2012年秋季学期 概率论考题及答案
2012秋概率B答案

浙江农林大学天目学院 2012 - 2013 学年第 一 学期考试卷(B 卷)答案课程名称: 概率论与数理统计 课程类别: 必修 考试方式: 闭卷注意事项:1、本试卷满分100分。
2、考试时间 120分钟。
一、 单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。
每小题3分,共18分)1.对任意的两个事件A 与B 满足()0,()0P A P B >>,下面条件 ( C )成立时,事件A 与B 一定独立。
(A )()()()P AB P A P B = ; (B ) ()()()P A B P A P B ⋃=+; (C )()()P A B P A = ; (D )()()P A B P B =。
2.若~(2,6)X U ,密度函数为1, 26()0, x f x λ⎧<<⎪=⎨⎪⎩其他,则λ= ( C )(A) 14-; (B) 14; (C) 4 ; (D) 4- 。
3.若2()(())D X E X =,则X 服从( C ) (A )二项分布; (B )泊松分布; (C )指数分布; (D )正态分布。
4..已知事件,A B 满足()()P AB P A B =⋅,且()0.4P A =,则=)(B P B 。
(A )0.5; (B )0.6; (C )0.7; (D )不确定 。
。
5.设总体2~(,)X N μσ,其中μ未知,12345,,,,X X X X X 为来自总体X 的一个样本,则以下关于μ的四个估计:1123451ˆ()5X X X X X μ=++++,212341211ˆ5555X X X X μ=+++,3123111ˆ623X X X μ=++,411ˆ5X μ=中,哪一个是最有效的系(部): 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题估计?( A )(A )1ˆμ; (B )2ˆμ ; (C )3ˆμ; (D )4ˆμ。
社会学概率2012秋季试卷(B)

哈尔滨工业大学 2012 年秋 社会学《概率统计》期末考试试题
题号 分数 一 二 三 四 五 六 七 八 九 十 总分
一、填空题(每小题 3 分,共 5 小题,满分 15 分) 1. 设事件 A, B, C 两两独立,且 ABC , P ( A) P ( B ) P (C ) 则 P( A) . 2. 设事件 A, B 独立, P ( A) P ( B )
第 2 页(共 5 页)
试题:
X
四、 (4 分)设离散型随机变量 X 的分布列为
P
2 1 0 1 1 1 3 4 4
1 1 6
,
(1)求 Y X 1 的分布列与分布函数; (2)求 EY , DY .
2
0 五(10 分)随机变量 X ~ 1 4
1 0 , Y ~ 3 1 4 4
E | X C |
()
5.将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正、反面向上的次数,则 X 和 Y 的相关系数 等于 (A) 1 ; (B) 1 ; (C) 0 ; (D)
1 .( 2
)
三、 (10 分)甲袋中有 2 个白球 3 个黑球,乙袋中有 3 个白球 2 个黑球,从甲袋中取出一个放入 乙袋,再从乙袋中任取一个,若放入乙袋的球和从乙袋中取出的球是同色的,求放入乙袋的是黑 球的概率.
1 5 3 , EXY , 8 4
求(1) P( X Y 1) ; (2) E min( X , Y ) .
第 3 页(共 5 页)
试题:
1 3 , 2 x 0 六、 (8 分)设随机变量 X 的密度函数 f ( x) A, 1 x B , 0, 其他 5 分布函数 F ( x) 在 x 2 处的值 F (2) , 6
2012,2013,2014年概率论与数理统计期末考试试卷答案

2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
概率2012试卷

一、单项选择题(共6小题;每小题3分,共18分)1、设事件A 与B 独立,,5.0)(,4.0)(==B P A P 则=)(AB P ( )(A) 0.2 (B) 0.1 (C) 0.8 (D) 0.92、掷一枚骰子,事件A 为“出现奇数点”,事件B 为“出现1点”,则条件概率)(A B P 为( )(A) 21 (B) 31 (C) 61 (D) 32 3、设随机变量X 的分布函数为)(x F ,则下列结论中不一定成立的是 ( )(A) 0)(=-∞F (B) 1)(=+∞F (C) )(x F 右连续 (D) )()(}{a F b F b x a P -=<<4、设随机变量X 服从均匀分布)1,0(U ,则关于t 的方程02=++X t t 有实根的概率为( )(A) 21 (B) 31 (C) 41 (D) 61 5、设随机变量)4,3(~N X ,若数c 使得概率{}{}c X P c X P ≤=>,则=c ( )(A) 0 (B) 4 (C) 2 (D) 36、设n X X X ,,2,1 是正态总体),(2σμN 的简单随机样本,若∑-=+-1121)(n i i i X X k 是2σ的无偏估计量,则=k ( )(A) 11-n (B) n 1 (C) )1(21-n (D) n 21 二、填空题(本题6空 ,每空3分,共18分 )1、设X 的分布律为X 0 1 2 3概率 a 0.1 0.5 a则数a = .2、设随机变量X 服从二项分布:)4.0,100(~b X ;随机变量Y 服从均匀分布:)8,2(~U Y ;X 与Y 相互独立,则方差=+)2(Y X D .3、设随机变量X 的概率密度为⎩⎨⎧<<=.,0,102)(其它,x x x f ,则X 的期望()E X = . 4、已知随机变量X 、Y 满足关系式732=+Y X ,则相关系数=XY ρ .5、设n X X X ,,2,1 是正态总体),(2σμN 的样本;若2σ已知,则μ的置信水平为90%的置信区间为 . 6、设总体X 服从标准正态分布:)1,0(~N X ;n X X X ,,2,1 为总体X 的一组简单随机样本,X 与2S 分别是样本均值与样本方差,则~)(12∑=-ni i X X 分布. 三、计算题(本题4小题,每题8分,共32分 )1、(8分) 盒中有10个白球,6个红球,4个人依次从袋中取一只球,(1)作放回抽样;(2)作不放回抽样. 求第4个人取到白球的概率.2、(8分)某银行将客户分为A 、B 、C 三种类型,他们所占比例分别为30%、60%和10%,他们能及时还贷的概率分别为80%、90%和100%;现随机抽取一客户,问:(1)该客户能及时还贷的概率是多少;(2)若已知某客户及时还贷,问他是A 类客户的概率是多少.3、(8分)某药品对某疑难病的治愈率为80%,检验员随机抽查了100个服用此药品的病人,试用中心极限定理估算这些病人中有不少于75人治愈的概率.(933.0)5.1(,908.0)33.1(,894.0)25.1(=Φ=Φ=Φ)4、(8分)甲、乙两人独立地各进行两次射击,甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求(X ,Y )联合分布律以及X 和Y 的边缘分布律。
2012―2013学年第二学期概率论与数理统计试卷(本科及专升本)

第 1 页 共 3 页一、单项选择题(每小题3分,共21分)1.对于事件B A ,,若∅=B A ,则下列说法中正确的是 ( ) A 、B A ,为对立事件B 、0)(=A P 或0)(=B PC 、B A ,互不相容D 、B A ,独立2.设随机变量X 的分布函数为)(x F ,下列说法中错误的是 ( ) A 、)(x F 是不减函数B 、)(x F 必为),(+∞-∞上的连续函数C 、0)(=-∞FD 、1)(≤x F3.设连续型二维随机变量的联合概率密度函数为),(y x f ,则必有 ( )A 、1),(0≤≤y x fB 、),(y x f 为xOy 平面上的连续函数C 、1),(=⎰⎰+∞∞-+∞∞-dxdy y x f D 、1),(=+∞+∞f4.设Y X ,是两个随机变量,则下式中一定成立的是 ( )A 、)()()(Y E X E Y X E +=+B 、)()()(Y E X E XY E =C 、)()()(YD X D Y X D +=+ D 、)()()(Y D X D XY D =5.随机变量 n X X X ,,,21 相互独立,服从同一分布,且具有期望和方差,0)(,)(2>==σμk k X D X E ,当n 充分大时,近似服从)1,0(N 的是 ( )A 、σμn n Xnk k∑=-1B 、21σμn n Xnk k∑=-C 、σμn n Xnk k∑=-1D 、21σμn n Xnk k∑=-6.设4321,,,X X X X 是来自均值为θ的指数分布的样本,其中θ未知, 以下估计量中哪个不是θ的无偏估计量? ( ) A 、443211X X X X T +++=B 、722343211X X X X T +++=C 、3643211X X X X T +++=D 、5243211X X X X T +++= 7.对于一个原假设为0H 的假设检验问题,有可能犯的第一类错误是指( )A 、0H 成立时,检验结果接受0HB 、0H 成立时,检验结果拒绝0HC 、0H 不成立时,检验结果接受0HD 、0H 不成立时,检验结果拒绝0H二、填空题(每小题3分,共24分)1.设C B A ,,为三个事件,则事件“C B A ,,都不发生” 可以用C B A ,,的运算关系表示为 .2.10片药片中有5片是安慰剂,从中任取2片,其中至少有1片是安慰剂的概率为 .3.三人独立地去破译一份密码,各人能译出的概率分别为3.0,2.0,1.0, 三人中至少有一人能将此密码译出的概率为 .第 2 页 共 3 页4.一射击运动员每次射击命中的概率为7.0,以X 表示他首次命中时 累计已射击的次数,则{}3=X P 为 .5.随机变量X 在4,3,2,1中等可能地取一个值,随机变量Y 在X ~1中 等可能地取一个整数值,则{}4=Y P 为 . 6.随机变量)2,0(~U X ,则=)(X D . 7.总体)6(~2χX ,1021,,,X X X 是来自X 的样本,则=)(X D.8.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,X 是样本均值, 则~X .三、解答题(第1题8分,第2题9分,共17分)1.对以往的数据分析结果表明,当机器调整得良好时,产品的合格率为80%,而当机器发生某种故障时,产品的合格率为30%.每天早上机器开动时,机器调整良好的概率为90%.(1)求每天早上第一件产品是合格品的概率;(2)若某天早上第一件产品是合格品,求此时机器调整良好的概率.2.设随机变量X 具有概率密度⎪⎩⎪⎨⎧<≤<≤-=其它,031,10,1)(x kxx xx f(1)确定常数k ; (2)求()20<<X P .四、解答题(第1题10分,第2题10分,共20分)1.设随机变量X 与Y 的联合分布律为 求:(1)常数a 值;(2)X 与Y 是否独立?为什么?(3) 设Y X Z +=,求Z 的分布律.第 3 页 共 3 页X (以年计)服从指数分布,概率密度为⎪⎪≤>-0,00,313x x e x.1000800元,试求厂方出售一台设备净赢利的数学期望.五、解答题(第1题8分,第2题10分,共18分)X 具有分布律 )1<<θ为未知参数.,2,1,3321===x x x 求θ的矩估计值.2.某批铁矿石的9个样品中的含铁量,经测定为(%)35 36 36 38 38 39 39 40 41设测定值总体服从正态分布,但参数均未知, (1)求样本均值和样本标准差;(2)在01.0=α下能否接受假设:这批铁矿石的含铁量的均值为39%? (3554.3)8(005.0=t )。
2012年全国自考概率论与数理统计试卷有答案的

1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A B )=B.0.22.设F(x)为随机变量X 的分布函数,则有C.F (-∞)=0,F (+∞)=13.设二维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为D.1(,)0,x y D f x y π⎧∈⎪=⎨⎪⎩,(,),其他 4.设随机变量X 服从参数为2的指数分布,则E (2X -1)= A.0 5.设二维随机变量(X ,Y )的分布律则D (3X )= B.26.设X 1,X 2X n …为相互独立同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=⎧⎫≤=⎨⎬⎩⎭∑ A.07.设x 1,x 2,…,x n 为来自总体N (μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是D.211n i i x n =∑8.对总体参数进行区间估计,则下列结论正确的是B.置信度越大,置信区间越短 9.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是B.H 0成立,拒绝H 0 10.设一元线性回归模型:201(1,2,),~(0,)ii i i y x i n N ββεεσ=++=…,且各i ε相互独立.依据样本(,)(1,2,,)i i x y i n =…得到一元线性回归方程01ˆˆˆy x ββ=+,由此得i x 对应的回归值为ˆi y ,i y 的平均值11(0)ni i y y y n ==≠∑,则回归平方和S 回为C .21ˆ(-)nii yy =∑11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为0.8,0.5,则甲、乙两人同时击中目标的概率为_0.4. 12.设A ,B 为两事件,且P (A )=P (B )=13,P (A |B )= 16,则P (A |B )=7/12. 13.已知事件A ,B 满足P (AB )=P (A B ),若P (A )=0.2,则P (B )= 0.8 .14.设随机变量X 的分布律 则a =0.1.15.设随机变量X ~N (1,22),则P {-1≤X ≤3}=0.6826.(附:Ф(1)=0.8413)16.设随机变量X 服从区间[2,θ]上的均匀分布,且概率密度f (x )=1,240,x θ⎧≤≤⎪⎨⎪⎩,其他,X 1 2 3 4 5 ,P2a0.10.3a0.3则θ=6.17.设二维随机变量(X,Y)的分布律YX0 1 20 0.1 0.15 01 0.25 0.2 0.12 0.1 0 0.1 则P{X=Y}=_0.4.18.设二维随机变量(X,Y)~N(0,0,1,4,0),则X的概率密度f X (x)=___________.19.设随机变量X~U(-1,3),则D(2X-3)= 16/3.20.设二维随机变量(X,Y)的分布律YX-1 1-1 0.25 0.251 0.25 0.25则E(X2+Y2)=_2.21.设m为n次独立重复试验中事件A发生的次数,p为事件A的概率,则对任意正数ε,有limnmP pnε→∞⎧⎫-<⎨⎬⎩⎭=1.22.设x1,x2,…,x n是来自总体P(λ)的样本,x是样本均值,则D(x)=入/n.23.设x1,x2,…,x n是来自总体B(20,p)的样本,则p的矩估计ˆp=_.24.设总体服从正态分布N(μ,1),从中抽取容量为16的样本,uα是标准正态分布的上侧α分位数,则μ的置信度为0.96的置信区间长度是_________.25.设总体X~N(μ,σ2),且σ2未知,x1,x2,…,x n为来自总体的样本,x和S2分别是样本均值和样本方差,则检验假设H0:μ =μ0;H1:μ≠μ0采用的统计量表达式为_________.26.一批零件由两台车床同时加工,第一台车床加工的零件数比第二台多一倍.第一台车床出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06.(1)求任取一个零件是合格品的概率;(1)依题意知某一台车床加工的零件数占有率为2/3第二台车床位1/3,故另取一个零件是合格品的概率位,2/3*(1-0.03)+1/3*(1-1.06)=0.96(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.(2)取出的零件是不合品格的概率为2/3*0.03+1/3*0.06=0.04,它是由第二台车床加工的概率为0.04/0.06=0.6727.已知二维随机变量(X,Y)的分布律Y -1 0 1X0 0.3 0.2 0.11 0.1 0.3 0求:(1)X和Y的分布律;(2)Cov(X,Y).28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N(75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.P(65≤X≤85)=∮((85-75)/6)-∮((65-75)/6)=2∮(10/6)-1所以P(85>)=0.05所以P(x<=85)=∮(10/6)=0.95Suoyi p(65<=x<=85)=2*0.95-129.设随机变量X服从区间[0,1]上的均匀分布,Y服从参数为1的指数分布,且X与Y相互独立.求:(1)X及Y的概率密度;x的概率密度为f(x)=1 (0<=x<=1);f(x)=0,其他(2)(X,Y)的概率密度;因为x 为y相互独立,所以(x,y)的概率密度为f(x,y)=e^-y (0<=x<=1,y>0);f(x,y)=0,其他(3)P{X>Y}.p(x>y)=1-1/e30.某种产品用自动包装机包装,每袋重量X~N(500,22)(单位:g),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值x=502g. 问:当方差不变时,这天包装机工作是否正常(α=0.05)?(附:u0.025=1.96)假设H0:u=u0;H1:u不等于u0 统计量V=3在a=0.05下,把域问|u|>=u1-a/2=1.96 经计算的u=3>1.96 拒绝H0,即包装不正常。
2012概率论与数理统计期末试题含详解

2012概率论与数理统计期末试题含详解概率论与数理统计⼀、填空题(每题4分,共20分) 1、假设事件A 和B 满⾜1)(=A B P ,则A和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独⽴,则~Y X Z-=___________。
5、),16,1(~),5,1(~N Y N X且X 与Y 相互独⽴,令12--=Y X Z,则=YZ ρ____。
⼆、选择题(每题4分,共20分)1、将3粒黄⾖随机地放⼊4个杯⼦,则杯⼦中盛黄⾖最多为⼀粒的概率为()A、323B、83C、161 D、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是()A、)()()(Y D X D Y XD +=-B、a X-必相互独⽴C、X 与Y 可能服从⼆维均匀分布D、)()()(Y E X E XY E =3、样本nX X X ,,,21 来⾃总体X ,,)(,)(2σµ==X D X E 则有()A、2iX)1(n i ≤≤都是µ的⽆偏估计B、X 是µ的⽆偏估计C、)1(2n i X i ≤≤是2σ的⽆偏估计 D、2X 是2σ的⽆偏估计4、设nX X X ,,,21 来⾃正态总体),(2σµN 的样本,其中µ已知,2σ未知,则下列不是ini X ≤≤1minB、µ-XC、∑=ni iX 1σD、1X X n-5、在假设检验中,检验⽔平α的意义是() A 、原假设0H 成⽴,经检验被拒绝的概率B、原假设0H 不成⽴,经检验被拒绝的概率C 、原假设0H 成⽴,经检验不能拒绝的概率 D、原假设0H 不成⽴,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D (5分)2、已知连续型随机变量X 的分布函数为),(,arctan )(∞-∞∈+=x x B A x F 求(1)常数A 和B ,(2))11(<<-X p ,(3)概率密度)(x f (8分)3、设随机变量321,,X X X 相互独⽴,其中21],6,0[~X U X 服从21=3(~3πX ,计算)32(321X X X D +-。
2012秋季期概率I试卷标准答案127

北方工业大学《概率论与数理统计I 》课程试卷答案及评分标准A 卷2012年秋季学期开课学院: 理学院考试方式:闭卷考试时间:120 分钟班级 姓名 学号 注意事项:1.最后一页可以撕下作稿纸,但不能把试卷撕散,撕散试卷作废。
2.可以使用简易计算器,但不可使用有存储功能的文曲星、掌上电脑等,否则视为作弊。
一、填空题:(每题4分,共20分)1. 设A 与B 为互斥事件,()0>B P ,则()=B A P 02. 设随机变量 ),(~p n B X 且 4.2=EX ,44.1=DX ,则 =n 6 ,=p 0.4 。
3. 已知)1,0(N ~X ,则}0X {P >= 0.5 。
4. 设22,),,(~σμσμN X 均未知,样本容量为n ,样本方差为2s , 2σ的95%的置信区间为 ()()()()⎪⎪⎪⎭⎫ ⎝⎛-----11,112222212n s n n s n ααχχ。
5. 设随机变量4321X ,X ,X ,X 相互独立,服从相同的正态分布),(N 2σμ,则)X 2X X 2X X X X X (21Y 4321242322212--+++=σ服从 )2(2χ 分布。
二、选择题(每题4分,共20分)1. 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是 (C )订线装(A ) 8 (B ) 16 (C ) 34 (D ) 442.随机变量X 服从参数为1的泊松分布,则()C X E X P ==)}({。
(A )1-e (B )121-e(C )22-e(D )221-e3. 设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为 (A ) 。
(A )a 21 (B ) a2 (C )a +21 (D ) a 211-4. 为使⎩⎨⎧≥=+-其他,00,,),()43(y x Ke y x f y x 为二维随机向量()Y ,X 的联合密度,则K 必为( C ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工大 2012年秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】 3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A)99-. (B)69+. (C )928-6. (D)69-. 【 】 4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x x x f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩.(C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。
四、(8分)设随机变量[]~0,1X U ,求(1)241Y X X =-+的概率密度()Y f y ;(2)X 与Y 的相关系数XY ρ.五、(8分)设随机变量X 和Y 的分布列分别为X 0 1 Y —1 0 1P 1/3 2/3 P 1/3 1/3 1/3且1)(22==Y X P ,求(1)二维随机变量),(Y X 的概率分布;(2)XY Z =的概率分布;(3)X 与Y 的相关系数XY ρ.六、(12分)设随机变量X 与Y 相互独立,且分别服从正态分布)2,(σμN 和)22,(σμN ,其中σ为未知参数且0σ>. 记Y X Z -=.(1)求的概率密度Z 2(;)f z σ;(2)设12,,,n Z Z Z 为来自总体Z 的简单随机样本, 求2σ的最大似然估计2σ∧;(3)证明2σ∧是2σ的无偏估计量。
七、(4分)在x 轴上的一个质点可以在整个数轴的整数点上游动,记n S 为时刻n 时质点的位置。
若在时刻0t =时,处于初始位置为原点,即00S =,它移动的规则:每隔单位时间,它总是收到一个外力的随机作用,使位置发生变化,分别以概率p 及概率1q p =-向正的或负的方向移动一个单位(直线上无限制的随机游动)。
求质点在时刻n 时处于位置k 的概率,即求()n P S k =.2012年概率期末答案一、 填空题:(15分)1.0.452.()⎩⎨⎧≤≤=其它,010,1y y f Y 3.41. 4.)(8.2,6.2.5.41二、选择题:(15分)1A 2B 3D 4C 5C三、解:设iA 表示这段时间内到达百货公司的顾客数() ,2,1,0=i利用全概率公式: ++++=A A A A A A A k 10()()()()()0i i i i i i kP A P A P A A P A P A A ∞∞====∑∑ (()0,0)i P A A i k =≤< 4分 ()ki k k i ki ip p C e i --∞=-⋅=∑1!λλ()()()()()()∑∑∞=---∞=---⋅=--⋅⋅=ki k i kk i kki ik i p k p e p p k i k i ei !1!1!!!!λλλλλ()()()()()()∑∞=----=⋅⋅=-⋅==-om p k p kmk ek p ee k p m p p k e p mk i λλλλλλλλ!!!1!1 ),2,1,0( =k 4分四、解:(1)分布函数方法:含f d Y ⋅与()y F YR y ∈∀,()()()y X X P y Y P y F Y ≤+-=≤=142()()322+≤-=y X P又]1.0[∈x ∴()4212≤-≤x 同样431≤+≤y∴12≤≤-y 于是当2-<y 时,()0=y F Y 当1>y 时,()1=y F Y 当12≤≤-y 时,()()()322+≤-=y X P y F Y()3232++≤≤+-=y X y P ()()321132++≤≤+≤≤+-=y X P X y P()130321-+=++--=y y∴()⎪⎩⎪⎨⎧≥<≤--+-<=1,112,132,0y y y y y F Y ()⎪⎩⎪⎨⎧≤≤-+=其它,012,321y y y f Y或公式法:142+-=x x y ↙严格()()()121.0,022≤≤-∈<-='y x x y其反函数()y y h x +-==32 ()12≤≤-y ()yy h x +-='='3214分从而有:()()()()⎪⎩⎪⎨⎧≤≤-+='=其它,12,321y yy h y h f y f X Y 分(2)223441, 345EY EX EX DY =-+=-= 2分 (3)114XY ρ==-=- 2分五、解:(I )由题设有:0)(1)(2222==-=≠Y X P Y X P而)()0,1(),1,0(22Y X Y X Y X ≠⊂==±==所以利用概率的非负性和保序性:0)Y 1,P(X 01)Y 0,P(X ====±==再利用联合分布和边缘分布之间的关系可得联合分布列4分)(∏.Z=XY 的分布列为:31)1,1()1(31)1,1()1(310)Y 0,P(X 0)Y 1,P(X 1)Y 0,P(X 0)P(Z =-===-========++==+±====Y X P Z P Y X P Z P2分 ()I∏)031131)1(31).(132031()1(31131031),(=⨯+⨯+-⨯⨯+⨯--⨯+⨯+⨯=-=EXEY EXY Y X COV 0320031)1(31131)(,92)32(32)(222222222>=-⨯+-⨯+⨯=-==-=-=EY EY DY EX EX DX 所以 0=ρ2分六、解:(I )由题设:Y -X Z =服从正态分布且)3,0()2,(~222σσσμμN N Z =+- Z ∴的概率密度为:2262321)f(z,σσπσz e-=4分(II )似然函数2262226121)()6(321);,,L(z σσσπσπσi i z n nz ni n eez ----===∏取对数:2226262σσπi z Ln n Ln n LnL ---=令42226120σσσi z n LnL +⨯-==∂∂,解得:=2σ∑=n i i z n 1231 ∴2σ的极大似然估计为=∧2σ∑=n i i z n 1231 4分(III )由题设知:n z z z ,,,21 独立且与总体Z 同分布E ∴=∧2σE 2212123313131σσ=⨯⨯=⨯=∑∑==n nEz n z n ni in i i 于是=∧2σ∑=n i i z n 1231为2σ的无偏估计。
4分七、解: 为使质点在时刻t=n 时位于k 位置(k 也可以是负值)⇔在前n 次游动中向右移动的次数比向左移动的次数多k 次,若以x 表示它在前n 次游动中向右移动的次数,y 表示向左移动的次数,则有:⎩⎨⎧==+ky -x ny x 2分 即,2kn x +=因为x 是整数,所以k 与n 必须具有相同的奇偶性。
事件{}k =n S 发生相当于要求在前n 次游动中有2k n +次向右,2kn -次向左,利用二项分布即得{}222n S P k n k n k n nqpCk -++==当k 与n 奇偶性相反时,其概率为0 2分七、解: 为使质点在时刻t=n 时位于k 位置(k 也可以是负值)⇔在前n 次游动中向右移动的次数比向左移动的次数多k 次,若以x 表示它在前n 次游动中向右移动的次数,y 表示向左移动的次数,则有:⎩⎨⎧==+ky -x ny x 2分 即,2kn x +=因为x 是整数,所以k 与n 必须具有相同的奇偶性。
事件{}k =n S 发生相当于要求在前n 次游动中有2k n +次向右,2kn -次向左,利用二项分布即得{}222n S P k n k n k n nq p Ck -++==当k 与n 奇偶性相反时,其概率为0 2分。