第10章 色谱分析基本概念
天然药物化学第二章,第三节,色谱分离

薄层色谱的操作技术流程
铺
板
点
样
展
开
计算比移值
显色与定位
二、吸附色谱法
(五)操作技术 1.薄层色谱法 步骤:制板→点样→展开→显色→Rf值计算
43
操作步骤
(1)软板的制备
软板:直接将吸附剂(我们有哪些吸咐剂)铺在玻璃板上制 成,不加粘合剂 要求:厚度→随分离要求而定,一般0.25~0.5mm 玻璃棒推动速度不宜过快、也不应停顿→影响厚度均一性
5
植物色素分离图示
一、分离原理和基本概念:
色谱法: 是利用混合物中各成分在 流动相和固定相之间的 作用力和亲和力(吸附, 分配,离子交换、分子 筛)的不同,在两相中 作相对移动时,混合物 中各种成分随流动相运 动速度不同,从而达到 相互分离的方法。
7
8
色谱分离
慢 中等 快
淋洗液
Temporal course
适用范围
酸性成分:氨基酸、有机酸; 对酸稳定的中性成分 生物碱、甾体、强心苷
备注
不适用:醛、 酮、酯、内酯 类成分
中性成分:醛、酮、皂苷、萜 中性 6.5~7.5 类
★
27
常用吸附剂
2.硅胶(应用最多★) 吸附能力决定于硅羟基数,吸附活性取决于含水量。
OH Si O O Si O O O O O OH Si O Si O O Si O O O OH Si O Si O O Si O O O OH Si O Si O O O OH Si O Si O O O
炭。
二、吸附色谱法
(二)吸附剂(固定相) 选择合适的吸附剂是吸附色谱法成功的关键。★ 良好的吸附剂应具备: ①不与样品及流动相发生化学反应 ②不溶于流动相 ③具有较大的表面积和一定的吸附能力。 ④具有一定的细度,颗粒要均匀。
第十五章色谱分析法导论

3.峰底宽度Y---即色谱峰两侧拐点上的切线在基线上截距间的 距离。它与标准偏差的关系是 Y=4
16
5.保留值
试样各组分在色谱柱中保留行为的量度,反映了组 分与固定相间作用力大小,通常用保留时间和保留体 积表示。可以揭示色谱过程的作用机理和分子的结构 特征。
(1)保留时间tR 试样从进样到柱后出现峰极大点时所经过的时间,
12
13
二、色谱常用术语
1.色谱图
色谱柱中的流出物通过检测器产生的信号对时间(或流动 相体积)的曲线 在适当的色谱条件下,每个组分对应的色谱峰一般呈正态分 布,色谱图是定性、定量和评价色谱分离情况的基本依据。
14
色谱峰
号 信 进样 空气峰
h
2.基线
a
色谱流出曲线
色谱柱中只有载气无样品通过时,检测器响应信号反应的
n有效= 5.54(tR / W1/2)2 = 16 ( tR / Wb)2 有效板高 : H有效 = L / n有效
27
例:已知某组分峰的峰底宽为40 s,保留时间为400 s ,计算此色谱柱的理论塔板数。 解: n = 16 ( tR / Y)2 = 16 (400 / 40)2 = 1600 块
量。 3.分析速度快 4.应用范围广:气相色谱--沸点低于400度;液相
色谱--高沸点、热不稳定、生物试样。 5.不足:被分离组分的定性问题
11
第一节 色谱基本概念
一、色谱分离过程
AB两组分吸附能力 和分配系数的差别, 导致两组分在柱中 移动速率不同,经 过数次吸附(分配), 组分逐渐分开,先 后进入检测器检测。
一、塔板理论 最早由英国生物学家Martin提出。把色谱柱比作一个精馏塔,沿用
色谱分析2全解

(4) 各种因素相互制约,如载气流速增大,分子扩散项的影 响减小,使柱效提高,但同时传质阻力项的影响增大,又使 柱效下降;柱温升高,有利于传质,但又加剧了分子扩散的 影响,选择最佳条件,才能使柱效达到最高。
三、色谱基本分离方程式
n理
5.54( tR W1/ 2
)2
16( tR Wb
)2
n有效
5.54(
t
' R
)2
W1/ 2
16(
t
' R
)2
Wb
L H 有效 n有效
同一根色谱柱对不同组分的柱效能是不一样的,当 用这些指标表示柱效能的时候,应说明对何种组分
例:用一根柱长为1m的色谱柱分离含有A,B,C, D四个组分的混合物,它们的保留时间tR分别为 6.4min,14.4min,15.4min,20.7min,其峰底宽Wb分别 为0.45min,1.07min,1.16min,1.45min。 试计算:各谱峰的理论塔板数。
3、色谱基本保留方程
基本保留方程可表示为:
tR = t0(1+k) 若载气流量F0恒定,也可用保留体积表示,则
VR=Vg+KVl 这就是色谱基本保留方程。
上式说明,色谱柱确定后,Vl和Vg即为定值。由此可见, 分配系数不同的各组分具有不同的保留值,因而在色谱图上 有不同位置的色谱峰。
例:用一根固定相的体积为0.148mL,流动相的体积为1.26mL 的色谱柱分离A,B两in,不被保留组分的保留时间为4.2min,试计算: (1)各组分的容量因子 (2)各组分的分配系数 (3)AB两组分的选择因子rB,A
第九章 色谱法概论-2

8)选择性因子 α:调整保留值 ) 之比
某组分2的调整保留值与组分1的调整保留 值之比,称为选择性因子 。 由于相对保留值只与柱温及固定相性质有 关,而与柱径、柱长、填充情况及流动 相流速无关,因此,它在色谱法中,特 别是在气相色谱法中,广泛用作定性的 依据。 K2 k2 α = r2, = = 1 K1 k1
1.流出曲线和色谱峰
色谱图) 流出曲线(色谱图):电信号强度随时间变化曲线 色谱峰:流出曲线上突起部分 色谱峰
从色谱图上可以得到许多重要 信息:
①根据色谱峰的个数,可以判断试样中所含组 分的最少个数。 ②根据色谱峰间的距离,可评价色谱条件的选 择是否合理。 ③利用色谱峰的保留值及区域宽度,可评价柱 效。 ④根据色谱峰的保留值,可以对组分进行定性 分析。 ⑤根据色谱峰的面积或峰高,可以对组分进行 定量分析。
♠某组分的 = 0时,即不被固定相保留,最先流出。 某组分的K 某组分的 时 即不被固定相保留,最先流出。
11.容量因子 11.
分配系数K 分配系数 : K = CS
以吸附色谱为例见图示 吸附→ 解吸→再吸附 →再解吸 →反复多次洗 脱→被测组分分配系数不同→ 差速迁移 → 分 离
图示
分配系数的微小差异→吸附能力的微小差异 微小差异积累→较大差异→吸附能力弱的组分先流出; 吸附能力强的组分后流出 back
色谱过程示意图
二、色谱流出曲线和基本概念
1.流出曲线和色谱峰 2.保留值:色谱定性参数 3.色谱峰的区域宽度:色谱柱效参数
第2节 色谱过程与术语 一、 色谱过程:
色谱过程是当流动相中携带的混合物流
经固定相时,其与固定相发生相互作用。 经固定相时,其与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差 与固定相之间产生的作用力的大小、 异,与固定相之间产生的作用力的大小、 强弱不同,随着流动相的移动, 强弱不同,随着流动相的移动,混合物在 两相间经过反复多次的分配平衡, 两相间经过反复多次的分配平衡,使得各 组分被固定相保留的时间不同, 组分被固定相保留的时间不同,从而按一 定次序由固定相中流出。 定次序由固定相中流出。
(第三章)药物分析-色谱分析法

纸色谱
1)紫外光 :对未知化合物,展开后在用显色剂以前,应先在紫 外灯下进行察看。紫外光常用两种波长254 nm与365 nm。
2)碘:碘是一种非破坏性显色剂,价廉易得,显色迅速、灵敏。 与物质的反应往往是可逆的。
3)水:为非破坏性显色剂,用于硅胶薄层,纸色谱不常用。
纸色谱
④ 测量Rf值与鉴定:
必须注意:展开剂也须事先用缓冲液平衡后再使用。
斑点拖尾现象形成的几种原因:
① 点样量过多,超过了滤纸溶剂的溶解能力。
② 物质电离,导致Rf值差异。
③ 被分离的物质与滤纸上的Cu2+、Ca2+、Mg2+等杂质形 成络合物而形成拖尾,可改用纯滤纸展开。 ④ 某些物质在展开过程中分解,产物有不同的Rf值。
样点朝上,展开剂从上向下通过薄层或滤纸。展开 剂通过滤纸条或纱布条作为桥梁进行转移。展开剂 受吸附和重力的双重作用,展开较快。
特 殊 装 置
纸色谱的下行展开法
3. 双向展开
用于某些复杂成分或Rf值较小的成分的展开
B
d
C
c
b
a
d
c
b
a
A
混合样品
CB
A
**边缘效应: 消除边缘效应的方法: 1. 将展开槽、纸或薄层板用展开剂蒸气饱和; 2. 在层析缸内壁贴上用展开剂浸湿的滤纸条; 3. 点样位置距离边缘一定距离。
(1)氧化铝:有碱性、中性和酸性三类,粒度规格大多为100~150目。 碱性氧化铝(pH9~10):适用于碱性物质(如胺、生物碱)和对酸敏感的 样品(如缩醛、糖苷等),也适用于烃类、甾体化合物等中性物质的分离。 酸性氧化铝(pH3.5~4.5):适用于酸性物质如有机酸、氨基酸等以及色素 和醛类化合物的分离。 中性氧化铝(pH7~7.5):适用于醛、酮、醌、苷和硝基化合物以及在碱性 介质中不稳定的物质如酯、内酯等的分离,也用来分离弱的有机酸和碱等。
第五章 色谱分析法基本理论

例:关于保留因子的计算习题:
在某色谱柱上A组分流出需要10min,组分B流出需要 20min,而不溶于固定相的物质C流出需要2.0min,分 别计算:A、B组分在柱中的保留因子。
色谱分离前提→各组分分配系数不等
t
B R
tM (1 K B
Vs ) Vm
t
A R
tM
固定相——除了固体,还可以是液体 流动相——液体、气体、超临界流体等 色谱柱——各种材质和尺寸 被分离组分——不再仅局限于有色物质
5—1 概述
三、分类 1、按两相分子的聚集状态分
流动相 液体 液体 气体 气体
超临界流体
固定相 固体 液体 固体 液体
类型 液-固色谱 液相色谱 液-液色谱 气-固色谱 气相色谱 气-液色谱
是指相邻两峰峰顶间距离与两峰基线宽度平均值的比值(衡 量色谱分离条件优劣的参数);涉及色谱过程热力学因素和 动力学因素。
R 2(tR2 tR1 ) 1.177(tR2 tR1 )
W1 W2
W1 2 (1) W1 2 (2)
设色谱峰为正常峰(峰形对称且满足正态分布),
且W1 W2 =4 若R = 0,峰间距 tR = 0,两峰完全重合; R = 1,tR = 4,两峰分离度可达98%; R = 1. 5,tR = 6,两峰离度可达99.7%;可视为完 全分离
超临界 流体色谱
5—1 概述
三、分类
2、按固定相的固定方式分
柱色谱
填充柱色谱 毛细管柱色谱 微填充柱色谱
纸色谱(PC):滤纸作固定液的载体 平面色谱 薄层色谱(TLC):固定相涂布于玻璃板或者铝箔板上
薄膜色谱(TFC):高分子固定相制成薄膜
5—1 概述
三、分类
第4章 色谱分析基础

较小。分析工作中通常倾向于使用较低的配比。
关于固定液
固定液的性质对分离是起决定作用的。在这里讨论一下 固定液的用量问题。一般来说,担体的表面积越大,固定液 用量可以越高,允许的进样量也就越多。但从下式可见,
为了改善液相传质,应使液膜薄一些。目前填充色谱柱 中盛行低固定液含量的色谱柱。固定液液膜薄,柱效能提高 ,并可缩短分析时间;但固定液用量太低,液膜超薄,允许 的进样量也就越少。因此固定液的用量要根据具体情况决定 。 固定液的配比一般用5:100到25:10O,也有低于5:100的 。不同的担体为要达到较高的柱效能,其固定液的配比往往 是不同的。一般来说,担体的表面积越大,固定液的含量可 以越高。
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
将常数项的关系式代入简化式得:
(1)范弟姆特方程式对于分离条件的选择具有指导意义。它 可以说明 ,填充均匀程度、担体粒度、载气种类、载气流速 、柱温、固定相液膜厚度等对柱效、峰扩张的影响。 (2)各种因素相互制约,如:Dg(M载气 、柱温)。
k值增大,有利于分离,但k > 10时,对R的 增加不明显,也会显著增加分析时间 k的最佳范围:1 ~ 10
(3)与柱选择性的关系 r2,1越大,柱选择性越好,分离效果越好。如果两 个相邻峰的选择因子足够大,则即使色谱柱的理 论塔板数较小,也可以实现分离。 柱长的选择
n有效
r21 2 16 R ( ) r21 1
2 2
r21 2 L 16 R ( ) H 有效 r21 1
L2 R2 2 L1 R1
2
例题1:
在一定条件下,两个组分的调整保留时间分别为85秒和 100秒,要达到完全分离,即R=1.5 。计算需要多少块有效 塔板。若填充柱的塔板高度为0.1 cm,柱长是多少? 解: r21= 100 / 85 = 1.18 n有效 = 16R2 [r21 / (r21 —1) ]2 = 16×1.52 ×(1.18 / 0.18 ) 2 = 1547(块) L有效 = n有效· 有效 = 1547×0.1 = 155 cm H 即柱长为1.55米时,两组分可以得到完全分离。
第十八章 高效液相色谱法 - 章节小结

一、主要内容1.基本概念(1)化学键合相:利用化学反应将有机基团键合在载体表面形成的固定相。
(2)化学键合相色谱法:以化学键合相为固定相的色谱法。
(3)正(反)相色谱法:流动相极性小(大)于固定相极性的液相色谱法。
(4)抑制型(双柱)离子色谱法:用抑制柱消除流动相的高电导本底,以电导为检测器的离子交换色谱法。
(5)手性色谱法:利用手性固定相或手性流动相添加剂分离分析手性化合物的对映异构体的色谱法。
(6)亲合色谱法:利用或模拟生物分子之间的专一性作用,从复杂生物试样中分离和分析特殊物质的色谱方法,是基于组分与固定在载体上的配基之间的专一性亲和作用而实现分离的色谱法。
(7)梯度洗脱:在一个分析周期内程序控制改变流动相的组成,如溶剂的极性、离子强度和pH值等。
(8)静态流动相传质阻抗Csm:由于组分的部分分子进入滞留在固定相微孔内的静态流动相中,因而相对晚回到流路中,引起的峰展宽。
(9)键合相的含碳量:键合相碳的百分数,可通过对键合硅胶进行元素分析测定。
(10)键合相的覆盖度:参加反应的硅醇基数目占硅胶表面硅醇基总数的比例。
(11)封尾:在键合反应后,用三甲基氯硅烷等对键合相进行钝化处理,减少残余硅醇基,即封尾。
(12)溶剂的极性参数P':表示溶剂与三种极性物质乙醇(质子给予体)、二氧六环(质子受体P')和硝基甲烷(强偶极体)相互作用的强度。
用于度量分配色谱的溶剂强度。
P'越大,溶剂的极性越强,在正相分配色谱中的洗脱能力越强。
(13)溶剂的强度因子S:常为反相键合相色谱的溶剂洗脱能力的度量。
(14)三维光谱-色谱图:用DAD检测器检测,经过计算机处理,将每个组分的吸收光谱和试样的色谱图结合在一张三维坐标图上,即获得三维光谱-色谱图。
2.基本理论(1)速率理论在HPLC中表达式为:H=A+C m u+C s m u 用于指导实验条件的选择。
A、Cm和Csm均随固定相粒度dp变小而变小,因此保证HPLC高柱效的主要措施是使用小粒度的固定相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
c0 σ 2π
e
当色谱峰为非正态分布时,可按正态分布函数加指数衰 减函数构建关系式。
目 录
1-1 色谱法概述
1-1-1 色谱法的特点、分类和作用 1-1-2 色谱分离过程 1-1-3 色谱流出曲线与术语
1-2 色谱理论基础
1-2-1 塔板理论 1-2-2 速率理论 1-2-3 分离度 1-3 定性定量方法 1-3-1 色谱定性分析 1-3-2 色谱定量分析
色谱柱长:L, 虚拟的塔板间距离:H,
色谱柱的理论塔板数:n,
则三者的关系为: n=L/H
理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
保留时间包含死时间,在死时间内不参与分配!
2.有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。
调整保留时间(tR'):tR'= tR-tM
(2)用体积表示的保留值 保留体积(VR): VR = tR×F0 F0为柱出口处的载气流量,
单位:m L / min。
死体积(VM):
VM = tM ×F0
调整保留体积(VR'):
V R' = VR -VM
3. 相对保留值r21 组分2与组分1调整保留值之比: r21 = t´R2 / t´R1= V´R2 / V´R1 相对保留值只与柱温 和固定相性质有关,与其 他色谱操作条件无关,它 表示了固定相对这两种组 分的选择性。
式中为相比。 填充柱相比:6~35;毛细管柱的相比:50~1500。 容量因子越大,保留时间越长。 VM为流动相体积,即柱内固定相颗粒间的空隙体积; VS为固定相体积,对不同类型色谱柱, VS的含义不同; 气-液色谱柱: VS为固定液体积; 气-固色谱柱: VS为吸附剂表面容量;
5. 分配比与保留时间的关系 滞留因子(retardation factor):
1-2-2 速率理论-影响柱效的因素
1. 速率方程
H = A + B/u + C· u
H:理论塔板高度,
u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效; 存在着最佳流速;
A、B、C三项各与哪些因素有关?
A─涡流扩散项
A = 2λdp
dp:固定相的平均颗粒直径 λ:固定相的填充不均匀因子
1. 分配系数与分配比都是与组分及固定相的热力学性质
有关的常数,随分离柱温度、柱压的改变而变化。 2.分配系数与分配比都是衡量色谱柱对组分保留能力的
参数,数值越大,该组分的保留时间越长。
3. 分配比可以由实验测得。
4. 容量因子与分配系数的关系
MS VS MS VS c s VS K k MS Mm cm Vm Vm Vm
3.塔板理论的特点和不足 (1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越 小),被测组分在柱内被分配的次数越多,柱效能则越高,所 得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。 (3)柱效不能表示被分离组分的实际分离效果,当两组 分的分配系数K相同时,无论该色谱柱的塔板数多大,都无法 分离。 (4)塔板理论无法解释同一色谱柱在不同的载气流速下 柱效不同的实验结果,也无法指出影响柱效的因素及提高柱 效的途径。
理不同。
气固(液固)色谱的固定相: 多孔性的固体吸附剂颗粒。
固体吸附剂对试样中各组分的吸附能力的不同。 气液(液液)色谱的固定相: 由 担体和固定液所组成。 固定液对试样中各组分的溶解能力的不同。
气固色谱的分离机理:
吸附与脱附的不断重复过程;
气液色谱的分离机理:
气液(液液)两相间的反复多次分配过程。
(3)其他色谱方法 薄层色谱和纸色谱:
比较简单的色谱方法
凝胶色谱法:测聚合物分子
量分布。
超临界色谱: CO2流动相。 高效毛细管电泳: 九十年代快速发展、特 别适合生物试样分析分离的
高效分析仪器。
3.色谱法的特点 (1)分离效率高
复杂混合物,有机同系物、异构体。手性异构体。
(2) 灵敏度高 可以检测出μ g.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。 (3) 分析速度快
1. 气相色谱分离过程 当试样由载气携带进入色 谱柱与固定相接触时,被固定 相溶解或吸附; 随着载气的不断通入,被 溶解或吸附的组分又从固定相 中挥发或脱附; 挥发或脱附下的组分随着 载气向前移动时又再次被固定 相溶解或吸附; 随着载气的流动,溶解、 挥发,或吸附、脱附的过程反 复地进行。
分析化学(仪器分析部分)
第一章 色谱法基本概念
目 录
1-1 色谱法概述
1-1-1 色谱法的特点、分类和作用 1-1-2 色谱分离过程 1-1-3 色谱流出曲线与术语
1-2 色谱理论基础
1-2-1 塔板理论 1-2-2 速率理论 1-2-3 分离度
1-3 定性定量方法
1-3-1 色谱定性分析 1-3-2 色谱定量分析
பைடு நூலகம்
2.色谱法分类
(1)气相色谱:流动相为气体(称为载气)。 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按固定相的不同又分为:气固色谱和气液色谱
(2)液相色谱:流动相为液体(也称为淋洗液)。 按固定相的不同分为:液固色谱和液液色谱。
离子色谱:液相色谱的一种,以特制的离子交换树脂
为固定相,不同pH值的水溶液为流动相。
固定相颗粒越小dp↓,填充的越均匀,A↓,H↓,柱效 n↑。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱 峰较窄。
B/u —分子扩散项
B = 2 νDg ν :弯曲因子,填充柱色谱,ν <1。
Dg:试样组分分子在气相中的扩散系数(cm2·-1) s (1) 存在着浓度差,产生纵向扩散;
(2) 扩散导致色谱峰变宽,H↑(n↓),分离变差;
(3) 分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑;
(4) 扩散系数:Dg ∝(M载气)-1/2 ; M载气↑,B值↓。
C · —传质阻力项 u 传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
C =(Cg + CL)
0.01k d Cg 2 (1 k ) Dg
2 k CL 2 3 (1 k ) DL
k为容量因子; Dg 、DL为扩散系数。 减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
2
2 p
d2 f
2.载气流速与柱效——最佳流速 载气流速高时: 传质阻力项是影响柱效的 主要因素,流速,柱效。 载气流速低时: 分子扩散项成为影响柱效 的主要因素,流速,柱效 。 H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影 响使得存在着一个最佳流速值,即速率方程式中塔板高度对 流速的一阶导数有一极小值。 以塔板高度H对应载气流速u作图,曲线最低点的流速即 为最佳流速。
一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广
气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。
不足之处:
被分离组分的定性较为困难。
1-1-2 色谱分离过程
色谱分离过程是在色谱柱内完成的。 填充柱色谱:气固 (液固 )色谱和气液 (液液)色谱,两者的分离机
1-1-1 色谱法的特点、分类和作用 1-1-2 色谱分离过程 1-1-3 色谱流出曲线与术语
1-2 色谱理论基础
1-2-1 塔板理论 1-2-2 速率理论 1-2-3 分离度
1-3 定性定量方法
1-3-1 色谱定性分析 1-3-2 色谱定量分析
1-1-1 色谱法的特点、分类和作用
1.概述 混合物分离、分析的有效的方法。 俄国植物学家茨维特在1906年使用的装置: 色谱原型装置,如图。(Chromatography) 色谱法是一种分离技术, 试样混合物的分离过程也就是试样中各组分 在称之为色谱分离柱中的两相间不断进行着的分 配过程。 其中的一相固定不动,称为固定相; 另一相是携带试样混合物流过此固定相的流 体(气体或液体),称为流动相。
uS RS u
us:组分在分离柱内的线速度;u:流动相在分离柱内的线
速度;滞留因子RS也可以用质量分数ω表示:
ms RS ms m M 1 1 ms 1 k 1 mM
若组分和流动相通过长度为 L 的分离柱,需要的时间分 别为tR和tM,则:
L tR ; uS L tM u
由以上各式,可得: tR = tM(1+k)
' tR tM tR k tM tM
1-1-3 色谱流出曲线与术语
1.基线 无试样通过检测器时, 检测到的信号即为基线。 2.保留值 (1)时间表示的保留值 保留时间(tR):组 分从进样到柱后出现浓度 极大值时所需的时间; 死时间(tM):不与固定相作用的气体(如空气)的保 留时间;
4. 区域宽度
用来衡量色谱峰宽度的参
数,有三种表示方法:
(1)标准偏差(): 即 0.607 倍
峰高处色谱峰宽度的一半。
(2)半峰宽(Y1/2):色谱峰高一
半处的宽度 Y1/2 =2.354
(3)峰底宽(Wb):Wb=4
5. 色谱流出曲线的数学描述 色谱峰为正态分布时,色谱流出曲线上的浓度与时间的 关系为:
2. 分配系数( partion coefficient) K 组分在固定相和流动相间发生的吸附、脱附,或溶解、 挥发的过程叫做分配过程。在一定温度下,组分在两相间 分配达到平衡时的浓度(单位:g/mL)比,称为分配系数, 用K 表示,即:
K 组分在固定相中的浓度 cs 组分在流动相中的浓度 cM