3210,-4210,22).4.若直线l 与平面α所成的角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ) A .[0,2π3]B .[π3,2π3]C .[π2,2π3]D .[π3,π2][[答案]] D[[解析]] 由定理知直线l 与直线a 所成的最小角为π3.又l ,a 为异面直线,则所成角的最大值为π2.5.(2013·淄博模拟)已知空间四边形ABCD 中,M ,G 分别为BC ,CD 的中点,则AB →+12(BD→+BC →)等于( ) A.AG → B .CG → C.BC → D .12BC →[[答案]] A[[解析]] 如下图所示:12(BD →+BC →)=BG →,AB →+BG →=AG →. 6.已知ABCD 是四面体,O 为△BCD 内一点,且AO →=13(AB →+AC →+AD →),则AO →是O 为△BCD的重心的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件[[答案]] C[[解析]] 用向量的运算法则,充要条件的概念来判定.7.已知向量a =(8,x2,x ),b =(x,1,2),其中x >0.若a ∥b ,则x 的值为( )A .8B .4C .2D .0 [[答案]] B[[解析]] a ∥b ⇔存在λ∈R 使a =λb ⇔(8,x2,x )=(λx ,λ,2λ)⇔⎩⎪⎨⎪⎧λx =8x 2=λx =2λ⇔⎩⎪⎨⎪⎧λ=2,x =4.8.如下图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB .则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B .25 C.35D .45 [[答案]] D[[解析]] 用坐标法求向量夹角.9.已知向量n =(1,0,-1)与平面α垂直,且α经过点A (2,3,1),则点P (4,3,2)到α的距离为( ) A.32B.22 C.2D .322[[答案]] B[[解析]] P A →=(-2,0,-1),又n 与α垂直,所以P 到α的距离为|-2,0,-1·1,0,-1|12+-12=12=22,故选B.10.在60°的二面角的一个面内有一个点,它到棱的距离是8,那么它到另一个面的距离是( ) A.3B .2 3 C .33D .4 3 [[答案]] D[[解析]] 设二面α—l —β为60°,α内一点为A ,过A 作AB ⊥β于B ,AO ⊥l 于O ,连OB ,则OB ⊥l ,∴∠AOB =60°,∴AB =8sin60°=4 3.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A.OM →=OA →+OB →+OC →B.OM →=2OA →-OB →-OC →C.OM →=OA →+12OB →+13OC →D.OM →=13OA →+13OB →+13OC →[[答案]] D[[解析]] 选项D 中的三个系数和:13+13+13=1,故M 与点A ,B ,C 一定共面.12.如下图,P 是边长为a 的正六边形ABCDEF 平面外一点,P A ⊥AB ,P A ⊥AF ,为求P 与CD 的距离作PQ ⊥CD 于Q ,则( )A .Q 为CD 的中点B .Q 与D 重合C .Q 与C 重合D .以上都不对 [[答案]] C[[解析]] 连AC ,则AC ⊥CD ,由三垂线定理知PC ⊥CD ,∴Q 与C 重合. 故选C.二、填空题(本大题共4个小题,每空4分,共16分,把正确[答案]填在题中横线上) 13.三个平面两两垂直,它们交于一点O ,空间一点P 到三个面的距离分别为2,3和25,则PO =________. [[答案]] 5 [[解析]] PO =22+32+252=5.14.已知a =(2,-1,2),b =(2,2,1),则以a 、b 为邻边的平行四边形的面积为________. [[答案]]65[[解析]] 因为|a |=|b |,所以平行四边形为菱形.又a +b =(4,1,3),a -b =(0,-3,1),|a +b |=26,|a -b |=10, S =12|a +b ||a -b |=12×26×10=65. 15.给出命题:①在▱ABCD 中,AB →+AD →=AC →;②在△ABC 中,若AB →·AC →>0,则△ABC 是锐角三角形;③在梯形ABCD 中,E 、F 分别是两腰BC 、DA 的中点,则FE →=12(AB →+DC →);④在空间四边形ABCD 中,E 、F 分别是边BC 、DA 的中点,则FE →=12(AB →+DC →).以上命题中,正确命题的序号是____.[[答案]] ①③④[[解析]] ①满足向量运算的平行四边形法则,①正确;AB →·AC →=|AB →|·|AC →|·cos A >0⇒∠A <90°,但∠B 、∠C 无法确定,△ABC 是否是锐角三角形无法确定,②错误;③符合梯形中位线,正确;④如图:DC →=DA →+AC →;DC →+AB →=DA →+AB →+AC →=DA →+2AE →=2(F A →+AE →)=2FE →,则FE →=12(AB →+DC →).16.正△ABC 边长为a ,AD ⊥BC 于点D ,沿AD 把△ABC 折起来使∠BDC =90°,这时点B 到AC 的距离是______________. [[答案]]74a [[解析]] 过D 作DH ⊥AC 于H ,连BH ,则DH =34a ,∴BH =a 22+34a 2=74a .三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长. [[解析]] AC 1→=AB →+AD →+AA 1→, ∴|AC 1→|2=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2AB →·AD →+2AB →·AA 1→+2AD →·AA 1→=1+22+32+2|AB →|·|AD →|·cos 〈AB →,AD →〉+2|AB →|·|AA 1→|·cos 〈AB →,AA 1→〉+2|AD →|·|AA 1→|·cos 〈AD →,AA 1→〉=14+2×1×2cos90°+2×1×3cos60°+2×2×3cos60°=23, ∴|AC 1→|=23,即AC 1=23.18.(本小题满分12分)在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.(1)求证:AEC 1F 是平行四边形; (2)求AE 和AF 之间的夹角的余弦值; (3)求四边形AEC 1F 的面积.[[解析]] (1)证明:如下图,以DA ,DC ,DD 1所在的直线为坐标轴,建立空间直角坐标系,则A (a,0,0),E (0,0,a 2),F (a ,a ,a2),C 1(0,a ,a ).∴AE →=(-a,0,a 2),FC 1→=(-a,0,a 2).∴AE →=FC 1→,∴AEC 1F 为平行四边形.(2)解:由AF →=(0,a ,a 2),得cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=15.(3)解:由(2)知sin ∠EAF =25 6.∴S ▱AEC 1F =|AE →||AF →|sin ∠EAF =62a 2.19.(本小题满分12分)已知空间四边形OABC ,棱OA ,OB ,BC 互相垂直,OA =OB =BC =1,N 是OC 的中点,点M 在AB 上,且MN ⊥AB ,求AM AB 的值. [[解析]] 如下图所示,设AM AB=x ,则AM →=xAB →.OM →=(1-x )OA →+xOB →,ON →=12OC →=12(OB →+BC →),MN →=ON →-OM →=12OB →+12BC →-(1-x )OA →-xOB →=(x -1)OA →+(12-x )OB →+12BC →.又知AB →=OB →-OA →,MN ⊥AB ,所以MN →·AB →=0. 即[(x -1)OA →+(12-x )OB →+12BC →]·(-OA →+OB →)=0.进行向量运算,考虑到OA →、OB →、BC →互相垂直且它们的长度都为1,运算结果得12-x +1-x=0.解得x =34.所以MN AB =34.20.(本小题满分12分)如下图,设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ,当∠APC 为钝角时,求λ的取值范围.[[解析]] 以DA →,DC →,DD 1→为单位正交基底,建立空间直角坐标系Dxyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),从而D 1B →=(1,1,-1),D 1A →=(1,0,-1),D 1C →=(0,1,-1),D 1P →=λD 1B →=(λ,λ,-λ),P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,1-λ,λ-1),显然∠APC 不是平角,所以∠APC 为钝角等价于P A →·PC →<0, 即-λ(1-λ)-λ(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,解得13<λ<1,因此λ的取值范围是(13,1).21.(本小题满分12分)已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.[[解析]] 以A 为坐标原点建立如图所示的空间直角坐标系,设P A =1,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).(1)CM →=(1,-1,12),SN →=(-12,-12,0),因为CM →·SN →=-12+12+0=0,所以CM →⊥SN →,所以CM ⊥SN .(2)易得NC →=(-12,1,0),设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎨⎧CM →·n =x -y +12z =0,NC →·n =-12x +y =0,得⎩⎪⎨⎪⎧x =2y z =-2y ,取x =2,则y =1,z =-2,n =(2,1,-2).因为|cos 〈n ,SN →〉|=|n ·SN →||n |·|SN →|=22,所以SN 与平面CMN 所成角的大小为45°.22.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.[[解析]] (1)因为AA 1C 1C 为正方形,所以AA 1⊥AC ,因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如下图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1B →=0,n ·A 1C 1→=0.即⎩⎪⎨⎪⎧3x -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的法向量为m =(3,4,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=1625.由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625.(3)设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.所以(x ,y -3,z )=λ(4,-3,4). 解得x =4λ,y =3-3λ,z =4λ.所以AD →=(4λ,3-3λ,4λ). 由AD →·A 1B →=0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.。

高中数学选修2-1 第三章《空间向量与立体几何》单元测试题(含答案)

高中数学选修2-1 第三章《空间向量与立体几何》单元测试题(含答案)

这时Q ⎝ ⎛⎭⎪⎫43,43,83.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.若A (x,5-x,2x -1),B (1,x +2,2-x ),则当|AB →|取最小值时,x 的值等于________.解析:AB →=(1-x,2x -3,-3x +3),则 |AB →|=1-x2+2x -32+-3x +32=14x 2-32x +19=14⎝⎛⎭⎪⎫x -872+57,故当x =87时,|AB →|取最小值.答案:8714.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 夹角的正弦值是________. 解析:如图,以DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C 1(0,1,1), 易证AC 1→是平面A 1BD 的一个法向量.AC 1→=(-1,1,1),BC 1→=(-1,0,1). cos 〈AC 1→,BC 1→〉=1+13×2=63. 所以BC 1与平面A 1BD 夹角的正弦值为63.答案:63设AC ∩BD =N ,连结NE ,则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1), ∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1. 又A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1, ∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1. ∴NE →=AM →,且NE 与AM 不共线.∴NE ∥AM .又NE ⊂平面BED ,AM ⊄平面BDE ,∴AM ∥平面BDE .(2)设P (t ,t,0)(0≤t ≤2),则PF →=(2-t ,2-t,1),CD →=(2,0,0).又∵PF →与CD →所成的角为60°,|2-t ·2|2-t2+2-t 2+1·2=12, 解之得t =22,或t =322(舍去). 故点P 为AC 的中点.22.(本小题满分12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.。

高二数学选修2-1第三章 空间向量与立体几何练习题及答案

高二数学选修2-1第三章 空间向量与立体几何练习题及答案

第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。

A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。

人教A版高中数学高二选修2-1单元目标检测 第三章 空间向量与立体几何

人教A版高中数学高二选修2-1单元目标检测 第三章 空间向量与立体几何

数学人教A 选修2-1第三章 空间向量与立体几何单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1.已知点A (-4,8,6),则点A 关于y 轴对称的点的坐标为( ). A .(-4,-8,6) B .(-4,-8,-6) C .(-6,-8,4) D .(4,8,-6)2.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( ). A .-1 B .0 C .1 D .-23.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( ), A .2 B .-2 C .-2或255 D .2或255- 4.已知a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为( ).A B C .4 D .8 5.如图,在四面体ABCD 中,已知AB =b ,AD =a ,AC =c ,12BE EC =,则DE 等于( ).A .2133-++a b c B .2133++a b c C .2133-+a b c D .2133-+a b c 6.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,则二面角A -PB -C 的平面角的正切值为( ).A B C D 7.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动(O 为原点),则当QA QB ⋅取最小值时,点Q 的坐标为( ).A .444,,333⎛⎫⎪⎝⎭ B .848,,333⎛⎫ ⎪⎝⎭C .884,,333⎛⎫ ⎪⎝⎭D .448,,333⎛⎫ ⎪⎝⎭8.正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是BB 1,CD 的中点,则点F 到平面A 1D 1E 的距离为( ).A .310a B .10a C .10a D .710a 二、填空题(每小题6分,共18分)9.若向量a =(4,2,-4),b =(1,-3,2),则2a ·(a +2b )=________.10.如图,在矩形ABCD 中,AB =3,BC =1,EF ∥BC 且AE =2EB ,G 为BC 的中点,K 为△AFD 的外心,沿EF 将矩形折成120°的二面角A -EF -B ,此时KG 的长为__________.11.已知直线AB ,CD 是异面直线,AC ⊥AB ,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为________.三、解答题(共3小题,共34分)12.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ⊥b ?(O 为原点)13.(10分)如图,在四棱锥P -ABCD 中,底面是边长为BAD =120°,且PA ⊥平面ABCD ,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.14.(14分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D;(2)求二面角A-A1D-B的平面角的余弦值;参考答案1答案:D2答案:D 解析:a +λb =(λ,1+λ,-1). 由(a +λb )⊥a ,知(a +λb )·a =0, 所以1+λ+1=0,解得λ=-2. 3答案:C解析:由公式cos 〈a ,b 〉=||||⋅a ba b ,知89==λ=-2或255.4答案:A 解析:|a |=3,|b |=3,而a·b =4=|a||b|cos ,a b ,∴cos ,a b =49,故sin ,a b=于是以a ,b 为邻边的平行四边形的面积为 S =|a||b|sin ,a b=33⨯= 5答案:A 解析:DE =DA +AB +BE =DA +AB +13(AC -AB )=2133-++a b c .6答案:A 解析:设PA =AB =2,建立空间直角坐标系,平面PAB 的一个法向量是m =(1,0, 0),平面PBC 的一个法向量是n=⎫⎪⎪⎝⎭. 则cos 〈m ,n〉=·3||||||||3===m nm n m n . ∴正切值tan 〈m ,n.7答案:D 解析:由题意可知OQ =λOP ,故可设Q (λ,λ,2λ),∴QA ·QB =6λ2-16λ+10=242633λ⎛⎫-- ⎪⎝⎭,∴43λ=时,QA ·QB 取最小值,此时Q 的坐标为448,,333⎛⎫⎪⎝⎭. 8答案:C 解析:建立如图所示的坐标系,则A 1(a,0,a ),D 1(0,0,a ),A (a,0,0),B (a ,a,0),B 1(a ,a ,a ),E ,,2a a a ⎛⎫ ⎪⎝⎭,F 0,,02a ⎛⎫⎪⎝⎭.设平面A 1D 1E 的法向量为n =(x ,y ,z ),则11·0A D =n ,11·0A E =n ,即(x ,y ,z )·(-a,0,0)=0,(x ,y ,z )·0,,2a a ⎛⎫- ⎪⎝⎭=0, ∴-ax =0,02aay z -=. ∴x =0,2z y =. ∴n =0,,2z z ⎛⎫ ⎪⎝⎭. ∴10,||||2FD d ⎛ ⋅⎝==n n . 9答案:32解析:2a·(a +2b )=2|a|2+4a·b =2×36+4×(-10)=32. 10解析:如图,过K 作KM ⊥EF ,M 为垂足,则向量MK 与FC 的夹角为120°.KG =KM +MF +FC +CG ,2KG =2KM +2MF +2FC +2CG +2KM ·MF +2FC ·CG +2KM ·FC +2KM ·CG . ∴2KG =1+14+1+14+0+0+2×1×1×cos 60°+0+0+2×12×12×cos 180°=2+12+1-12=3. ∴3KG =.答案:60° 解析:设AB 与CD 所成的角为θ, 则cos θ=cos ,AB CD =AB CD AB CD⋅.由于AB ·CD =(AC +CD +DB )·CD =AC ·CD +2CD +DB ·CD =0+12+0=1,∴cos θ=11212AB CD AB CD⋅==⨯. 由于0°<θ≤90°,∴θ=60°,故异面直线AB 与CD 所成角的大小为60°.12答案:解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b|=答案:解:OE =OA +AE =OA +t AB =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ).若OE ⊥b ,则OE ·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得95t =,因此存在点E ,使得OE ⊥b ,此时E 点坐标为6142,,555⎛⎫--⎪⎝⎭. 13答案:证明:连结BD ,因为M ,N 分别是PB ,PD 的中点, 所以MN 是△PBD 的中位线.所以MN ∥BD . 又因为MN ⊄平面ABCD ,BD ⊂平面ABCD , 所以MN ∥平面ABCD .答案:解法一:连结AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB=BD=6. 又因为PA ⊥平面ABCD ,所以PA ⊥AC .在直角△PAC中,AC =PA =AQ ⊥PC ,得QC =2,PQ =4,由此知各点坐标如下:A(,0,0),B (0,-3,0),C,0,0),D (0,3,0),P(0,,M 3,22⎛-- ⎝,N 3,22⎛- ⎝,Q 33⎛ ⎝⎭. 设m =(x ,y ,z )为平面AMN 的法向量. 由AM=32-⎝,AN=32-⎝,知30,230.2x y x y -+=+=取z =-1,得m =(0,-1). 设n =(x ,y ,z )为平面QMN 的法向量.由QM=32⎛- ⎝⎭,QN=32⎛- ⎝⎭知30,62330.2x y z x y ⎧--+=⎪⎪⎨⎪++=⎪⎩ 取z =5,得n =(0,5). 于是cos 〈m ,n〉=·||||33=m n m n . 所以二面角A -MN -Q的平面角的余弦值为33.解法二:在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BDAB . 又因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AC ,PA ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN . 取线段MN 的中点E ,连结AE ,EQ , 则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =PA =,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =2.在直角△PAC 中,AQ ⊥PC ,得AQ =QC =2,PQ =4,在△PBC 中,cos ∠BPC =222526PB PC BC PB PC +-=⋅,得MQ =在等腰△MQN 中,MQ =NQ MN =3,得QE ==.在△AEQ 中,2AE =,2QE =,AQ =cos ∠AEQ =222233AE QE AQ AE QE +-=⋅.所以二面角A -MN -Q . 14答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).设C 1D =x ,∵AC ∥PC 1, ∴111C P C D xAC CD x==-. 由此可得D (0,1,x ),P 0,1,01x x ⎛⎫+⎪-⎝⎭, ∴1A B =(1,0,1),1A D =(0,1,x ),1B P =1,1,01x x ⎛⎫-+⎪-⎝⎭. 设平面BA 1D 的一个法向量为n 1=(a ,b , c ),则11110,0.A B a c A D b cx ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令c =-1,则n 1=(1,x ,-1). ∵PB 1∥平面BA 1D ,高中数学-打印版精心校对 ∴n 1·1B P =1×(-1)+x ·11x x ⎛⎫+ ⎪-⎝⎭+(-1)×0=0. 由此可得12x =,故CD =C 1D . 答案:解:由(1)知,平面BA 1D 的一个法向量n 1=11,,12⎛⎫- ⎪⎝⎭.又n 2=(1,0,0)为平面AA 1D 的一个法向量, ∴cos 〈n 1,n 2〉=1212123||||312⋅==⨯n n n n . 故二面角A -A 1D -B 的平面角的余弦值为23. (3)求点C 到平面B 1DP 的距离. 答案:解:∵1PB =(1,-2,0),PD =10,1,2⎛⎫- ⎪⎝⎭, 设平面B 1DP 的一个法向量n 3=(a 1,b 1,c 1), 则311113120,0.2PB a b c PD b ⎧⋅=-=⎪⎨⋅=-+=⎪⎩n n 令c 1=1,可得n 3=11,,12⎛⎫ ⎪⎝⎭. 又10,0,2DC ⎛⎫= ⎪⎝⎭, ∴点C 到平面B 1DP 的距离33||1||3DC d ⋅==n n .。

高中数学选修2-1第三章《空间向量与立体几何》典型练习题(含答案)

高中数学选修2-1第三章《空间向量与立体几何》典型练习题(含答案)

高中数学选修2-1第三章《空间向量与立体几何》典型练习题一、选择题1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b a ρρB .)0,0,3(),0,0,1(-==d c ρρC .)0,0,0(),0,3,2(==f e ρρD .)40,24,16(),5,3,2(=-=h g ρρ2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b a ρρλ,且a ρ与b ρ的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A ρ取最小值时,x 的值等于( )A .19B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC u u u r u u u r>的值是( )A .21B .22C .-21D .0二、填空题1.若向量)2,3,6(),4,2,4(-=-=b a ρρ,则(23)(2)a b a b -+=r r rr g __________________。

2.若向量,94,2k j i b k j i a ρρρρρρρρ++=+-=,则这两个向量的位置关系是___________。

3.已知向量),2,4(),3,1,2(x b a -=-=ρρ,若a ⊥r b ρ,则=x ______;若//a r b ρ则=x ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 空间向量与立体几何 检测题1.α、β为两个确定的相交平面, a 、b 为一对异面直线,下列条件: ①a b αβ⊂∥,; ②,a b αβ⊥∥; ③βα⊥⊥b a ,; ④,a b αβ∥∥,且α与a 的距离等于β与b 的距离.其中能使a 、b 所成的角为定值的有 ( ) A.0个 B. 1个 C. 2个 D. 4个2.在正三棱锥P ABC -中,M 、N 分别是侧棱PB 、PC 的中点,若截面AMN ⊥侧面PBC ,则此三棱锥的侧棱与底面所成角的正切值是 ( ) A .23B.25 D .26 3.在正三棱锥S ABC -中,E 为SA 的中点,F 为△ABC 的中心,SA BC =,则异面直线EF 与AB 所成的角是 ( ) A. 90︒ B. 60︒ C. 45︒ D. 30︒4.正四棱锥P ABCD -的高为PO ,2AB PO =2cm =,则AB 与侧面PCD 的距离为( )B. 2cmC.D. 3cm5.在底面边长为a 的正三棱柱111ABC A B C -中,D 、E 分别为侧棱1BB 、1CC 上的点且2EC BC BD ==,则截面ADE 与底面ABC 所成的角为 ( ) A .30︒ B. 45︒ C. 60︒ D. 75︒6.若二面角l αβ--为23π,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是_______________________;7.已知正四棱锥的所有棱长均相等,则侧面与底面所成二面角的余弦值为______________. 8.空间四边形ABCD 中,E 、F 分别是AD 、BC 中点.若1AB =,CD =,AB CD ⊥. 则EF 与CD 所成的角为_________________.9.半球内有一内接正方体, 正方体的一个面在半球的底面圆内. 若正方体的棱长为6, 则半球的体积为 ___.10.在正四棱柱1111ABCD A BC D -中,122AB BB ==,P 为11B C 的中点. (1)求直线AC 与平面ABP 所成的角;(2)求异面直线AC 与BP 所成的角; (3)求点B 到平面APC 的距离.11.如图,在三棱柱111ABC A B C -中,四边形1是矩形,AB BC ⊥,3BC =,4AB =,160A AB ∠=︒.P(1)求证:平面1CA B ⊥平面11A ABB ;(2)求直线1AC 与平面11BCC B 所成角的正切值; (3)求点1C 到平面1A BC 的距离.12.如图,已知长方体1111,ABCD A BC D -12,1,AB AA ==直线BD 与平面11AAB B 所成的角为30︒,AE 垂直BD 于E ,F 为11A B 的中点. (1) 求异面直线AE 与BF 所成的角;(2)求平面BDF 与平面1AA B 所成的二面角; (3)求点A 到平面BDF 的距离.13.如图,在四面体P ABC -中, 6PA BC ==,10PC AB ==,8AC =,PB =,F 是线段PB 上一点,173415=CF ,点E 在线段AB 上,且EF PB ⊥. (1)求证:PB ⊥平面CEF ; (2)求二面角B CE F --的大小.14.在四棱锥P ABCD -中,AD AB ⊥,CD ∥AB ,PD ⊥底面ABCD ,ABAD=直线PA 与底面ABCD 成60︒角,点M 、N 分别是PA 、PB 的中点. (1)求二面角P MN D --的大小; (2)如果△CDN 为直角三角形,求CDAB的值.A1A BCD1B F 1C 1D E15.如图,已知四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 为直角梯形,90A ∠=︒,且AB ∥CD ,12AB CD =.(1)点F 在线段PC 上运动,且设||||PF FC λ=,问λ为何值时, BF ∥平面PAD ?并证明你的结论;(2)若二面角F CD B --为45°,求二面角B PC D --的大小;(3)在(2)的条件下,若2AD =,3CD =,求点A 到平面PBC 的距离.答案1.B2.C3.C4.A5.B6.,62ππ⎡⎤⎢⎥⎣⎦7.33 8.30︒ 9.18π 10.(1)∵AB ⊥平面1BC ,PC ⊂平面1BC ,∴AB PC ⊥.在矩形11BCC B 中,2BC =,11BB =,P 为11B C 的中点, ∴PC PB ⊥.∴PC ⊥平面ABP ,∴CAP ∠为直线AC 与平面ABP 所成的角.∵PC =AC =∴在Rt APC △中,30PAC ∠=︒,∴直线AC 与平面ABP 所成的角为30︒. (2)取11A D 中点Q ,连结AQ 、CQ ,在正四棱柱中,有AQ ∥BP , ∴CAQ ∠为异面直线AC 与BP 所成的角.在ACQ △中,AQ AC CQ ====∴60CAQ ∠=︒.∴异面直线AC 与BP 所成的角为60︒. (也可用向量法) (3)过点B 作BH AP ⊥于H , 由题(1)PC ⊥平面ABP , ∴BH PC ⊥,∴BH ⊥平面APC ,∴BH 的长即为点B 到平面APC 的距离.在Rt ABP △中,2AB =,BP =∴3BH =. 11.(1)证:∵四边形11BCC B 是矩形, ∴1BC BB ⊥.又∵AB BC ⊥,1AB BB B = ∴BC ⊥平面11A ABB .∵BC ⊂平面1ACB ,∴平面1CA B ⊥平面11A ABB .(2)解:过1A 作11AD BB ⊥于D ,连接DC . ∵BC ⊥平面11A ABB , ∴1BC A D ⊥,∴1A D ⊥平面11BCC B ,故1ACD ∠为直线1AC 与平面11BCC B 所成的角.在矩形11BCC B 中,CD =∵四边形11A ABB 是菱形,160AAB ∠=︒,3BC =,4AB =∴1A D =,∴11tan A D ACD CD ∠∠===. (3)∵11B C ∥BC ,∴11B C ∥平面1A BC , ∴1C 到平面1A BC 的距离即为1B 到平面1A BC 的距离. 连结1AB ,设11AB A B O = . ∵四边形11A ABB 是菱形, ∴11A B B O ⊥.∵平面1A BC ⊥平面11A ABB , ∴1B O ⊥平面1A BC ,∴1B O 即为1C 到平面1A BC 的距离.∵1BO =, ∴1C 到平面1A BC 的距离为32.12.在长方体1111ABCD A BC D -中,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,1AA 所在的直线为z 轴,建立如图示空间直角坐标系.由已知12,1,AB AA ==可得(0,0,0),(2,0,0)A B ,(1,0,1)F . 又AD ⊥平面11AAB B ,从而BD 与平面11AAB B 所成的角为30DBA ∠=︒. 又2AB =,AE BD ⊥,1,AE AD ==.从而易得1,2E D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (1)∵12AE ⎛⎫= ⎪ ⎪⎝⎭,(1,0,1)BF =- ,∴cos ,AE BFAE BF AE BF⋅<>=14-==-. 易知异面直线AE BF 、所成的角为arccos4 (2)易知平面1AA B 的一个法向量(0,1,0)m =. 设(,,)n x y z =是平面BDF 的一个法向量. (BD =- .由00n BF n BF n BD n BD ⎧⎧⊥⋅=⎪⎪⇒⎨⎨⊥⋅=⎪⎪⎩⎩020x z x y -+=⎧⎪⇒⎨=⎪⎩x z y =⎧⎪⇒=.即(1n = .∴cos ,m n m n m n⋅<>==即平面BDF 与平面1AA B所成的二面角的大小(锐角)为. (3)点A 到平面BDF 的距离,即AB在平面BDF 的法向量n 上的投影的绝对值,∴距离cos ,d AB AB n =⋅<>AB n n⋅==. ∴点A 到平面BDF的距离为513.(I )证明:∵2221006436PC AC PA ==+=+,∴△PAC 是以PAC ∠为直角的直角三角形.同理可证,△PAB 是以PAB ∠为直角的直角三角形,△PCB 是以PCB ∠为直角的直角三角形.故PA ⊥平面ABC .又∵11||||1063022PBC S AC BC ∆==⨯⨯=.而11||||302217PBC PB CF S ∆=⨯==. 故CF PB ⊥,又已知EF PB ⊥. ∴PB ⊥平面CEF .(II )由(I )知CE PB ⊥, PA ⊥平面ABC , ∴AB 是PB 在平面ABC 上的射影,故AB CE ⊥.在平面PAB 内,过F 作1FF 垂直于AB 于1F ,则1FF ⊥平面ABC . 1EF 是EF 在平面上的射影,∴EF EC ⊥.故BEF ∠是二面角B CE F --的平面角.35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B CE F --的大小为35arctan .14.解法一:(1)PMD ∠为二面角P MN D --的平面角. 计算得二面角P MN D --的大小为120︒. (2)①若90CDN ∠=︒,与题意不符;②若90DCN ∠=︒,可算得12CD AB =; ③若90CND ∠=︒,可算得32CD AB =. 解法二:用向量方法(略).15.(1)当1λ=时, BF ∥平面PAD .证明:取PD 中点E ,则EF ∥CD ,且12EF CD =. 又AB ∥CD ,且12AB CD =, ∴四边形ABFE 为平行四边形. ∴BF ∥AE .又AE ⊂平面PAD , ∴BF ∥平面PAD .(2)⊥PA 平面ABCD ,CD AD ⊥,∴CD PD ⊥,PDA ∠即是二面角的平面角,︒=∠45PDA . ∴△PAD 为等腰直角三角形,∴AE PD ⊥. ∵CD AD ⊥, ∴AE CD ⊥.∴AE ⊥平面PCD . 又BF ∥AE ,∴BF ⊥平面PCD . ⊂BF 平面PBC ,∴平面PCD ⊥平面PBC ,即二面角B PC D --的大小为90︒. (3)在平面PCD 内作EH PC ⊥于点H ,由平面PCD ⊥平面PBC ,且平面PCD 平面PBC PC =,∴EH ⊥平面PBC .在Rt PCD ∆中, PC ==在Rt PEF ∆中, EH PF PE EF ⋅=⋅,将32PE PF EF ===代入得, EH =.即点E 到平面PBC . 又//AE BF ,∴//AE 平面PBC ,∴点A 到平面PBC .。

相关文档
最新文档