2012-2013下《概率论与数理统计》试卷3
2012,2013,2014年概率论与数理统计期末考试试卷答案

2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
概率论与数理统计试卷(三)

课程概率论与数理统计模拟考核试题(三)课程代码:考核方式: 闭卷考试时量:120 分钟试卷类型:B一、填空题(每题2分,共20分)1只,作不放回抽样,则取到2只P(A)=0.2,P(B)=0.8,则P(A|B)= .3、设P(A)=1/2,P(B|A)=2/5,则P(AB)= .4、设X服从参数λ=3的泊松分布,则P{X<2}=_________5、设两两独立的三个随机事件A,B,C满足ABC=φ,且P(A)=P(B)=P(C)=x,则当x= 时,P(A∪B∪C)=43.6、设随机变量X~N(1,9),则E(2X+3)= ,D(2X+3)=7、对于连续型随机向量,X与Y独立的充分必要条件是,对于任何(x,y)∈R2,有f(x,y)=8、T服从n个自由度的t分布,则T2服从自由度为的分布9、设总体X服从正态分布N(μ,σ2),其中σ2已知;而μ未知,则μ的置信度1-α(0<α<1)的置信区间为__________10、X~N(10,9)),,,(921XXX 是来自总体X的一个样本,则X服从分布。
二、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号分,共20 分)(A|B)=1,则必有()②. A⊂B④. P(AB)=P(A)2、对于任意两个随机事件A 与B ,有P(A-B)为().①②③. ④.3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()①A.2422②.CC2142③.242!A④.24!!4、设随机变量X的分布函数为F(x),. Y=2X+1,则Y的分布函数为( )①. F(y /2-1/2)②. F(y/2+1)③. 2F(x)+1④. 1/2F(y)-1/25、若E(XY)=E(X))(YE⋅,则必有( )①D(XY)=D(X)D(Y) ②D(X+Y)=D(X)+D(Y)③X与Y相互独立④X与Y不相互独立6、设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{}σμ≤-X应()①单调增大②单调减小③保持不变④不能确定7、设两个相互独立的随机变量X与Y分别服从正态分布N(2,1)和N(1,1)则()①P{}1≤+YX=1/2 ②P{}0≤+YX=1/2③P{}1.5X Y+≥=1/2 ④P{}0≥+YX=1/28、已知离散型随机变量X服从参数为2的泊松分布,Y=3X-2,则EY=()第 2 页第 1 页座位号① 10 ② 4 ③ -2 ④ –1/29、对正态总体的数学期望μ进行假设检验,如果的显著水平0.05下拒绝H 0:μ=μ0,那么在 显著水平0.01下,下列结论正确的是( )① 必接受H 0 ②可能接受,也可能拒绝H 0 ③ 必拒绝H 0 ④ 不接受也不拒绝H 0 10、设),(21X X 是来自总体X 的一个容量为2的样本,则在下列E(X)的无偏估计量中, 最有效的估计量是 ( )① 2X1/3+X2/3 ②X1/4+3X2/4 ③ 2X1/5+3X2/5 ④ X1/2+X2/2三、判断题:(共12分) A,B 一定独立。
2012―2013学年第二学期概率论与数理统计试卷(本科及专升本)

第 1 页 共 3 页一、单项选择题(每小题3分,共21分)1.对于事件B A ,,若∅=B A ,则下列说法中正确的是 ( ) A 、B A ,为对立事件B 、0)(=A P 或0)(=B PC 、B A ,互不相容D 、B A ,独立2.设随机变量X 的分布函数为)(x F ,下列说法中错误的是 ( ) A 、)(x F 是不减函数B 、)(x F 必为),(+∞-∞上的连续函数C 、0)(=-∞FD 、1)(≤x F3.设连续型二维随机变量的联合概率密度函数为),(y x f ,则必有 ( )A 、1),(0≤≤y x fB 、),(y x f 为xOy 平面上的连续函数C 、1),(=⎰⎰+∞∞-+∞∞-dxdy y x f D 、1),(=+∞+∞f4.设Y X ,是两个随机变量,则下式中一定成立的是 ( )A 、)()()(Y E X E Y X E +=+B 、)()()(Y E X E XY E =C 、)()()(YD X D Y X D +=+ D 、)()()(Y D X D XY D =5.随机变量 n X X X ,,,21 相互独立,服从同一分布,且具有期望和方差,0)(,)(2>==σμk k X D X E ,当n 充分大时,近似服从)1,0(N 的是 ( )A 、σμn n Xnk k∑=-1B 、21σμn n Xnk k∑=-C 、σμn n Xnk k∑=-1D 、21σμn n Xnk k∑=-6.设4321,,,X X X X 是来自均值为θ的指数分布的样本,其中θ未知, 以下估计量中哪个不是θ的无偏估计量? ( ) A 、443211X X X X T +++=B 、722343211X X X X T +++=C 、3643211X X X X T +++=D 、5243211X X X X T +++= 7.对于一个原假设为0H 的假设检验问题,有可能犯的第一类错误是指( )A 、0H 成立时,检验结果接受0HB 、0H 成立时,检验结果拒绝0HC 、0H 不成立时,检验结果接受0HD 、0H 不成立时,检验结果拒绝0H二、填空题(每小题3分,共24分)1.设C B A ,,为三个事件,则事件“C B A ,,都不发生” 可以用C B A ,,的运算关系表示为 .2.10片药片中有5片是安慰剂,从中任取2片,其中至少有1片是安慰剂的概率为 .3.三人独立地去破译一份密码,各人能译出的概率分别为3.0,2.0,1.0, 三人中至少有一人能将此密码译出的概率为 .第 2 页 共 3 页4.一射击运动员每次射击命中的概率为7.0,以X 表示他首次命中时 累计已射击的次数,则{}3=X P 为 .5.随机变量X 在4,3,2,1中等可能地取一个值,随机变量Y 在X ~1中 等可能地取一个整数值,则{}4=Y P 为 . 6.随机变量)2,0(~U X ,则=)(X D . 7.总体)6(~2χX ,1021,,,X X X 是来自X 的样本,则=)(X D.8.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,X 是样本均值, 则~X .三、解答题(第1题8分,第2题9分,共17分)1.对以往的数据分析结果表明,当机器调整得良好时,产品的合格率为80%,而当机器发生某种故障时,产品的合格率为30%.每天早上机器开动时,机器调整良好的概率为90%.(1)求每天早上第一件产品是合格品的概率;(2)若某天早上第一件产品是合格品,求此时机器调整良好的概率.2.设随机变量X 具有概率密度⎪⎩⎪⎨⎧<≤<≤-=其它,031,10,1)(x kxx xx f(1)确定常数k ; (2)求()20<<X P .四、解答题(第1题10分,第2题10分,共20分)1.设随机变量X 与Y 的联合分布律为 求:(1)常数a 值;(2)X 与Y 是否独立?为什么?(3) 设Y X Z +=,求Z 的分布律.第 3 页 共 3 页X (以年计)服从指数分布,概率密度为⎪⎪≤>-0,00,313x x e x.1000800元,试求厂方出售一台设备净赢利的数学期望.五、解答题(第1题8分,第2题10分,共18分)X 具有分布律 )1<<θ为未知参数.,2,1,3321===x x x 求θ的矩估计值.2.某批铁矿石的9个样品中的含铁量,经测定为(%)35 36 36 38 38 39 39 40 41设测定值总体服从正态分布,但参数均未知, (1)求样本均值和样本标准差;(2)在01.0=α下能否接受假设:这批铁矿石的含铁量的均值为39%? (3554.3)8(005.0=t )。
《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题及答案习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以丫表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以丫表示取到红球的只数.求X和丫的联合分布律.3.设二维随机变量(X, Y)的联合分布函数为F(x, y)Jsinxsiny,。
沁兰才gy 写L0, 其他.求二维随机变量(X, Y)在长方形域{o<x< -,n y<内的概率.I 4 6 3., n n n【解】如图P{0 cx < - —c Y<—}公式(3.2)4 6 3F(n,n)-F(n n-F(o, n+F(o, n4 3 4 6 3 6n n n — n厂n厂n=sin — 0n — —sin — sin — -sin0sin — + sin 比sin — 4 3 4" 6 3 6出(屁1). 4[k(6 - X - y),0 c X c 2, 2 c y c 4, (x ,y )=( 0,其他.确定常数 求 P{X <1 , Y v 3}; 求 P{X<1.5}; 求 P{X+Y W 4}. 【解】(1)由性质有说明:也可先求出密度函数, 4.设随机变量 求:(1)(2) (3) 【解】(1)(X , 丫)的分布密度f (X , y )=0,,XA0,yA0,其他.常数A ;随机变量(X , 丫)的分布函数; P{0 <X<1 , 0<丫<2}.-be -be -be -be由 L LcfXyMxdy^ .0 Ae严d y)dxdy=4=112 得(2) A=12由定义,有y XF (x, y) = LcL f (u,v)dudv」「[任4和dudv 10,"(1-e 」X )(1-e"4y )y A 0,XA 0,0,其他⑶ P{0 <X <1,0 < 丫 <2}= P{0 cX <1,0cY <2}1「0[12e 5.设随机变量(仲枷)dxdy =(1-e 冷(1-e*“ 0.9499.Y ) 的概率密度为(1)(2) (3) (4) k ;-be -be2 4f f f(x,y)dxdy = r r k(6-x-y)dydx=8k=1,・0・21 R = -81 3-UU f (x ,y)d y d x1 313=0 L8k (6_x-y )dydx=8⑶ P{X v 1.5} = JJ f (x, y)dxdy 如图 a JJ f (x, y)dxdyx £5D 11.541 27=f dx f -(6 — x- y)dy =——. 0 28、 ” y 32⑷ P{X + Y <4} = ff f (x,y)dxdy 如图b JJ f (x, y)dxdyX -Y <D224_x12 =[dx f -(6 - X - y)dy =-. 0」2 8 3y,1.5 2 fa)求:(1) X 与丫的联合分布密度;(2) P{Y^X}.题6图【解】(1)因X 在(0, 0.2 )上服从均匀分布,所以X 的密度函数为I 1I ——,0ex <0.2, fx (X )= \ 0.2 0,其他.(2) P{X <1,Yc3} 6.设X 和丫是两个相互独立的随机变量,0.2)上服从均匀分布,丫的密度函数为 yf Y ( y )=y>o,其他.题5图X 在(0,y=yf(x,y X Y 独立f x xCf Y y()(2) P(Y <X) = ff f (x,y)dxdy 如图仃25e'y dxdyy < D0.2 x50.2 5=f 0 dx 0 25e ydy = J o (-5e +5)dx-1=e 止 0.3679.7.设二维随机变量(X ,Y )的联合分布函数为「(1—e"x )(1 —e 'y ), XA 0, y 》。
概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
安徽建筑大学 2012-2013第二学期概率论与数理统计试卷

(1)任意抽查一个产品,它被判为合格品的概率;
… …
1、设 A, B 为两个相互独立随机事件, P(A) = 0.4 , P(B) = 0.3 ,则 P(A ∪ B) =
. (2)一个经检查被判为合格的产品确实是合格品的概率.
… … 装
2、设随机变量 X 服从参数为 λ 的泊松分布,即 P{X = k} = λke−λ , k = 0,1, 2, . 且
.
… …
5、设总体 X ∼ N (μ,σ 2 ) ,其中 μ,σ 2 已知,( X1, X 2
Xn ) 为来自 X 的一个样本,X 为
四、解答题(本大题 18 分,每小题 9 分) 1、袋中有 2 个白球,3 个红球,今从袋中随机抽取 2 个球,以 X 表示取到的红
草
订 …
样本均值,则 D(X ) =
(B)1;
(C) −0.8 ;
(D) 0.7 .
不 … 4、设二维随机变量 (X ,Y ) 的分布律为:并且已知
得
… …
事件{X = 0}与{X + Y = 1} 相互独立,则
.
Y0
X
1
⎧0
2、设连续型随机变量
X
的分布函数为:
F ( x)
=
⎪ ⎨
Ax2
⎪⎩ 1
x<0 0 ≤ x <1,
x ≥1
求:(1)常数 A ;(2) X 概率密度 f (x) ;(3) X 落在区间 (0.3, 0.7) 的概率.
… …
本容量 n 一定时,下列说法中正确的是
… …
(A) α 减小时 β 也减小;
(B) α 增大时 β 也增大;
(C) α , β 其中一个减小,另一个会增大; (D) (A)和(B)同时成立.
2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
华农-2012-2013下概率论与数理统计答案3

2012学年第一学期概率论与数理统计试题解答参考一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. C 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4; 5. 0.6; 6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,)10N σμ三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x xP{1≤X ≤3} =F(3)-F(1)=e -1-e -3,2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( 23a=3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A =由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,由上两式知,任取一件为次品,该产品是乙厂生产的可能性较大。
4.解:解: 由题设可知(,)X Y 的概率密度为 ()2,01,01,0,y x x f x y ≤≤-≤≤⎧=⎨⎩其他于是关于X 的边缘分布密度为()()()10221,01,0,x X dy x x f x f x y dy -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘分布密度为()()()10221,01,0,y Y dx y y f y f x y dx -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , 所以在05.0=α不能拒绝0H 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计练习一
一、选择题(本大题共7 小题,每小题 3 分,共 21 分)
1. 设A ,B 为随机事件, 若P (A )=P (B )>0.5, 则 ( )
(A) A ,B 互不相容; (B) A ,B 非互不相容; (C) A ,B 相互独立; (D) A ,B 非相互独立.
2.设2(,4)X N μ ,2(,5)Y N μ ,1(4)p P X μ=≤- ,2(5)p P Y μ=≥+,则
( )
(A) 对任意实数μ,都有12p p =; (B) 对任意实数μ,都有12p p <; (C) 只对μ的个别值,才有12p p = ; (D) 对任意实数μ,都有12p p >;
3.己知随机变量X 服从区间[5,10]上的均匀分布, 则 ( ) (A) 2(9)0.3P X <= ; (B) 2(9)0.15P X <=; (C) 2(9)0P X ≤= ; (D){7X =}是不可能事件. 4.对随机变量X ,关于EX ,EX 2合适的值为 ( ) (A)3,8 (B) 3, 10 (C) 3,-8 (D) 3,-10
5. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则22X Y +服从
( )
(A) 自由度为1的2χ分布; (B) 自由度为2的2χ分布; (C) 自由度为1的F 分布;
(D) 自由度为2的F 分布.
6. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ,D (X )=2σ,则有 ( ) (A) X 1+X 2+X 3是μ的无偏估计量;
(B)
123
3
X X X ++是μ的无偏估计量;
(C) 2
2X 是2σ的无偏估计量;
(D) 2
1233X X X ++⎛⎫ ⎪⎝⎭
是2
σ的无偏估计量.
7. 设总体X 服从二项分布),1(p B ,n X X ,,1 是来自总体X 的一个样本,则)(n
k
X P ==( )。
(A )p (B )p -1
(C )k n k k n p p C --)1( (D )k n k k
n p p C --)1(.
二、填空题(本大题共7小题,每小题 3 分,共 21 分)
1.设()P λX (泊松分布),且()(1
)21E X X --=
⎡⎤⎣⎦,则λ= .
2.设X
的概率密度为2
()x f x -=
,
则()E X = ,()D X = . 3.若事件A 和事件B 相互独立, P()=A α,P(B)=0.3,P(A B)=0.7 ,则
α= .
4.已知随机变量X 与Y 的联合分布律为 则(1)P X Y +== .
5. 设X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<=5.1,15
.11,21
10,2
0,
0)(x x x x x
x x F ,则=≤<}3.14.0{X P 。
6.设12,,,n X X X 是来自总体2(,)N μσ的简单随机样本,2σ已知,X 是样本均值,2S 是样本方差,则μ的置信度为1α-的置信区间为 . 7.设1210,,,X X X 为来自正态总体2(,)N X μσ 的一个简单随机样本,则样本均
值10
1
110i i X X ==∑服从
.
三、简单解答题 (本大题共5小题,每小题 6 分,共30 分) 1.
设X 的分布函数为
⎩⎨
⎧<≥-=-0,0,
0),1()(x x e A x F x 求常数A 及P{1≤X≤3} .
2.设随机变量X 具有分布函数3
31,()0,a x a
F x x x a ⎧-≥⎪=⎨⎪<⎩,其中0a >,求E(X).
3.一箱产品,甲、乙两厂生产分别个占60%,40%,其次品率分别为1%,2%。
现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大?
4.设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布.
求:变量X 和Y 的边缘概率密度.
5.某种动物的体重服从正态分布)9,(μN ,今抽取9个动物考察,测得平均体重为
3.51公斤,问:能否认为该动物的体重平均值为53公斤。
(05.0=α)(提示:
96.1645.1025.005.0==Z Z )
四、综合解答题 (本大题共3小题,共28 分)
1.已知随机变量X 服从在区间(0,1)上的均匀分布,Y =2X +1,求Y 的概率密度函数. (8分)
2.总体X 具有概率密度 )0(,,0,
10,)(1>θ⎩⎨
⎧<<θ=-θ其他x x x f
求θ的矩估计量和极大似然估计量。
(10分)
3. 由自动线加工的某种零件的内径X (毫米)服从正态分布)1,(μN ,内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,设销售
利润L (元)与销售零件的内径X 的关系为:⎪⎩
⎪
⎨⎧>-≤≤<-=125121020101
X X X L ,问平均内径μ取何
值时,销售一个零件的平均利润最大?(提示:1744.025
21
ln
-≈)(10分)。