动能定理及功能关系
功和能、动能、动能定理知识总结

功和能、动能、动能定理
知识总结归纳
1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。
能量有各种不同的形式。
2. 功和能关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
3.动能定义:物体由于运动而具有的能叫做动能。
表达式:122:物体由于运动而具有的能叫做动能。
表达式:E mv k =
注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。
4. 动能定理的推导:设物体质量为m ,初速度为v 1,在与运动方向同向的恒定合外力F 作用下,发生一段位移s ,速度增加到v 2。
由F=ma 和联立解得:
由和联立解得:F ma v v as Fs mv mv =-==-221
2221221212 5.动能定理公式:末初W E E k k k ==-∆E
注意:W 为合外力做的功或外力做功的代数和,ΔE k 是物体动能的增量;ΔE k 为正值时,说明物体动能增加,ΔE k 为负值时,说明物体动能减少。
6. 应用动能定理进行解题的一般步骤:
(1)确定研究对象,明确它的运动过程;
(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;
(3)明确起始状态和终了状态的动能。
()用列方程求解总421W E E k k k ==-∆E。
功能关系 能量守恒定律

功能关系能量守恒定律一.几种常见的功能关系及其表达式二、两种摩擦力做功特点的比较[深度思考]一对相互作用的静摩擦力做功能改变系统的机械能吗?答案不能,因做功代数和为零.三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确.(1)摆球机械能守恒.()(2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.()(3)能量正在消失.( )(4)只有动能和重力势能的相互转化.( )2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( )A .两个阶段拉力做的功相等B .拉力做的总功等于A 的重力势能的增加量C .第一阶段,拉力做的功大于A 的重力势能的增加量D .第二阶段,拉力做的功等于A 的重力势能的增加量4.(多选)如图所示,轻质弹簧上端固定,下端系一物体.物体在A 处时,弹簧处于原长状态.现用手托住物体使它从A 处缓慢下降,到达B 处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W .不考虑空气阻力.关于此过程,下列说法正确的有( )A .物体重力势能减少量一定大于WB .弹簧弹性势能增加量一定小于WC .物体与弹簧组成的系统机械能增加量为WD .若将物体从A 处由静止释放,则物体到达B 处时的动能为W命题点一 功能关系的理解和应用在应用功能关系解决具体问题的过程中:(1) 若只涉及动能的变化用动能定理.(2) 只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.(3) 只涉及机械能变化,用除重力和弹簧的弹力之外的力做功与机械能变化的关系分析.(4) 只涉及电势能的变化,用电场力做功与电势能变化的关系分析.例1 (多选)如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( )A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14m v 2 C .在C 处,弹簧的弹性势能为14m v 2-mgh D .上滑经过B 的速度大于下滑经过B 的速度经过B 处的速度最大,到达C 处的速度为零.1.(多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A .两滑块组成的系统机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功2.(多选)如图6所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中()图6A.物块在A点时,弹簧的弹性势能等于W-12μmgaB.物块在B点时,弹簧的弹性势能小于W-32μmgaC.经O点时,物块的动能小于W-μmgaD.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能命题点二摩擦力做功的特点及应用1.静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:(1)机械能全部转化为内能;(2)有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.例2如图7所示,质量为m=1 kg的滑块,在水平力作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端B与水平传送带相接(滑块经过此位置滑上传送带时无能量损失),传送带的运行速度为v0=3 m/s,长为l=1.4 m;今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ=0.25,g取10 m/s2.求:(1)水平作用力F的大小;(2)滑块下滑的高度;(3)若滑块滑上传送带时速度大于3 m/s,滑块在传送带上滑行的整个过程中产生的热量.摩擦力做功的分析方法1.无论是滑动摩擦力,还是静摩擦力,计算做功时都是用力与对地位移的乘积.2.摩擦生热的计算:公式Q=F f·x相对中x相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x相对为总的相对路程.3.如图8所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦产生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功4.(多选)如图所示,一块长木块B放在光滑的水平面上,在B上放一物体A,现以恒定的外力F拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中()A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功等于A的动能的增量C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和命题点三能量守恒定律及应用例3如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中轻绳始终处于伸直状态,求:(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.应用能量守恒定律解题的基本思路1.分清有多少种形式的能量[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化.2.明确哪种形式的能量增加,哪种形式的能量减小,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.3.列出能量守恒关系:ΔE减=ΔE增.5.如图所示,质量为m的滑块从斜面底端以平行于斜面的初速度v0冲上固定斜面,沿斜面上升的最大高度为H,已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tan α,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块在斜面上运动的机械能E、动能E k、势能E p与上升高度h之间关系的图象是()6.如图所示,在竖直方向上A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上.用手拿住C,使细线刚好拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后它沿斜面下滑,A刚离开地面时,B获得最大速度,求:(1)从释放C到物体A刚离开地面时,物体C沿斜面下滑的距离;(2)物体C的质量;(3)释放C到A刚离开地面的过程中细线的拉力对物体C做的功.【课后作业】题组1 功能关系的理解和应用1.如图所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点.将小球拉至A 点,弹簧恰好无形变,由静止释放小球,当小球运动到O 点正下方与A 点的竖直高度差为h 的B 点时,速度大小为v .已知重力加速度为g ,下列说法正确的是( )A .小球运动到B 点时的动能等于mghB .小球由A 点到B 点重力势能减少12m v 2 C .小球由A 点到B 点克服弹力做功为mghD .小球到达B 点时弹簧的弹性势能为mgh -12m v 2 2.(多选)如图所示,质量为m 的物体(可视为质点)以某一速度由底端冲上倾角为30°的固定斜面,上升的最大高度为h ,其加速度大小为34g .在这个过程中,物体( )A .重力势能增加了mghB .动能减少了mghC .动能减少了3mgh 2D .机械能损失了3mgh 23.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能4. (2015·福建理综·21)如图,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g .(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M 2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m ;②滑块从B 到C 运动过程中,小车的位移大小s .题组2 摩擦力做功的特点及应用5.足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( )A .W =0,Q =m v 2B .W =0,Q =2m v 2C .W =m v 22,Q =m v 2D .W =m v 2,Q =2m v 26.(多选)如图,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s7.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .题组3 能量守恒定律及应用8.(2014·广东·16)图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能9.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMm r,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功. 【参考答案】1 ×√××2 答案 D3 答案 B4 答案 AD解析 根据能量守恒定律可知,在此过程中减少的重力势能mgh =ΔE p +W ,所以物体重力势能减少量一定大于W ,不能确定弹簧弹性势能增加量与W 的大小关系,故A 正确,B 错误;支持力对物体做负功,所以物体与弹簧组成的系统机械能减少W ,所以C 错误;若将物体从A 处由静止释放,从A 到B 的过程,根据动能定理:E k =mgh -W 弹=mgh -ΔE p =W ,所以D 正确.例1 答案 BD解析 由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 的过程有12m v B 2+ΔE p ′+W f ′=mgh ′,B 到A 的过程有12m v B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确. 1 答案 CD解析 两滑块释放后,M 下滑、m 上滑,摩擦力对M 做负功,系统的机械能减少,减少的机械能等于M 克服摩擦力做的功,选项A 错误,D 正确.除重力对滑块M 做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B 错误.绳的拉力对滑块m 做正功,滑块m 机械能增加,且增加的机械能等于拉力做的功,选项C 正确. 2 答案 BC例2 答案 (1)1033N (2)0.1 m 或0.8 m (3)0.5 J解析 (1)滑块受到水平力F 、重力mg 和支持力F N 作用处于平衡状态,水平力F =mg tan θ,F =1033N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒mgh =12m v 2,得v =2gh若滑块冲上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有μmgl =12m v 02-12m v 2则h =v 202g-μl ,代入数据解得h =0.1 m若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理: -μmgl =12m v 02-12m v 2则h =v 202g+μl代入数据解得h =0.8 m.(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,mgh =12m v 2,v 0=v-at ,μmg =ma滑块相对传送带滑动的位移Δx =l -x 相对滑动生成的热量Q =μmg ·Δx 代入数据解得Q =0.5 J. 3 答案 C解析 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v2t ,对传送带:x 1′=v ·t ,摩擦产生的热Q =F f x相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.4 答案 BD解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F -W f =ΔE k B ,W F =ΔE k B +W f ,即外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和,D 正确.由上述讨论知B 克服摩擦力所做的功与A 的动能的增量(等于B 对A 的摩擦力所做的功)不等,故A 错误. 例3 答案 (1)v 20-gL (2)v 202g -L 2 (3)3m v 204-3mgL4解析 (1)A 与斜面间的滑动摩擦力F f =2μmg cos θ物体A 从初始位置向下运动到C 点的过程中,根据功能关系有 2mgL sin θ+12×3m v 02=12×3m v 2+mgL +F f L解得v =v 20-gL(2)从物体A 接触弹簧到将弹簧压缩到最短后又恰好能弹到C 点的整个过程中,对A 、B 组成的系统应用动能定理-F f ·2x =0-12×3m v 2解得x =v 202g -L 2(3)弹簧从压缩到最短到恰好能弹到C 点的过程中,对A 、B 组成的系统根据功能关系有 E p +mgx =2mgx sin θ+F f x 所以E p =F f x =3m v 204-3mgL45 答案 D解析 重力势能的变化仅仅与重力做功有关,随着上升高度h 的增大,重力势能增大,选项A 错误;机械能的变化仅与重力和系统内弹力之外的其他力做功有关,上滑过程中有-F fhsin α=E -E 0,即E =E 0-F f h sin α;下滑过程中有-F f 2H -h sin α=E ′-E 0,即E ′=E 0-2F f Hsin α+F f hsin α,故上滑和下滑过程中E -h 图线均为直线,选项B 错误;动能的变化与合外力做功有关,上滑过程中有-mgh -F f sin αh =E k -E k0,即E k =E k0-(mg +F fsin α)h ,下滑过程中有-mgh -F f 2H -h sin α=E k ′-E k0,即E k ′=E k0-2F f H sin α-(mg -F fsin α)h ,故E k -h 图线为直线,但下滑过程斜率小,选项C 错误,D 正确. 6 答案 (1)0.25 m (2)0.8 kg (3)-0.6 J 解析 (1)设开始时弹簧的压缩量为x B ,得 kx B =mg①设物体A 刚离开地面时,弹簧的伸长量为x A ,得 kx A =mg② 当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B③由①②③解得h =2mg k=0.25 m④(2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有 F T -mg -kx A =0 ⑤ 对C 有Mg sin α-F T =0⑥由②⑤⑥解得M =4m =0.8 kg(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v m 2解得v m =1 m/s对C 由动能定理可得Mgh sin α+W T =12M v m 2解得W T =-0.6 J. 1 答案 D解析 小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧由原长到发生伸长的形变,小球动能增加量小于重力势能减少量,A 项错误;小球重力势能减少量等于小球动能增加量与弹簧弹性势能增加量之和,B 项错误;弹簧弹性势能增加量等于小球重力势能减少量与动能增加量之差,D 项正确;弹簧弹性势能增加量等于小球克服弹力所做的功,C 项错误. 2 答案 AC解析 物体重力势能的增加量等于克服重力做的功,选项A 正确;合力做的功等于物体动能的变化,则可知动能减少量为ΔE k =ma h sin 30°=32mgh ,选项B 错误,选项C 正确;机械能的损失量等于克服摩擦力做的功,因为mg sin 30°+F f =ma ,a =34g ,所以F f =14mg ,故克服摩擦力做的功W f =F f h sin 30°=14mg h sin 30°=12mgh ,选项D 错误.3 答案 B解析 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误.4 答案 (1)3mg (2)①gR 3 ②13L 解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v B 2滑块在B 点处,由牛顿第二定律知N -mg =m v 2B R解得N =3mg由牛顿第三定律知N ′=3mg(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒mgR =12M v m 2+12m (2v m )2解得v m =gR 3②设滑块运动到C 点时,小车速度大小为v C , 由功能关系mgR -μmgL =12M v C 2+12m (2v C )2设滑块从B 到C 过程中,小车运动加速度大小为a , 由牛顿第二定律μmg =Ma由运动学规律v C 2-v m 2=-2as 解得s =13L .5 答案 B解析 对小物块,由动能定理有W =12m v 2-12m v 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg ,这段时间内因摩擦产生的热量Q =μmg ·x相对=2m v 2,选项B 正确. 6 答案 BC解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12m v 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12M v ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误. 7 答案 (1)0.52 (2)24.4 J解析 (1)最后的D 点与开始的位置A 点比较: 动能减少ΔE k =12m v 02=9 J.重力势能减少ΔE p =mgl AD sin 37°=36 J.机械能减少ΔE =ΔE k +ΔE p =45 J机械能的减少量全部用来克服摩擦力做功,即 W f =F f l =45 J ,而路程l =5.4 m ,则 F f =W fl ≈8.33 N.而F f =μmg cos 37°,所以 μ=F f mg cos 37°≈0.52. (2)由A 到C 的过程:动能减少ΔE k ′=12m v 02=9 J.重力势能减少ΔE p ′=mgl AC sin 37°=50.4 J.机械能的减少用于克服摩擦力做功W f ′=F f l AC =μmg cos 37°·l AC =35 J. 由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4 J. 8 答案 B解析 由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A 错误,B 正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C 、D 错误.9 答案 (1)4π2r 3GT 2 2πr T (2)2?k -1?π2mr 2?k +1?T 2解析 (1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有G Mm r 2=mr (2πT )2求得地球的质量M =4π2r 3GT2在轨道Ⅰ上的线速度大小为v =2πrT.(2)设飞船在椭圆轨道上远地点速度为v 1,在近地点的速度为v 2,则由开普勒第二定律有r v 1=kr v 2根据能量守恒有12m v12-G Mmr=12m v22-G Mmkr求得v1=2GMk?k+1?r=2πrT2kk+1因此飞船在A点变轨时,根据动能定理,发动机对飞船做的功为W=12m v12-12m v2=2?k-1?π2mr2 ?k+1?T2.。
区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。
(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。
求:小物块与地面之间的动摩擦因数u。
思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。
解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。
高中物理功能关系总结

专题 功、动能和势能和动能定理功:(单位:J )力学: ①W = Fs cos θ(适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度动能: E K =m2p mv 2122=重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2一E k1 = 12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用:⑶即为物体所受合外力的功。
④功是能量转化的量度(最易忽视)“功是能量转化的量度”这一基本概念含义理解。
⑴重力的功-———--量度——-—-—重力势能的变化物体重力势能的增量由重力做的功来量度:W G = —ΔE P ,这就是势能定理。
与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关.除重力和弹簧弹力做功外,其它力做功改变机械能,这就是机械能定理。
只有重力做功时系统的机械能守恒。
功能关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能".练习:一、单项选择题1.关于功和能的下列说法正确的是 ( )A .功就是能B .做功的过程就是能量转化的过程C .功有正功、负功,所以功是矢量D .功是能量的量度2.一个运动物体它的速度是v 时,其动能为E.那么当这个物体的速度增加到3v 时,其动能应该是 ( )A .EB . 3EC . 6ED . 9E3.一个质量为m的物体,分别做下列运动,其动能在运动过程中一定发生变化的是:()A.匀速直线运动B.匀变速直线运动C.平抛运动D.匀速圆周运动4.对于动能定理表达式W=E K2—E K1的理解,正确的是:( ) A.物体具有动能是由于力对物体做了功B.力对物体做功是由于该物体具有动能C.力做功是由于物体的动能发生变化D.物体的动能发生变化是由于力对物体做了功5.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为n v,则在t2时刻的动能是t1时刻的A、n倍B、n/2倍C、n2倍D、n2/4倍6.打桩机的重锤质量是250kg,把它提升到离地面15m高处,然后让它自由下落,当重锤刚要接触地面时其动能为(取g=10m/s2):()A.1。
(完整版)动能定理

动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能。
2。
公式:E k =12mv 2,动能的单位是焦耳。
说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等。
(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能。
(二)动能定理1。
内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2。
表达式:W=E 2k -E 1k ,W 是外力所做的总功,E 1k 、E 1k 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E 1k =12mv 21,E 2k =12mv 22. 3。
物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程。
利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
动能定理和功能原理

动能定理和功能原理一.教法建议【抛砖引玉】在经典力学中,“动能定理”是“牛顿运动定律”的推论和发展,“功能原理”也是“牛顿运动定律”的进一步推导的结果。
因此我们建议:教师不要把本单元的内容当作新知识灌输给学生,而是引导..学生运用“牛顿运动定律”对下述的这个匀加速运动问题进行分析和推导,使学生自己获得新知识──“动能定理”和“功能原理”。
具体的教学过程请参考下列四个步骤:第一步:说明物体的运动状态,并导出加速度计算式。
如图5—5所示:物体沿着不光滑的斜面匀加速向上运动,通过A 处时的即时速度为v 0,通过B 处时的即时速度为v t ,由A 处到B 处的位移为S 。
通过提问引导学生根据v t 2-v 02=2as 写出:a v v st =-2022 ① 第二步:画出物体的受力分析图,进行正交分解,说明物体的受力情况。
图5─6是物体的受力分析图(这个图既可以单独画出,也可补画在上图的A 、B 之间),物体受到了重力mg 、斜面支持力N 、动力F 、阻力f 。
由于重力mg 既不平行于斜面,也不垂直于斜面,所以要对它进行正交分解,分解为平行于斜面的下滑分力F 1和垂直于斜面正压力F 2。
然后说明:物体在垂直斜面方向的力N =F 2;物体平行斜面方向的力F >f +F 1(否则物体不可能加速上行),其合力为:F F f F =--∑1 ②第三步:运用牛顿第二定律和①、②两式导出“动能定理”。
若已知物体的质量为m 、所受之合外力为F ∑、产生之加速度为a 。
则根据牛顿第二定律可以写出:F ma ∑= ③将①、②两式代入③式:F f F m v v st --=-12022 导出:Fs fs F s mv mv t --=-12021212④ 若以W 表示外力对物体所做的总功W Fs fs F s =--1 ⑤若以E ko 表示物体通过A 处时的动能,以E kt 表示物体通过B 处时的动能则:E mv kt =1202 ⑥E mv kt t=122 ⑦ 将⑤、⑥、⑦三式代入④式,就导出了课本中的“动能定理”的数学表达形式:W =E kt -E ko若以△E k 表示动能的变化E kt -E ko则可写出“动能定理”的一种简单表达形式:W=△E k它的文字表述是:外力对物体所做的总功等于物体动能的变化。
动能定理基础知识点

动能定理基础知识点动能定理是物理学中的基本定理之一,它描述了物体的动能与外力所做的功之间的关系。
在本文中,我将介绍动能定理的基本概念和公式,并解释其在物理学中的应用。
一、动能定理的概念动能定理是指当物体受到外力作用时,物体的动能的增量等于外力对物体所做的功。
换句话说,如果一个物体的动能从初态到末态发生变化,那么这个变化值等于外力所做的功。
动能定理的思想基于牛顿第二定律:物体的加速度与外力成正比,加速度越大,物体的动能增加得越快。
通过动能定理,我们可以通过物体动能的变化来推断外力所做的功的大小。
二、动能定理的公式动能定理可以表述为以下公式:ΔK = W其中:ΔK表示物体动能的变化量,单位为焦耳(J);W表示外力所做的功,单位也为焦耳(J)。
根据动能定理,如果一个物体的动能发生了变化,那么这个变化值等于外力所做的功。
三、动能定理的应用1. 碰撞与能量转化:在物体之间的碰撞中,根据动能定理可以推断出物体在碰撞过程中的动能转化情况。
例如,在弹性碰撞中,当两个物体碰撞之后,它们的动能是互相转化的,总的动能保持不变。
2. 机械能守恒定律:在只受重力做功的系统中,根据动能定理可以推导出机械能守恒定律。
机械能守恒定律指的是,在只受重力做功的系统中,物体的总机械能(动能和势能之和)保持不变。
3. 动能定理与力学工作:根据动能定理,我们可以计算外力所做的功。
功是物体在力的作用下沿着力的方向移动时所吸收或放出的能量。
功可以用来计算一些力学工作,比如推车沿着平面移动、抬起重物等。
4. 动能定理在运动学中的应用:动能定理也经常应用在运动学分析中,特别是在研究物体在一段时间内的加速度变化时。
根据动能定理,我们可以通过物体动能的变化来推断物体的加速度变化情况。
总结:动能定理是解决物体动能变化以及外力所做功的基本定理之一。
它提供了物体动能与外力作用之间的定量关系,并在物理学的不同领域中有着广泛的应用。
通过动能定理,我们可以深入理解物体在受力作用下的运动情况,分析碰撞、能量转化以及力学工作等问题。
高中物理必修二 专题四 动能定理 功能关系

动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理专题【知识梳理】一.动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
单位: 。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能具有相对性,它与参照物的选取密切相关.研究时一般取地面为参考系。
二.动能定理:1.内容:2.表达式:动能定理反映了合外力做功与动能的关系,合外力做功的过程,是物体的动能与其他形式的能量相互转化的过程,合外力做的功是物体动能变化的量度,即12k k E E W -=合。
合W 的求解:①合W =合F S ;②合W =1W +2W +……(代数和)研究对象:单个物体或相对静止的可看作一个整体的几个物体组成的物体系3.应用动能定理的基本思路如下:(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些功的代数和。
(3)确定过程始、末态的动能。
(4)根据动能定理列方程求解。
注:在应用动能定理时,一定要注意所求的功是合力做的功,而不能局限于某个力做功。
例1.如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)(注:用动能定理解题时,对于过程能用整体法的就用整体法。
整体法的优点在于可以省略中间过程量的求解) 例2.一质量M =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112=.,求物体与桌面间的摩擦系数是多少?(g 取102m s /)例3.质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。
求:(g 取102m s /) (1)物体的初速度多大?(2)物体和平面间的摩擦系数为多大?(3)拉力F 的大小?例4.如图4所示,用细绳连接的A 、B 两物体质量相等,A 位于倾角为30°的斜面上,细绳跨过定滑轮后使A 、B 均保持静止,然后释放,设A 与斜面间的滑动摩擦力为A 受重力的0.3倍,不计滑轮质量从摩擦,求B 下降1米时的速度大小。
例5.质量为500t 的机车以恒定的功率由静止出发.经5min 行驶225km .速度达到的最大值54km/h .设阻力恒定且取g=10m /s 2,求:(1)机车的功率(2)机车的速度为36km/h 时的加速度针对练习:1.一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0B .Δv =12m/sC .W=0D .W=10.8J2.一质量为Ikg 的物体被人用手由静止向上提升1m .物体的速度是2m /s 。
下列说法中错误的是.A .提升过程中手对物体做功12JB .提升过程中合外力对物体做功12JC .提升过程中合外力对物体做功力2JD .提升过程中物体克服重力做功10J3.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;( ) ⑵F 为恒力;( )⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
( )可供选择的答案有: A .θcos FL B .θsin FL C. .()θcos 1-FL D .()θcos 1-mgL4.两辆汽车在同一水平路面上行驶.它们的质量之比为1∶2.速度之比为2∶1。
设两车与路物的动摩擦因数相等.当两车紧急刹车后两车滑行的最大距离之比为A .1∶2B . 1∶1C .2∶1D .4∶15.如图所示,ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的.BC 是与AB 和CD 都相切的一小段圆弧,其长度可以忽略不计.一质量为m 的小滑块在A 点从静止状态释放,沿轨道下滑,最后停在D 点,A 点和D 点的位置如图所示,现用一沿着轨道方向的力推滑块,使它缓慢地由D 点推回到A 点时停下.设滑块与轨道之间的动摩擦因数为μ,则推力对滑块做的功等于( )A .mghB .mgh 2C .)sin (θμh S mg + D .θμμmghctg mgS + 6.一颗子弹以速度v 射击一个厚度为d 的木块,穿透后速度为v /2,问此子弹以速度v 最大能击穿多厚的木块,设木板对子弹阻力恒定。
流体动能的计算(要点:构建柱体微元模型,即设一小段时间t )7.我国西北地区拥有得天独厚的风力资源,近年来兴建了许多风力发电厂. 风力发电机是将风能(气流的动能)转化为电能的装置.某台风力发电机的风轮机叶片长度为r ,风轮机叶片旋转所扫过的面积为风力发电机可接受风能的面积.设空气密度为ρ,气流速度为υ,则在时间t 内风轮机可以接受到的最大风能为 .8.近年来我国建立了许多风力发电厂.一台风力发电机的参数为:额定发电功率10 kW 、输出电压 220 V 、额定风速 10 m/s 、风轮机叶片的长度为 4 m .请你根据这些参数回答下面的问题.当风速为10 m/s 时,发电机以额定功率发电,将全部电能用两条导线直接给用户供电,导线上的电流为______A ;已知空气的密度ρ空气=1.3kg/m 3,通过风轮机一个叶片旋转一周扫过面积的最大风能为可利用风能,则此过程中发电机利用风能的效率约为______.9.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的车辆叫动车而动车组就是几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖丰)编成一组,就是动车组.假设动车组运行过程中受到的阻力与其受到的重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等.若1节动车加3节拖车编成的动车组的最大速度为120km/h ,则3节动车加3节拖车编成的动车组的最大速度为( )A .120km/hB .240km /hC .320km /hD . 480km /h10.质量为m 的滑块与倾角为θ的斜面间的动摩擦因数为μ,μ<tan θ,斜面底端有一个和斜面垂直放置的弹性挡板,滑块滑到底端与它碰撞时没有机械能损失,如图所示.若滑块从斜面上高为h 处以速度v 0开始沿斜面下滑,设斜面足够长,求:(1)滑块最终停在何处?(2)滑块在斜面上滑行的总路程是多少?11.如图所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2。
(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?.12.电动机通过一条绳子吊起质量为8kg 的物体。
绳的拉力不能超过120N ,电动机的功率不能超过1200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2)功能关系、机械能守恒定律专题【知识梳理】一.重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。
表达式:mgh E p =,与零势能面的选取有关。
2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随零势面的选择不同而不同,要说明物体具有多少重力势能,首先要指明零势面。
(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G =mg △h .所以重力做的功等于重力势能增量的负值,即W G = -△E p = -(mgh 2-mgh 1).二.弹性势能弹簧弹性势能的大小仅与弹簧自身的性质(K )及弹性形变量有关。
动能与势能(重力势能、弹性势能)统称为机械能。
三.功能关系:功是能量转化的量度①功和能是两个不同的物理量,功反映的是能量变化的多少,而不反映能量的多少。
②做功的过程就是能量转化的过程,不同形式能之间的转化只有通过做功才能实现。
做功的过程必然伴随着能量转化的过程,能量转化的过程中必然存在做功的过程,这两个过程形影相随、不可分离。
③ 做功的数值就是能量转化的数量,物体做了多少功就有多少能量发生转化,做功与能量转化在数值上严格相等。
(1)重力做功对应 的。
即重力做正功,重力势能 ,重力做负功,重力势能 。
(2)弹簧弹力做功对应 的。
即弹簧弹力做正功,弹性势能 ,弹簧弹力做负功,弹性势能 。
(3)合力做功对应 的。
即合力做正功,动能 ,合力做负功,动能 。
(4)除重力和弹簧弹力以外其它力做的功对应 的,此结论又称为功能原理。
即其它力做正功,系统的机械能 ,其它力做负功,系统的机械能 。
四.机械能守恒定律:1.内容:在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即 :E K 1 + E P 1= E K 2 + E P 2, 或 ΔE K = -ΔE P注:运用21E E =解题时,需要选零势面.运用k p E E ∆=-∆解题时,不必选零势面.2.定律的适用条件:只有重力或弹簧弹力做功,其他力不做功或做功的代数和为零。
3.研究对象:只有重力做功的单个物体或没有机械能与其他能量转化的物体系4.应用机械能守恒定律的基本思路如下:①选取研究对象----物体系或物体②对研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒。