动能定理应用及典型例题

合集下载

动能定理题型及例题讲解

动能定理题型及例题讲解

动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。

动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。

动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。

动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。

例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。

可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。

由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。

为了计算物体的末速度,我们需要知道物体移动的路程。

d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。

【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。

该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。

2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。

3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。

答案为1.95m。

4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。

答案为0.98m。

5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。

求刹车前汽车的行驶速度。

答案为10.95m/s。

6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离为L×m/(M+m)。

模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。

已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。

答案为3.46m/s和6.71m/s。

典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。

动能定理的应用的典型题

动能定理的应用的典型题

动能定理的应用第一类:恒力作用下的直线运动,不涉及加速度与时间例1、在水平的冰面上,以大小为F=20N的水平推力,推着质量m=60kg的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s1=30m后,撤去推力F,冰车又前进了一段距离后停止. 取g = 10m/s2. 求:(1)撤去推力F时的速度大小.(2)冰车运动的总路程s.变式训练:质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求证:hs μ=.f第二类:变力作用下的直线运动,主要是求变力所做的功和速度、位移、路程。

例:在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求: (1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小.变式训练、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离.v vf第三类:曲线运动中求某些变力(如各种阻力)做的功和某个位置的速度和动能。

例1、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .例2、AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

一小球自A 点起由静止开始沿轨道下滑。

已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。

动能定理简单练习题

动能定理简单练习题

动能定理简单练习题动能定理简单练习题动能定理是物理学中的一个基本定理,描述了物体的动能与其速度之间的关系。

它在解决各种物理问题中起着重要的作用。

本文将给出一些简单的练习题,帮助读者更好地理解和应用动能定理。

练习题一:一个质量为1 kg的物体以10 m/s的速度沿着水平方向运动,求它的动能。

解析:根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能=1/2 × 1 × (10)^2 = 50 J。

练习题二:一个质量为2 kg的物体以2 m/s的速度运动,当它的速度增加到4m/s时,求它的动能的增加量。

解析:首先求物体在速度从2 m/s增加到4 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 2 × (2)^2 = 4 J。

再求物体在速度从0 m/s增加到4 m/s时的动能。

即动能2=1/2 × 2 × (4)^2 = 16 J。

所以动能的增加量=动能2 - 动能1 = 16 J - 4 J = 12 J。

练习题三:一个质量为0.5 kg的物体以20 m/s的速度运动,当它的速度减小到10 m/s时,求它的动能的减小量。

解析:首先求物体在速度从20 m/s减小到10 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 0.5 × (20)^2 = 100 J。

再求物体在速度从20 m/s减小到0 m/s时的动能。

即动能2=1/2 × 0.5× (10)^2 = 25 J。

所以动能的减小量=动能1 - 动能2 = 100 J - 25 J = 75 J。

练习题四:一个质量为10 kg的物体以5 m/s的速度运动,撞击到一个质量为5kg的静止物体,两个物体粘在一起后以共同的速度运动,求它们共同的速度。

解析:由于两个物体粘在一起后以共同的速度运动,可以利用动能守恒定理解决这个问题。

动能定理的几种典型应用

动能定理的几种典型应用

动能定理的几种典型应用应用一:动能定理解决匀变速直线运动问题例1、一个质量m=2kg 的小物体由高h=1.6m 倾角︒=30α的斜面顶端从静止开始滑下,物体到达斜面底端时速率是4m/s ,那么物体在下滑的过程中克服摩擦力做功是多少焦耳?由公式20222v v aS -=可知222022/5.22.3242s m S v v a =⨯=-= 对物体受力分析并由牛顿第二定律可知:ma f mg =-αsin 所以N N ma mg f 55.2221102sin =⨯-⨯⨯=-=α J J fS W f 16)1(2.35180cos -=-⨯⨯=︒= 解法二:由动能定理221mv W mgh f =+ 可得:J J mgh mv W f 166.110242212122-=⨯⨯-⨯⨯=-= 应用二:动能定理解决曲线运动问题例2、在离地面高度h=10m 的地方,以s m v /50=水平速度抛出,求:物体在落地时的速度大小? 解法一:由221gt h =得 s s g h t 2101022=⨯== 所以s m s m gt v y /210/210=⨯== 所以s m s m v v v y /15/)210(522220=+=+=解法二:由动能定理可得 20222121mv mv mgh -=所以:s m s m v gh v /15/51010222202=+⨯⨯=+= 两种方法计算的结果完全一致,可见:动能定理同样适用于曲线运动。

并且可以求变力的功,如下题。

例3.质量m=2kg 的物体从高h=1.6m 的曲面顶部静止开始下滑,到曲面底部的速度大小为4m/s 。

求物体在下滑过程中克服摩擦力所做的功?应用3:利用动能定理求解多个力做功的问题例4、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。

F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。

动能定理应用及典型例题

动能定理应用及典型例题

动能定理及应用动能及动能定理 1 动能表达式:221υm E K =2 动能定理(即合外力做功与动能关系):12K K E E W -=3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。

F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。

②动能定理揭示了合外力的功与动能变化的关系。

4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。

5应用动能定理解题步骤:a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功情况c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。

例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。

例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。

人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。

基础练习1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。

2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。

已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。

3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。

汽车受到的摩擦阻力时车重的0.05倍。

求汽车的牵引力。

4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经1003 s,前进了425m ,这时它达图 6-3-1到最大速度15m/s ,设阻力不变,求机车的功率。

5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h 的最小值?6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力. (2)物体从C 到A 的过程中,摩擦力做的功.7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2=1m 时飞出平台,求木块落地时速度的大小?(空气阻力不计,g=10m/s 2)拓展提升1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.一个物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的是-()A.W2=W1B.W2 =2W1C.W2 =3W1D.W2 =4W12.质量m=2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E K与其发生位移x之间的关系如图所示。

已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是()A.x=1m时物块的速度大小为2m/sB.x=3m时物块的加速度大小为C.在前4m位移过程中拉力对物块做的功为9JD.在前4m位移过程中物块所经历的时间为2.8s3.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R4.如图所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为05.如图所示,水平传送带长为x,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功不可能()A.等于mv2B.小于mv2C.大于μmgxD.小于μmgx6.如图所示,足够长的传送带与水平面夹角为θ=37o,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数,则图中能客观地反映小木块的速度随时间变化关系的是()A. B. C. D.7.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)()A. B. C. D.08.电磁轨道炮射程远、精度高、威力大.假设一款电磁轨道炮的弹丸(含推进器)质量为20.0kg,从静止开始在电磁驱动下速度达到2.50×103m/s.则此过程中弹丸所受合力做的功是()A.2.50×104JB.5.00×104JC.6.25×107JD.1.25×108J9.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR10.物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则()A.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,但A的动能较大二、多选题11.如图所示,有两固定且竖直放置的光滑半圆环,半径分别为R和2R,它们的上端在同一水平面上,有两质量相等的小球分别从两半圆环的最高点处(如图所示)由静止开始下滑,以半圆环的最高点为零势点,则下列说法正确的是()A.两球到达最低点时的机械能相等B.A球在最低点时的速度比B球在最低点时的速度小C.A球在最低点时的速度比B球在最低点时的速度大D.两球到达最低点时的向心加速度大小相等12.某足球运动员罚点球直接射门,球恰好从横梁下边缘A点踢进,球经过A点时的速度为v,A点离地面的高度为h,球的质量为m,运动员对球做的功为,球从踢飞到A点过程中克服空气阻力做的功为,选地面为零势能面,下列说法正确的是()A.运动员对球做的功B.从球静止到A点的过程中,球的机械能变化量为-C.球刚离开运动员脚面的瞬间,球的动能为D.从球刚离开运动员脚面的瞬间到A点的过程中,球的动能变化量为-mgh13.如图所示,三角形传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m且与水平方向的夹角均为37°.现有两个小物块A,B同时从传送带顶端都以1m/s的初速度沿传送带下滑,已知物块与传送带间的动摩擦因数都是0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是()A.物块A,B运动的加速度大小不同B.物块A,先到达传送带底端C.物块A,B运动到传送带底端时重力的功率相等D.物块A,B在传送带上的划痕长度之比为1:314.如图所示,现有一端固定在地面上的两根长度相同竖直弹簧(K1>K2),两个质量相同的小球分别由两弹簧的正上方高为H处自由下落,落到轻弹簧上将弹簧压缩,小球落到弹簧上将弹簧压缩的过程中获得的最大弹性势能分别是E1和E2,在具有最大动能时刻的重力势能分别是E P1和E P2(以地面为重力势能的零势能),则()A.E1<E2B.E1>E2C.E P1=E P2D.E P1>E P215.如图所示,在a点由静止释放一个质量为m,电荷量为q的带电粒子,粒子到达b点时速度恰好为零,设ab所在的电场线竖直向下,a、b间的高度差为h,则()A.带电粒子带负电B.a、b两点间的电势差U ab=C.b点场强大于a点场强D.a点场强大于b点场强16.如图所示,光滑杆O′A的O′端固定一根劲度系数为k=10N/m,原长为l0=1m的轻弹簧,质量为m=1kg的小球套在光滑杆上并与弹簧的上端连接,OO′为过O点的竖直轴,杆与水平面间的夹角始终为θ=30°,开始杆是静止的,当杆以OO′为轴转动时,角速度从零开始缓慢增加,直至弹簧伸长量为0.5m,下列说法正确的是()A.杆保持静止状态,弹簧的长度为0.5mB.当弹簧伸长量为0.5m时,杆转动的角速度为rad/sC.当弹簧恢复原长时,杆转动的角速度为rad/sD.在此过程中,杆对小球做功为12.5J17.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时,对轨道的压力为其重力的一半.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()A.机械能减少mgRB.动能增加mgRC.克服摩擦力做功mgRD.合外力做功mgR18.在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了14J,金属块克服摩擦力做功10J,重力做功22J,则以下判断正确的是()A.金属块带正电荷B.金属块克服电场力做功8 JC.金属块的电势能减少2 JD.金属块的机械能减少8 J三、实验探究题19.某兴趣小组准备探究“合外力做功和物体速度变化的关系”,实验前组员们对初速为O的物体提出了以下几种猜想:①W∝v;②W∝v2;③W∝为了验证猜想,他们设计了如图甲所示的实验装置.PQ 为一块倾斜放置的木板,在Q处固定一个光电计时器(用来测量物体上的遮光片通过光电门时的挡光时间).(1)如果物体上的遮光片宽度为d,某次物体通过光电计时器挡光时间为△t,则物体通过光电计时器时的速度v=________.(2)实验过程中,让物体分别从不同高度无初速释放,测出物体初始位置到光电计时器的距离L1、L2、L3、L4…,读出物体每次通过光电计时器的挡光时间,从而计算出物体通过光电计时器时的速度v1、v2、v3、v4…,并绘制了如图乙所示的L﹣v图象.为了更直观地看出L 和v的变化关系,他们下一步应该作出:____________A.L﹣v2图象B.L﹣图象C.L﹣图象D.L﹣图象(3)实验中,物体与木板间摩擦力________(选填“会”或“不会”)影响探究的结果.四、综合题20.一质量为m=2kg的小滑块,从半径R=1.25m的1/4光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平。

动能定理应用典型例题及解析

动能定理应用典型例题及解析

动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。

动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。

下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。

假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。

【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。

根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。

根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。

以上就是一个简单的应用动能定理的例题及解析。

动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理及应用
动能及动能定理 1 动能表达式:
221
υm E K =
2 动能定理(即合外力做功与动能关系):12K K E E W -=
3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。

F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。

②动能定理揭示了合外力的功与动能变化的关系。

4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。

5应用动能定理解题步骤:
a 确定研究对象及其运动过程
b 分析研究对象在研究过程中受力情况,弄清各力做功情况
c 确定研究对象在运动过程中初末状态,找出初、末动能
d 列方程、求解。

例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。

例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。

人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。

基础练习
1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。

2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。

已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。

3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。

汽车受到的摩擦阻力时车重的0.05倍。

求汽车的牵引力。

4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经100
3 s,前进了425m ,这时它达
图 6-3-1
到最大速度15m/s ,设阻力不变,求机车的功率。

5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h 的最小值?
6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,
质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:
(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力. (2)物体从C 到A 的过程中,摩擦力做的功.
7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2=1m 时飞出平台,求木块落地时速度的大小?(空气阻力不计,g=10m/s 2)
拓展提升
1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( )
A. 0
B. 8J
C. 16J
D. 32J
2.质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3min 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.
(2) 小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?
5.小球在竖直放置的光滑圆轨道内做圆周运动,圆环半径为r ,且刚能通过最高点,则球在最低点时的速度和对圆轨道的压力分别为: [ ] A 、4rg ,16mg B 、gr 5,5mg C 、2
gr ,5mg D 、gr 5,6mg
6.某探究性学习小组对一辆自制遥控车的性能进行研究。

他们让这辆小车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图所示的v-t 图像,已知小车在0~t1时间内做匀加速直线运动,t1~10s 时间内小车牵引力的功率保持不变,7s 末到达最大速度,在10s 末停止遥控让小车自由滑行,小车质量m =1kg ,整个过程中小车
受到的阻力f 大小不变。

求:
(1)小车所受阻力f 的大小; (2)在t1~10s 内小车牵引力的功率P ; (3)求出t1 的值及小车在0~t1时间内的位移。

(4)0-10s 内牵引力做功
7.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A .
4mgR B .3mgR C .2
mgR
D .mgR 8、如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )
A .mgh -1
2m v 2
B.12m v 2-mgh C .-mgh D .-(mgh +1
2
m v 2) 9、2010年广州亚运会上,刘翔重归赛场,以打破亚运会记录的成绩夺得110 m 跨
栏的冠军.他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,向前加速的同时提升身体重心.如图所示,假设刘翔的质量为m ,起跑过程前进的距离为s ,重心升高为h ,获得的速度为v ,克服阻力做功为W 阻,则在此过程中( )
A .运动员的机械能增加了12m v 2
B .运动员的机械能增加了1
2
m v 2+mgh
C .运动员的重力做功为mgh
D .运动员自身做功W 人=1
2m v 2+mgh
10、如图所示,摩托车做特技表演时,以v 0=10.0 m/s 的初速度冲向高台,然后从高台水平飞出.若摩托车冲向高台的过程中以P =4.0 kW 的额定功率行驶,冲到高台上所用时间t =3.0 s ,人和车的总质量m =1.8×102 kg ,台高h =5.0 m ,摩托车的落地点到高台的水平距离x =10.0 m .不计空气阻力,取g =10 m/s 2.求:
(1)摩托车从高台飞出到落地所用时间; (2)摩托车落地时速度的大小;
(3)摩托车冲上高台过程中克服阻力所做的功.
11、一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度2 m/s ,则下列说法正确的是 ( )
A 、手对物体做功12J
B 、合外力对物体做功12J
C 、合外力对物体做功2J
D 、物体克服重力做功10 J
12. 一个人站在距地面高h=15m 处,将一质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .
(2)若石块落地时速度的大小为v t =19m/s ,求石块克服空气阻力做的功W .
13、如图所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求物体在轨道AB 段所受的阻力对物体做的功。

14、如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段
与BC 相切的圆弧,B 、C 为水平的,其距离d=0.50m 。

盆边缘的高度为h=0.30m 。

在A 处放一个质量为m 的小物块并让其从静止出发下滑。

已知盆内侧壁是光滑的,而盆底BC 面与小物块间动摩擦系数为μ=0.10。

小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为
A.0.50m
B.0.25m
C. 0.10m D . 0
15.两个完全相同的小球A 、B ,在同一高度处以相同大小的初速度v 0分别水平抛出和竖直向上抛出,下列说法正确的是 ( )
A .两小球落地时的速度相同
B .两小球落地时,重力的瞬时功率相同
C .从开始运动至落地,重力对两小球做功相同
D .从开始运动至落地,重力对两小球做功的平均功率相同
16.质量M=6.0×103kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=7.2×lO 2
m 时,达到起飞速度ν=60m /s 。

求:
(1)起飞时飞机的动能多大?
(2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大?
(3)若滑行过程中受到的平均阻力大小为F=3.0×103
N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大?
17.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A .
4mgR B .3mgR C .2
mgR
D .mgR 18、有一物体以某一速度从斜面底沿斜面上滑,当它滑行4m 后速度变为零,然后再下滑到斜面底。

已知斜面长5m ,高3m ,物体和斜面间的摩擦系数μ=0.25。

求物体开始上滑时的速度及物体返回到斜面底时的速度。

相关文档
最新文档