压裂技术

合集下载

压裂工艺技术

压裂工艺技术

(四)异常情况及处理措施
现场处理措施选择次序
⑴磁性定位校验卡点深度。深度无差错则挤 酸处理目的层,降低地层破裂压力及解除近井污 染后再压裂。
⑵深度若有差错,则调整准确后再压裂。 ⑶磁性定位测井时,根据下井仪器的遇阻深 度判断管柱是否堵塞。有堵塞则起出管柱,通油 管后重下压裂管柱再压裂。
(四)异常情况及处理措施
液体添加泵
泵1排量=218L/min 泵2 排量=87L/min
操作模式
手控
仪表车
大泵控制
电源、发动机、档位、泵速、紧急制动、报警
1台
计算机
TS—80、PDU监测系统、数显器
打印机
4笔绘图器
其它
HDE现场参数校正仪、SM—A压差式砂密度计
1、大泵水功率1300马; 2、柱塞直径114.3mm; 3、冲程203.2mm.
4 压裂后套管不许放喷,以防砂卡。
5 注意文明施工与安全生产:施工过程中,非工作 人员禁止进入施工现场。
6 注意环境保护:严格按国家环境保护法执行。
7 砂柱高度要求在射孔底界以下15m,否则下冲砂 管柱冲砂。
8 需刮蜡、洗井的:下刮蜡管柱:φ54mm工作筒, φ118mm刮蜡器,深度至射孔底界下10m,用45℃热水 洗井,水量为井筒容积的2.5倍。
(四)异常情况及处理措施
压窜
压窜的原因可分为两大类,一是管外窜槽, 二是管柱问题。
管外窜槽有:地层窜槽、水泥环窜槽; 管柱问题有:封隔器不坐封、封隔器胶筒破 裂、油管破裂、油管接箍断脱、管柱深度出现差 错等。
(四)异常情况及处理措施
现场处理措施选择次序
⑴停泵,套管放空,反复2~3次。 ⑵仍有窜槽显示则磁性定位校验卡点深度。 ⑶深度无差错则上提管柱至未射孔井段,验封。

压裂技术详解

压裂技术详解

压裂技术详解第一节压裂设备1.压裂车:压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。

压裂车主要由运载、动力、传动、泵体等四大件组成。

压裂泵是压裂车的工作主机。

现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。

2.混砂车:混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车.它的结构主要由传动、供液和输砂系统三部分组成。

3.平衡车:平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管.另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。

4.仪表车:仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。

5.管汇车:管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。

第二节压裂施工基本程序1.循环:将压裂液由液罐车打到压裂车再返回液罐车。

循环路线是液罐车—混砂车-压裂泵—高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。

循环时要逐车逐档进行,以出口排液正常为合格。

2.试压:关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。

3.试挤:试压合格后,打开总闸门,用1—2台压裂车将试剂液挤入油层,直到压力稳定为止.目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。

4.压裂:在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。

5.支撑剂:开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。

6.替挤:预计加砂量完全加完后,就立即泵入顶替液,把地面管线及井筒中的携砂液全部顶替到裂缝中去,防止余砂乘积井底形成砂卡。

7.反洗或活动管柱顶替后立即反洗井或活动管柱防止余砂残存在井筒封隔器卡距之内,造成砂卡.第三节压裂液原理压裂的实质是利用高压泵组,将具有一定粘度的液体高速注入地层。

压裂技术

压裂技术

压裂技术压裂技术是一种为提高油气开采效率而发展起来的技术手段,通过注入高压液体进入油井中,对油层进行压裂,以增加储层的渗透性和产能。

随着石油资源的日益枯竭和对能源需求的不断增长,压裂技术在油气勘探开发中扮演着至关重要的角色,并逐渐成为石油工业的重要组成部分。

压裂技术的出现,为传统的油气开采方式带来了革命性的变革。

传统的油气开采多依赖于自然渗流,即油气通过地层自然渗透的压力和浸润作用到井中采集。

但大部分油气在地层储层中存在并不稳定,导致油井生产压力逐渐下降,产能缩减。

而通过压裂技术,可以通过人工增加井底的压力,迫使油气从储层中流出,大幅度提高产能和产出效率。

压裂技术的原理是通过高压泵将水或其他流体从井口注入油井,使其压力超过油层的破裂强度,形成裂缝。

然后,在压裂液的作用下,油层裂缝扩大,并与井身连接,形成一条通道,使固体颗粒得以进入油层储集空间,增加渗透性。

经过压裂处理后,油火可以更加顺利地从油层中流出,并被采集到地面上。

压裂技术的应用不仅能提高油井的产能,还能提高储层的利用率。

在一些低渗透性油气藏中,压裂技术可以扩大油层的渗透性,提高储层的采收率。

同时,压裂技术也被广泛应用于页岩气和致密油开发中。

这些资源属于非常低渗透性的储层,传统的采收方式往往效果不佳。

而通过压裂技术,可以将油气从储层中释放出来,大幅度提高采收率。

不过,压裂技术也面临着一些技术和环境挑战。

首先,压裂参数的选择非常关键,需要根据油层的特性和实际需求来确定合适的注入压力和液体组成。

其次,压裂过程对水资源的需求较大,并产生大量的废水。

处理和回收这些废水不仅成本高昂,而且需要应对水资源短缺和环境污染的问题。

此外,压裂技术也有一定的地质风险,可能导致地层破坏、井眼塌陷等问题。

因此,在使用压裂技术时,需加强油气勘探开采的科学监管和技术研究,以减少环境和社会风险。

总的来说,压裂技术作为油气勘探开采领域的一项重要技术,为提高油气产能和储层利用效率发挥了重要作用。

油田开发技术-压裂

油田开发技术-压裂
十变优化参数:排量、压裂液类型(黏度)、支撑剂类
型、支撑剂粒径、稠化剂浓度、交联比、破胶剂浓度、 砂液比、压后放喷油嘴尺寸、抽汲及生产期的井底流压 (考虑应力敏感后,不同时期要求不同的值)。
二、压裂设计方法
压裂多级优化技术示意图 ——“十变”分阶段优化参数
线性胶
深井低浓度稠化剂
压裂液类型
降低稠化剂浓度
• 正设计:根据压裂施工规模预测增产倍数
a.确定前置液量、混砂液量以及砂量; b.选择适当的施工排量、计算施工时间; c.计算动态裂缝几何尺寸; d.支撑剂在裂缝中的运移分布,确定支撑裂缝几何尺寸;
e.预测增产倍比。
二、压裂设计方法
压裂施工设计计算步骤(逆设计)
a. 根据增产要求确定裂缝长度和导流能力; b. 预选施工排量、前置液量和携砂液量; c. 计算动态裂缝几何尺寸; d. 支撑剂在裂缝中的运移与分布,确定支撑裂缝几何尺寸; e. 计算支撑裂缝长度和导流能力以及增产倍比; f. 如果满足增产要求则结束,否则重选液量、砂量,返回
延迟交联时间:3060s 稳定性: 170S-1连续剪切1h,粘度70100mPa.s 低摩阻:小于清水的50% 破胶性能:破胶时间24h,水化液粘度≤5.0mPa.s 低伤害率:岩芯伤害率小于25% 应用范围:适应于25℃〜50℃的储层。
中国 . 西安
三、压裂体系
中温压裂液体系
该压裂液体系是以低浓度的羟丙基瓜胶为稠化剂、具有 一定延迟交联有机硼为交联剂,加其它添加剂组成的压裂液 配方体系。具有交联时间可调、流变性能好、彻底破胶、残 渣少、伤害小等特点。 主要技术性能指标:
•低浓度瓜胶压裂液
速溶瓜胶压裂液
•稠化水压裂液
酸基压裂液....

压裂技术详解

压裂技术详解

压裂技术详解第一节压裂设备1.压裂车:压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。

压裂车主要由运载、动力、传动、泵体等四大件组成。

压裂泵是压裂车的工作主机。

现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。

2.混砂车:混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。

它的结构主要由传动、供液和输砂系统三部分组成。

3.平衡车:平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管。

另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。

4.仪表车:仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。

5.管汇车:管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。

第二节压裂施工基本程序1.循环:将压裂液由液罐车打到压裂车再返回液罐车。

循环路线是液罐车-混砂车-压裂泵-高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。

循环时要逐车逐档进行,以出口排液正常为合格。

2.试压:关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。

3.试挤:试压合格后,打开总闸门,用1-2台压裂车将试剂液挤入油层,直到压力稳定为止。

目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。

4.压裂:在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。

5.支撑剂:开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。

6.替挤:预计加砂量完全加完后,就立即泵入顶替液,把地面管线及井筒中的携砂液全部顶替到裂缝中去,防止余砂乘积井底形成砂卡。

7.反洗或活动管柱顶替后立即反洗井或活动管柱防止余砂残存在井筒封隔器卡距之内,造成砂卡。

压裂的技术种类3篇

压裂的技术种类3篇

压裂的技术种类第一篇:常见的压裂技术压裂是一种在地下岩石中注入高压液体,以打开自然气和原油储层并促进油气的流动的技术。

这项技术已成为能源开发行业的常用技术。

这里将介绍一些常见的压裂技术。

1. 液态压裂液态压裂是最早出现的压裂技术,它使用液体(通常是水)注入井中并对岩石施加高压,以打开裂缝和孔隙,促进油气的流动。

这种技术被广泛应用于油气勘探和生产领域。

2. 液态热压裂液态热压裂利用高温加热液体,以增加注入岩石中的压力和渗透能力,从而加速油气的释放和流动。

这种技术在石油天然气勘探和开发中都有应用。

3. 脉冲压裂脉冲压裂是利用高压液体产生的脉冲效应来打开地下岩石裂缝的一种技术。

该技术的优点在于需要较小的注入压力就能达到理想的裂缝效果。

4. 爆炸压裂爆炸压裂是利用炸药等爆炸物产生的大量高压气体和震动波,来塑造地下岩石形态和打开裂缝的一种技术。

虽然效果显著,但因为会对环境造成不良影响,目前已较少使用。

5. 气体压裂气体压裂是利用压缩的天然气和其他气体,注入井下井筒并对岩石施加压力,以打开裂缝和孔隙的一种技术。

与液态压裂相比,使用气体还可以避免水在地下过程中可能带来的污染风险。

以上是一些常见的压裂技术,不同技术根据资源、地质情况和环保标准的不同,运用场景和适用范围也有所不同。

在使用时需依据实际情况选用相应的压裂技术。

第二篇:常见压裂技术的优缺点各种压裂技术都有其优点和缺点,需要根据实际情况选用相应技术。

以下是几种常见的压裂技术的优缺点:1. 液态压裂优点:操作和操作成本相对较低。

这种技术不需要使用任何特殊设备,使用水等便宜而普遍存在的液体即可实现。

缺点:对地下水资源有一定的影响。

如果水的质量不高,可能会带来一些环境污染的风险。

而且,相对其他技术而言,液态压裂需要较高的注入压力和较大的水量,可能会造成井底形成堵塞。

2. 热压裂优点:较高的作用效果。

热压裂能够加速油气的释放,提高产量,并对开采成本产生一定的降低效果。

压裂技术

压裂技术

压裂技术压裂技术是一种用于增强油气井生产能力的关键技术。

它通过在油层中注入高压液体,将岩石层裂开并形成裂缝,从而增加了油气的渗透性和产能。

压裂技术的发展对提高油气产量以及能源供应的稳定性具有重要意义。

压裂技术最早起源于20世纪40年代的美国,当时为了提高油井的产能,工程师们开始尝试在岩石层中注入高压水来裂开岩石。

随着技术的不断改进和完善,压裂技术迅速发展,并成为了当今油气开采领域的重要技术之一。

压裂技术的原理主要包括两个方面:一是通过注入高压液体使岩石层发生裂缝,从而增强其渗透性;二是注入的高压液体中含有特殊的添加剂,可以防止裂缝闭合以及提高油气的流动性。

在进行压裂作业时,首先需要选择合适的压裂液。

压裂液的主要成分包括水、砂和添加剂。

其中,水是压裂液的基础,承担着传递压力、冲击岩石以及形成裂缝的重要任务。

砂是压裂液中的固体颗粒,它可以填充裂缝并保持其开放状态,从而增加油气的渗透性。

添加剂则包括各种助剂和化学物质,用于调整压裂液的性能,增强砂的支撑能力,防止裂缝闭合以及减少岩石的损伤。

压裂液准备完成后,需要进行注入作业。

这一过程包括将压裂液从地面通过输送管道输送到井下,并通过注射泵将液体注入到油井中。

注入压力通常非常高,一般可达到几千至几万磅每平方英寸,以保证岩石层能够发生裂缝。

一旦注入压裂液,压力就会迅速传递到岩石层中,使其发生裂缝。

岩石裂缝的形成可以使得原本渗透性较低的岩石层变得更加渗透,从而提高油气的开采率和产能。

此外,为了防止岩石裂缝在注入压裂液后立即闭合,可以在压裂液中添加一些特殊的添加剂。

这些添加剂可以形成胶体颗粒,填充裂缝并保持其开放状态,从而防止油气无法流出。

同时,这些添加剂还可以提高油气的流动性,从而进一步提高油井的产能。

总体而言,压裂技术已经成为了当代油气开采的重要手段之一。

通过裂缝岩石层,压裂技术可以显著提高油气井的产能,为能源供应的稳定性做出贡献。

随着技术的不断发展,相信压裂技术在未来仍然会有更广阔的应用前景。

采油工艺--压裂工艺技术

采油工艺--压裂工艺技术

采油工艺–压裂工艺技术1. 简介压裂工艺技术是一种常用的采油工艺,旨在通过增加油井的产能和压裂储量来提高油井的采油效果。

本文将介绍压裂工艺技术的原理、分类、应用以及发展趋势。

2. 压裂工艺技术原理压裂工艺技术通过注入高压液体(常用的是水和添加剂)到油井中,使岩石破裂并形成裂缝,从而增加油井的渗透性和储量。

其原理主要有以下几个方面:•液体注入:通过注入高压液体进入油井,增加油井的压力,从而使岩石发生破裂。

•裂缝形成:液体的高压作用下,使岩石产生裂缝,从而增加孔隙度和渗透性。

•井壁固化:使用添加剂将油井周围的裂缝固定,防止裂缝的闭合。

•液体回收:通过回收注入的液体,减少资源的浪费。

3. 压裂工艺技术分类压裂工艺技术可根据不同的标准进行分类,下面是一些常见的分类方式:3.1 挤压压裂挤压压裂是一种常用的压裂技术,其特点是施加持续的高压来形成裂缝,适用于一些密度高、渗透性差的岩石。

3.2 爆炸压裂爆炸压裂是一种利用爆炸产生的冲击波来形成裂缝的技术,适用于一些硬度高的岩石。

3.3 液压压裂液压压裂是一种利用高压液体来形成裂缝的技术,适用于一些渗透性较好的岩石。

4. 压裂工艺技术应用压裂工艺技术在石油工业中有广泛的应用,其主要应用领域包括:•陆地油田:压裂工艺技术可以提高陆地油田的产能和采收率。

•海洋油田:压裂工艺技术可以应用于海洋油田,提高海洋油田的开发效率。

•页岩气开采:压裂工艺技术可以用于页岩气的开采,改善页岩气的渗透性。

5. 压裂工艺技术的发展趋势随着石油行业的不断发展,压裂工艺技术也在不断创新和发展。

未来压裂工艺技术的发展趋势主要包括:•绿色环保:未来的压裂工艺技术将更加注重环境保护,减少对地下水资源和环境的影响。

•高效节能:未来的压裂工艺技术将更加注重能源的利用效率,提高工艺的能源利用率。

•智能化:未来的压裂工艺技术将趋向智能化,通过自动化控制和人工智能等技术手段,提高工艺的自动化程度和智能化水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种神奇的增产方法--压裂地面排水通常采用挖沟开渠的方法,沟渠越深、越宽,排水能力就越强。

在几千米深的地下怎样增强排油能力,提高油井产量呢?人们发明的压裂工艺技术就是众方法之一。

压裂是人为地使地层产生裂缝,地下的这些裂缝就相当于地面的沟渠,可大大改善油在地下的流动环境,使油井产量增加。

压裂的方法分水力压裂和高能气体压裂两大类。

水力压裂是靠地面高压泵车车组将流体高速注入井中,借助井底憋起的高压,使油层岩石破裂产生裂缝。

为防止泵车停止工作后,压力下降,裂缝又自行合拢,在地层破裂后的注入液体中,混入比地层砂大数倍的砂子,同流体一并进入裂缝,并永久停留在裂缝中,支撑裂缝处于开启状态,使油流环境长期得以改善。

水力压裂,使地层产生的裂缝形态,一般较单一,但因岩石的性质不同,所生成裂缝的宽窄、长短也不一样。

对于硬岩层,最终获得的支撑缝宽3毫米左右,缝长可达百米以上。

有人也曾对这些数据提出过质疑:几千米的地下,看不见摸不着,压裂真能获得百米长的裂缝吗?回答是肯定的。

它不仅能由一套复杂的公式计算出来,而且多次在现场实践中得到佐证。

如某油田胡12-17井的水力压裂过程中,与该井相距150米的胡12-18井喷出了压裂用砂,同时该井抽油泵被砂卡死。

12-17井的这些压裂用砂只能通过地下裂缝才能到达12-18井,说明这次压裂生成的裂缝,至少在150米以上。

事实上现在也可以通过仪器测试出裂缝的几何形态,也进一步证明了压裂的效果。

当前水力压裂技术已经非常成熟,油井增产效果明显,早已成为人们首选的常用技术。

特别对于油流通道很小,也就是渗透率很底的油层增产效果特别突出。

压裂酸化工艺发展概况2007-6-6 17:29:48国际石油网网友评论压裂酸化技术难点和挑战正如在我国石油工业“十五”规划报告指出的一样:现在我国石油工业面临的形势是新区勘探开发困难,老区的增产挖潜还有大量的工作要做。

其中,常规的井网加密已经效果不大,对酸化压裂措施的认识不够。

同时,增产措施改造的对象越来越复杂,改造目标已经从低渗、单井发展到了中、高渗和油田整体主要的难题集中在以下几个方面:1. 复杂岩性油气藏指的是陆源碎屑岩、碳酸盐岩和粘土矿物以一定比例均匀存在,没有任何一种成份在主导地位。

典型的代表是玉门酒西盆地的清溪油田,该油田储量高、品位好,但是储层矿物组成十分复杂。

由于矿物的不连续分布,酸压后只能形成均匀、低强度的刻蚀;而水力压裂由于发生支撑剂嵌入和粘土矿物的水敏、碱敏现象严重,因此目前酸压和水力压裂技术对这类储层多为低效或无效。

只能考虑从液体体系上改进工艺措施。

2. 高温、超高温、深层、超深层和异常高压地层以准葛尔盆地、克拉玛依、塔里木和吐鲁番为代表,如柯深101井,压力系数为2.0,温度135摄氏度,千米桥潜山地区井深4000m—5700m,温度在150摄氏度到180度之间。

这种地层的技术难点往往是需要的施工压力和压裂酸化液体不能达到要求;酸液的反应时间短,酸蚀作用距离短。

3. 低渗、低压、低产、低丰度“四低”储层如中石油的长庆苏里格气田压力系数在0.8—0.9,渗透率为0.5—3.0达西,中石化的大牛地油田压力系数0.67—.0.98,渗透率仅为0.3—0.9达西。

类似的这种储层在我国占很大的比例,由于产生水锁现象进而产生很难解除的水相圈闭,如果不采用特殊的工艺手段,很难得到高效开发。

4. 凝析气藏代表有千亿方的塔里木迪那气田和中原白庙深层凝析气藏。

这类油田酸化压裂最大的问题是由于压力降低后凝析油的析出产生凝析油环,大大降低了天然气的产量。

5. 高含硫,高含二氧化碳油田这类油田有被誉为“南方海相勘探之光”的普光气田(储量高达1144亿立方米);580亿立方米的罗家寨气田。

这两个气田的含硫量都在10%—12%,远远超过3%的行业标准。

硫化氢的高还原性和化学反应活性容易产生单质硫和硫化亚铁沉淀,在酸化压裂施工中造成二次伤害。

同时,高含硫还会加大钻、采、集、输、外运的困难,尤其是在地形复杂,自然条件恶劣的四川丘陵地区。

6. 异常破裂压力油藏这种油藏埋藏深度和破裂压力不成正比,以川西致密须家河组和赤水地区为例:2000多米的井深破裂压力高达90多兆帕,现场经预处理措施之后,施工压力仍然高达80多兆帕。

造成的直接后果就是压不开地层,酸液不能进入,对设备的损害比较大。

7. 缝洞型、裂隙型碳酸盐岩我国“九五”规划最大的整装油田——塔河油田就是这类油田的代表。

塔河油田560万吨产量中有80%是依靠压裂酸化措施取得的。

而压裂酸化中最大的难题是注入液体的滤失,因为这种缝洞型、裂隙型油藏已经并非常规意义上的裂缝和孔隙,而是体积巨大的溶洞和裂隙。

8. 低渗稠油这类油田由于稠油的流动性差,向井流动困难,导致初期增产效果差或无效,酸化压裂有效期短。

9. 水平井、多分支等复杂结构井我国从80年代中期在海上应用水平井,水平井的采油工艺远远落后于钻井技术的发展。

水平井等复杂结构井压裂核心问题是起裂裂缝条数和裂缝方位的控制,水平井酸化存在的问题主要是酸液的均匀置放和长时间浸泡下酸岩反应机理。

目前,在这方面已经作了大量的研究工作。

酸化压裂技术发展现状及创新1. 压裂裂缝延伸数学模型研究目前已取得的研究成果主要为由西南石油学院率先提出的三维裂缝模型和控缝高技术以及“四变”:变排量、变粘度、变支撑剂类型和支撑剂粒径技术。

2. 重复压裂技术重复压裂定义为压裂同一口井,同一个层位,同一个地方,区别于常规的认为的第一次压裂无效后的再压裂或是压开不同层段。

其技术核心可以概括为“堵老缝,压新缝”,即:堵已经成为储水通道的缝,堵控制区域已经完全或大部分产出的老缝。

压新缝的关键是把握新缝压开的时机,新缝的压开总是发生在最大最小应力场改变时。

3. 高含硫油田目前国外常用的方法是用互溶剂吸收生成的单质硫。

现在又提出了“双管齐下”的解决办法:即同时降低铁离子浓度和用硫化氢吸收剂把单质硫的形成扼杀在摇篮中。

4. 低渗低压油田目标是减少水锁和水相圈闭,可以考虑的途径有:尽量减少进入气层的液量,减少滤液的表面张力,减少毛管阻力。

目前的措施包括:○1提高返排速度:液氮伴注,分段破胶,强制闭合,高效返排;○2二氧化碳泡沫压裂;○3自生气/生热增压助排;○4表面活性剂压裂液5. 异常破裂压力降低摩阻,增加酸液的密度和强度是治标的方法。

治本的途径包括:高能气体压裂、酸化预处理、射孔参数优化。

现场实践表明,通过上述方法可以分别减小井口压力10MPa,4—10MPa,5MPa左右。

6. 复杂结构井压裂机理和技术关键的技术是合理设计压开裂缝条数,优选裂缝长度。

以前的观点认为水平井相当于一口水力压裂井,但是最新完井思想认为水平井钻成后必须要做增产措施才能发挥其全部产能。

因此完井方式上要预先考虑有利于裂缝的形成,有利于后续的酸化压裂改造。

7. 酸化压裂新观点:传统观念认为碳酸盐岩水力压裂会造成矿物脱落,堵塞裂缝和孔隙,一般增产措施应该采用酸压和基质酸化;而砂岩油藏由于胶结疏松,容易压破地层边界,酸液均匀溶蚀岩石,不能形成沟槽,酸压后裂缝大部分闭合,没有形成导流能力等原因,经典教科书上都不推荐采用酸压。

现场作业已经大大地挑战了上述传统观点,如采用酸基压裂液,冻胶酸的碳酸盐岩水力压裂以及砂岩储层的酸压都取得了不错的增产效果,但其机理研究还需进一步深入。

(作者:本文根据中国石油总公司科技培训部和西南石油学院主办的全国压裂酸化工艺技术培训班的部分内容整理而成。

)谈对酸化压裂工艺的再认识2006年第5期(3月上总第91期)徐福昌(中国石化河南油田分公司,河南桐柏474780)【摘要】酸化压裂是油田增产增注的一项重要工艺。

文章通过对酸化压裂与常规压裂进行比较分析,对酸液漏失量的控制提出了新的见解。

【关键词】酸化;压裂工艺;漏失量控制;速度控制;探讨【中图分类号】TE357 【文献标识码】A 【文章编号】1008-1151(2006)05-0036-01注酸压力高于油(气)层破裂压力的压裂酸化,人们习惯称之为酸压。

酸化液压是国内外油田灰岩油藏广泛采用的一项增产增注措施。

现已开始成为重要的完井手段。

通常是将Hcl在高于破裂压力下泵入地层,造成裂缝或将原油的天然裂缝撑开。

当酸沿着裂缝流动时就溶解了裂缝的表面,这时,酸液将同时发挥其化学溶蚀和水力作用来扩大、延伸、压开和沟通裂缝、形成延伸流通能力高的油、气渗流通道。

因为酸的腐蚀是不规则的,所以当裂缝闭合时就留下了液流通道制酸液漏失量的必要性往往以裂缝的有效长度取决于用酸量,酸的反应速度和酸从裂缝向地层的漏失量。

酸压工艺的效果在很大程度上主要取决于酸蚀裂缝及其流通性。

一、酸化压裂与常规压裂的对比酸化压裂的基本原理和目的,同使用支撑剂的常规压裂是一致的。

两者都是为了扩大裂缝的长度及其流通性,以增强油层的排液能力。

为了获得良好的流通性,常规压裂要把砂或别的支撑剂带入裂缝,以防泄压后裂缝重新闭合,而酸化压裂则是依靠裂缝表面的不均匀性,一般不用支撑剂。

因此,酸化压裂只适用于石灰岩或白云岩地层。

如用同样的增产效果来衡量,酸化压裂和常规压裂两者各有利弊。

从操作上讲,酸化压裂不用支撑剂,故较为简单,但酸液要比大多数压裂液昂贵。

酸化压裂液有他自身的不足。

常规压裂所造成的裂缝长度,取决于支持剂带入裂缝的距离。

酸蚀裂缝长度则取决于酸耗尽前流入裂缝的距离。

在高温下,这更是一个问题。

影响酸液流入裂缝的距离的最大障碍就是酸液的漏失量。

在酸化的过程中,裂缝表面不断的溶蚀,要控制酸液的漏失量,这就是个难题。

因为在这种情况下,很难形成滤饼,再加上酸的渗漏很不均匀,会产生“虫洞”,并扩大原有天然裂缝,结果就大大增大了酸渗露的面积,使控制酸的漏失量变得十分困难。

二、酸液漏失量的控制在酸化压裂施工中,开始是高于岩层破裂压力下挤酸液,后来压力回落到破裂压力以下,并随着施工的继续,压力不断下降。

有时,人们把这看作是施工的标志。

实际上,这恰是产生酸液大量漏失的征象,结果是使裂缝不能更好的延伸。

在理论上讲,应该使酸化压裂的全过程其压力都保持在破裂压力之上。

研究证明,即使有少量酸液的漏失也会形成垂直与裂缝表面的虫洞。

这些虫洞,不仅使酸液漏失量的控制更加困难,而且还会改变酸液漏失的方向。

大多数酸液是通过虫洞和撑开的天然裂缝漏失的,而并不是从水压裂裂缝表面均匀漏失的。

为了控制酸液的漏失可以使用各种添加剂或别的处理工艺。

最早使用的添加剂中有刺梧桐树胶。

它能在酸液中膨胀,形成小胶粒,以堵塞虫洞的入口。

刺梧桐树胶可单独使用,也可和硅粉或油溶性树脂小圆球共用。

但刺梧桐树胶只能在低温下有效,温度超过52度时,就会酸解而失效。

也有用软、硬油溶性树脂作为控制酸液漏失量的添加剂。

较大的硬性树脂粒起封堵孔隙喉道和天然裂缝的作用,而小颗粒的软性树脂又把硬性树脂粒之间的孔隙封住。

相关文档
最新文档