动能和动能定理
动能和动能的定理

动能定理与牛顿第二定律的关系
牛顿第二定律描述了力对物体运动状态改变 的作用,即F=ma,其中F为作用力,m为质 量,a为加速度。而动能定理则描述了力对物 体动能改变的作用,即合外力对物体所做的 功等于物体动能的变化。
动能定理可以看作是牛顿第二定律在动能方 面的应用,因为物体的加速度与作用力成正 比,而物体的动能与速度平方成正比,所以 当力作用在物体上使其加速时,物体的动能
动能定理对于理解能量守恒定律的意义
动能定理是能量守恒定律在动力学中 的具体表现,通过动能定理可以深入 理解能量守恒定律的内涵和应用。
VS
动能定理表明,力对物体所做的功等 于物体动能的改变量,这有助于我们 更好地理解能量的转化和守恒,以及 物体运动状态的改变。
05 动能定理的深入思考
动能定理与势能、内能的关系
动能的特点
动能是标量,只有大 小,没有方向。
动能是状态量,与过 程无关,只与物体在 某一时刻的状态有关。
动能是相对量,与参 考系的选取有关。
动能与其他物理量的关系
动能与动量关系
P=mv,其中P为物体的动量,单位是 千克·米/秒(kg·m/s)。
动能与能量关系
动能是能量的一种形式,是物体机械 运动的能量,其他形式的能量可以转 化为动能。
也会相应增加或减少。
动能定理与相对论的关系
在相对论中,物体的动能不再是经典力学中的1/2mv^2, 而是与物体的质量和速度相关的更复杂的表达式。但动 能定理的基本思想仍然适用,即合外力对物体所做的功 等于物体动能的改变。
相对论中的动能关系式为E_k = (m_0c^2 + E_k') / √(1-v^2/c^2),其中E_k为物体的动能,m_0为物体的 静止质量,E_k'为物体因运动而具有的内部能量,v为物 体的速度,c为光速。这个公式可以看作是经典力学中动能的定理表述
7-7动能和动能定理(共34张PPT)

(2)小球经过轨道最低点C时对轨道的压力FC (3)小球能否到达轨道最高点D?若能到达,试求对D点的压力FD
.若不能到达,试说明理由.
4. (12分)光滑曲面轨道置于高度为H=1.8m的平台上,其末端切线水 平;另有一长木板两端分别搁在轨道末端点和水平地面间,构成 倾角为 的斜面,如图所示。一个可视作质点的质量为m=1kg 的小球,从光滑曲面上由静止开始下滑(不计空气阻力,g取 10m/s2, )
(1)圆弧轨道的半径及轨道BC 所对圆心角(可用角度的三角函数 值表示)
(2)小球与斜面 AB 间的动摩擦因数
1.图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面 ,CD是水平的,BC是与AB和CD都相切的一小段圆弧,其 长度可以略去不计,一质量为m的小滑块在A点从静止状 态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图 所示, ,现用一沿轨道方向的力推滑块,使它缓慢地由D点 推回到A点时停下,设滑块与轨道间的摩擦系数为μ,则推 力做的功等于
4.(讨论)电动机通过一条绳子吊起质量为8kg的 物体。绳的拉力不能超过120N,电动机的功率不 能超过1 200W,要将此物体由静止起,用最快 的方式将பைடு நூலகம்体吊高90m(已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为 多少?(g取10 m/s2)
习题课
1.如图所示,在同一竖直平面内的两正对着的相同半圆光
(B)距离OA大于OB;
(C)距离OA小于OB;
(D)无法做出明确的判断。
3.一木块由A点自静止开始下滑,沿ACEB运动到 最高点B设动摩擦因数μ处处相同,转 角处撞击 不计机械能损失,测得A、B两点连线与水平方 向夹角为θ ,则木块与接触面间动摩擦因数μ为B (B)
动能与动能定理

动能与动能定理
动能是物体运动时所具有的能量,它是物理学中一个重要的概念。
动
能的大小与物体质量和速度有关,公式为K=1/2mv²,其中K表示动能,m表示物体质量,v表示物体速度。
这个公式告诉我们,当一个
物体的速度增加时,它的动能也会增加;而当一个物体的质量增加时,它的动能也会增加。
动能定理是描述力对物体所做功与物体获得动能之间关系的定理。
它
表明,在没有外力做功或者外力做功为零的情况下,物体获得或失去
的动能等于所受合力沿着位移方向所作的功。
即K2-
K1=W12=W=(F12*s),其中K1和K2分别表示初始和最终状态下物体的动能,W12表示在这两个状态之间所受合力所作的功。
通过上述公式可以看出,在相同距离内,速度越大、质量越大、受到
更大合力等因素都会导致获得更多的动能。
同时,在相同条件下,外
力做功越大,则获得更多的动能。
在实际应用中,我们可以通过运用动能定理来计算机械设备或者车辆
等物体的动能大小,从而更好地掌握其运动状态和性能。
同时,还可
以通过改变物体的质量、速度、受力等因素来调节其动能大小,以达
到更好的运行效果。
总之,动能与动能定理是物理学中重要的概念和定理。
它们不仅有着广泛的应用价值,而且对于我们深入了解物体运动规律和性质也具有重要意义。
动能与动能定理

动能与动能定理动能是物体运动时所具有的能量,是描述物体运动状态的重要物理量。
本文将介绍动能的概念、计算方法以及动能定理的原理和应用。
一、动能的概念与计算方法动能是物体运动时所具有的能量,它与物体的质量和速度有关。
动能的计算公式为:动能 = 1/2 ×质量 ×速度的平方式中,“质量”表示物体的质量,单位为千克,“速度的平方”表示物体的速度的平方,单位为米每秒。
二、动能定理的原理与表达方式动能定理是描述物体运动过程中能量变化的定理,它表明,当物体受到合外力作用时,物体的动能会发生变化。
动能定理可用以下方式表达:动能的变化量 = 物体所受合外力的功其中,“动能的变化量”表示物体动能的增量或减量,“物体所受合外力的功”表示作用在物体上的合外力所做的功。
三、动能定理的应用动能定理在物理学中有广泛的应用,以下是其中两个重要方面:1. 机械能守恒原理根据动能定理,当物体只受重力做功或只受弹力做功时,物体的总机械能保持不变。
即动能和势能之和保持不变。
2. 动能定理与运动的描述动能定理可以用来分析和描述物体的运动过程。
通过计算物体在不同位置或不同时间点的动能变化量,可以了解物体的运动状态和受力情况,进而预测物体的运动轨迹。
四、总结动能是物体运动时所具有的能量,可以通过物体质量和速度来计算。
动能定理描述了物体受到合外力作用时动能的变化规律,可以用来研究和描述物体运动的特性。
在实际应用中,动能定理在机械能守恒和运动分析等方面发挥着重要的作用。
通过本文的介绍,相信读者对动能与动能定理有了更深入的理解,能够运用这些概念和定理解决有关的物理问题。
《动能和动能定理》 讲义

《动能和动能定理》讲义一、引入在我们的日常生活和物理学的研究中,经常会遇到物体运动的情况。
当物体运动时,它就具有了一种能够做功的能力,这种能力被称为动能。
那么,什么是动能?动能的大小与哪些因素有关?动能定理又是什么呢?接下来,让我们一起深入探讨这些问题。
二、动能的定义动能,简单来说,就是物体由于运动而具有的能量。
一个物体的动能与其质量和速度的平方成正比。
如果用字母Ek 表示动能,m 表示物体的质量,v 表示物体的速度,那么动能的表达式可以写成:Ek = 1/2 mv²。
从这个表达式可以看出,物体的质量越大,速度越快,它所具有的动能就越大。
例如,一辆高速行驶的汽车比一辆缓慢行驶的自行车具有更大的动能;一个质量较大的铅球比一个质量较小的乒乓球在相同速度下具有更大的动能。
三、动能定理动能定理是物理学中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。
当一个力作用在物体上,并且使物体在力的方向上发生了位移,这个力就对物体做了功。
力所做的功等于力与在力的方向上移动的距离的乘积。
假设一个物体受到一个恒力 F 的作用,在力的方向上移动的距离为s,那么力 F 所做的功 W = Fs 。
根据牛顿第二定律 F = ma (其中 a 是物体的加速度),以及运动学公式 v² v₀²= 2as (其中 v 是末速度,v₀是初速度),我们可以推导出动能定理的表达式。
对 v² v₀²= 2as 进行变形,得到:s =(v² v₀²) / 2a 。
将 s =(v² v₀²) / 2a 代入 W = Fs 中,得到:W = F ×(v² v₀²) / 2a 。
又因为 F = ma ,所以 W = ma ×(v² v₀²) / 2a ,化简后得到:W = 1/2 mv² 1/2 mv₀²。
动能和动能定理

动能和动能定理动能是物体运动过程中所具有的能量,它是物体动力学性质的一种表现。
在物理学中,动能被定义为物体具有的使其能够进行相互作用的能力。
一、动能的定义和计算公式动能是与物体的质量和速度有关的物理量。
它可以通过以下公式进行计算:动能(K) = 1/2 * m * v^2其中,m为物体的质量,v为物体的速度。
二、动能与能量转换动能在物体运动的过程中可以转化为其他形式的能量,例如势能、热能等。
这种能量的转化过程可以通过动能定理来描述。
动能定理表明,物体所具有的动能变化等于物体所受到的净作用力所做的功。
数学表示为:∆K = W其中∆K表示动能的变化,W表示外力所做的功。
三、动能的应用动能的概念和定理在物理学中有广泛的应用。
1. 运动物体的动能计算:通过动能的定义和计算公式,可以计算质点、刚体等运动物体所具有的动能,进一步分析物体的运动状态。
2. 能量转化和守恒:通过动能定理,我们可以理解能量是如何在不同形式之间转化的,例如机械能转化为热能、光能等。
3. 力学分析中的应用:动能定理是力学分析中的重要工具之一,通过应用动能定理,可以计算物体受到的净作用力,进而研究物体的运动规律。
四、动能定理的局限性虽然动能定理在描述物体运动和能量转化方面具有重要意义,但也存在一定的局限性。
1. 仅适用于刚体系统:动能定理的推导基于刚体的运动,对于柔软物体的运动无法直接应用。
2. 需满足牛顿力学前提:动能定理基于牛顿力学的假设和前提,只适用于符合牛顿力学规律的物体。
3. 不考虑其他能量损失:在实际情况下,物体的运动中可能还存在其他能量的损失,例如空气阻力、摩擦等,这些因素在动能定理中没有考虑。
五、结论动能是物体运动过程中所表现出的能量,可以通过物体的质量和速度来计算。
动能定理描述了动能与净作用力所做的功之间的关系,进一步解释了能量转化的过程。
在物理学中,动能和动能定理被广泛应用于分析物体的运动和能量转化过程。
然而,动能定理也存在一定的局限性,在实际问题中需要综合考虑其他因素。
动能与动能定理

动能与动能定理动能是物体运动的表现,是描述物体运动状态的重要物理量之一。
物体的动能与其质量和速度有关,可以用公式K = 0.5mv²来表示,其中K表示物体的动能,m表示物体的质量,v表示物体的速度。
动能定理是描述物体运动动能变化的原理,它说明了当物体受到力的作用时,动能的变化量与力的做功的关系。
根据动能定理,物体的动能变化等于作用在物体上的力所做的功。
公式可以表示为K2 - K1 = W,其中K1表示物体在起始状态的动能,K2表示物体在结束状态的动能,W表示力所做的功。
动能定理的推导可以通过牛顿第二定律和功的定义来进行。
根据牛顿第二定律F = ma,将物体的加速度a表示为v² - u² / 2s,其中u表示起始速度,v表示结束速度,s表示运动距离。
将力与位移的乘积表示为Fs,将物体的质量m替换进去,可以得到力所做的功W = 0.5mv² - 0.5mu²。
根据动能定理,我们可以理解一些与动能相关的现象。
比如,在一个平直的水平面上,当一个物体在滑行过程中受到恒定的水平力作用时,物体的动能会发生变化。
如果力的方向与物体运动的方向一致,力做正功,物体的动能增加;如果力的方向与物体运动的方向相反,力做负功,物体的动能减少。
如果没有外力作用,物体的动能不会发生改变。
动能定理也可以应用于其他一些情况。
例如,当一个物体自由落体时,在下落过程中由于重力的做功,物体的动能会逐渐增加,而在上升过程中,由于重力与位移的夹角大于90°,重力做负功,物体的动能会减少。
当物体到达最高点时,动能达到最小值,为零,而在下落过程中逐渐恢复。
动能定理的应用还可以帮助我们理解一些现实中的问题。
例如,当汽车减速时,汽车制动器所施加的摩擦力会做负功,使汽车的动能减小,从而使汽车减速停止。
另外,运动员在进行跳跃动作时,运动员腿部的肌肉通过做功使身体获得一定的动能,然后将动能转化为跳跃的高度或距离。
动能定理

7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。
(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。
(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图774所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图776所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的vt图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能和动能定理教案教学目标一.知识与技能1.使学生进一步理解动能的概念,掌握动能的计算式.2.结合教学,对学生进行探索研究和科学思维能力的训练.3.理解动能定理的确切含义,应用动能定理解决实际问题.二.过程与方法1.运用演绎推导方式推导动能定理的表达式.2.理论联系实际,学习运用动能定理分析解决问题的方法.三.情感、态度与价值观通过动能定理的演绎推导.感受成功的喜悦,培养学生对科学研究的兴趣.教学重点、难点教学重点动能定理及其应用.教学难点对动能定理的理解和应用.教学方法探究、讲授、讨论、练习教学活动[新课导入]师:在前几节我们学过,当力对一个物体做功的时候一定对应于某种能量形式的变化,例如重力做功对应于重力势能的变化,弹簧弹力做功对应于弹簧弹性势能的变化,本节来探究寻找动能的表达式.在本章“1.追寻守恒量”中,已经知道物体由于运动而具有的能叫做动能,大家先猜想一下动能与什么因素有关?生:应该与物体的质量和速度有关.我们现在通过实验粗略验证一下物体的动能与物体的质量和速度有什么样的关系.(实验演示或举例说明)让滑块A从光滑的导轨上滑下,与静止的木块月相碰,推动木块做功.师:让同一滑块从不同的高度滑下,可以看到什么现象?生:让同一滑块从不同的高度滑下,可以看到:高度大时滑块把木块推得远,对木块做的功多.师:说明什么问题?生:高度越大,滑到底端时速度越大,在质量相同的情况下,速度越大,对外做功的本领越强,说明物体由于运动而具有的能量越多.师:让质量不同的木块从同一高度滑下,可以看到什么现象?生:让质量不同的木块从同一高度滑下,可以看到:质量大的滑块把木块推得远,对木块做的功多.师:说明什么问题?生:相同的高度滑下,具有的末速度是相同的,之所以对外做功的本领不同,是因为物体的质量不同,在速度相同的情况下,质量越大,物体对外做功的能力越强,也就是说物体由于运动而具有的能量越多.师:那么把这个问题总结一下,得出的结论是什么呢?[新课教学][实验探究]影响小球动能大小的因素有哪些?准备三个小球,其中两个质量相同,第三个质量大一些让学生回顾初中的实验。
一、动能的表达式生(回答刚才的问题,总结实验结论):物体的质量越大,速度越大,它的动能就越大.师:那么动能与物体的质量和速度之间有什么定量的关系呢?我们来看这样一个问题.(投影展示课本例题,学生讨论解决问题,独立完成推导过程) 设物体的质量为m,在与运动方向相同的恒定外力F的作用下发生一段位移L,速度由V l增大到V2,如图5.7—2所示.试用牛顿运动定律和运动学公式,推导出力F对物体做功的表达式.(投影展示学生的推导过程,让学生独立完成推导过程)师:刚才这位同学推导得很好,最好是在推导过程中加上必要的文字说明,这样就更完美了.这个结论说明了什么问题呢?生:从W=21222121mv mv 这个式子可以看出,“221mv ”很可能是一个具有特定意义的物理量,因为这个物理量在过程终了时和过程开始时的差,正好等于力对物体做的功,所以“221mv ”就应该是我们寻找的动能的表达式.师(鼓励):这位同学总结得非常好,我们都要向他学习,我们在上一节课的实验探究中已经表明,力对初速度为零的物体所做的功与物体速度的平方成正比,这也印证了我们的想法。
所以动能应该怎样定义呢? 生:在物理学中就用221mv 这个物理量表示物体的动能,用符号E k 表示,E k =221mv . 师:动能是矢量还是标量?生:动能和所有的能量一样,是标量.师:国际单位制中,动能的单位是什么?生:动能的单位和所有能量的单位一样,是焦耳,符号J .师:1970年我国发射的第一颗人造地球卫星,质量为173 kg ,运动速度为7.2 km /s ,它的动能是多大?生:根据计算可以得到我国发射的第一颗人造地球卫星正常运转的动能是4.48X109J师:为了比较,我们再看这样一个例子;质量为50 kg、运动速度为8m/s的同学在跑步中的动能是多少?生:通过计算我们可以知道这位同学具有的动能是1.6X103J.师:如果这些能量全部转化为电能,能够使100W的灯正常工作多长时间?生:可以使100W的电灯正常工作16s.师:我们知道,重力势能和弹簧的弹性势能都与相对位置有关,那么动能有没有相对性呢?生:动能也应该有相对性,它与参考系的选取有关。
师:以后再研究这个问题时,如果不加以特别的说明,都是以地面为参考系来研究问题的.大家再看这样一个例子:父亲和儿子一起溜冰,父亲的质量是60 kg,运动速度为5 m/s,儿子的质量是30 kg,运动速度为8m/s,试问父亲和儿子谁具有的动能大?生1:当然是父亲的动能大了.师:你是怎样得出这个结论的呢?生l:质量大动能就大.生2:根据计算,儿子的动能要大于父亲的动能.师(语重心长):我们计算问题一定不要想当然,这样很容易出现错误,一定要有根据,分析问题要全面.[课堂练习]1.质量一定的物体……………( )A.速度发生变化时,其动能一定变化B.速度发生变化时,其动能不一定变化C.速度不变时.其动能一定不变D.动能不变时,其速度一定不变2.下列几种情况中,甲、乙两物体的动能相等的是………………( )A .甲的速度是乙的2倍,乙的质量是甲的2倍B .甲的质量是乙的2倍,乙的速度是甲的2倍C .甲的质量是乙的4倍,乙的速度是甲的2倍D .质量相同,速度大小也相同,但甲向东运动,乙向西运动 参考答案1.BC 2.CD二动能定理师:有了动能的表达式后,前面我们推出的W =21222121mv mv ,,就可以写成W =E k2—E k1=221mv ,其中E k2表示一个过程的末动能2221mv ,E k1表示一个过程的初动能2121mv . 师:上式表明什么问题呢?请你用文字叙述一下.生:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.师:这个结论叫做动能定理.师:如果物体受到几个力的作用,动能定理中的W 表示什么意义? 生:如果物体受到几个力的作用,动能定理中的W 表示的意义是合力做的功.师:那么,动能定理更为一般的叙述方法是什么呢?生:合力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.师:结合生活实际,举例说明。
生1:上一节课做实验探究物体速度与力做功之间的关系时,曾经采用的一种方法是平衡摩擦力,实际上这时小车受到的橡皮筋的拉力就等于物体所受的合力.生2:如果物体匀速下落,那么物体的动能没有发生变化,这时合力是零,所以合力做的功就是零.生3:例如,一架飞机在牵引力和阻力的共同作用下,在跑道上加速运动.速度越来越大,动能越来越大.这个过程中是牵引力和阻力都做功,牵引力做正功,阻力做负功,牵引力和阻力的合力做了多少功,飞机的动能就变化了多少.师:合力做的功应该怎样求解呢?我们经常用什么方法求解合力做的功?生:合力做功有两种求解方法,一种是先求出物体受到的合力.再求合力做的功,一种方法是先求各个力做功,然后求各个力做功的代数和.师:刚才我们推导出来的动能定理,我们是在物体受恒力作用且做直线运动的情况下推出的.动能定理是否可以应用于变力做功或物体做曲线运动的情况,该怎样理解?生:当物体受到的力是变力,或者物体的运动轨迹是曲线时,我们仍然采用过去的方法,把过程分解为很多小段,认为物体在每小段运动中受到的力是恒力,运动的轨迹是直线,这样也能得到动能定理.师:正是因为动能定理适用于变力做功和曲线运动的情况,所以在解决一些实际问题中才得到了更为广泛的应用.我们下面看一个例题:投影展示例题,学生分析问题,讨论探究解决问题的方法.一架喷气式飞机质量为5.0Xl03kg,起飞过程中从静止开始滑跑.当位移达到l=5.3X102m时,速度达到起飞速度v=60m/s。
在此过程中飞机受到的平均阻力是飞机重力的0.02倍.求飞机受到的牵引力.师:从现在开始我们要逐步掌握用能量的观点分析问题.就这个问题而言.我们已知的条件是什么?生:已知初末速度,初速度为零,而末速度为v=60m/s,还知道物体受到的阻力是重力的0.02倍.师:我们要分析这类问题,应该从什么地方人手呢?生:还是应该从受力分析人手。
这个飞机受力比较简单,竖直方向的重力和地面对它的支持力合力为零,水平方向上受到飞机牵引力和阻力。
师:分析受力的目的在我们以前解决问题时往往是为了求物体的加速度,而现在进行受力分析的目的是什么呢?生:目的是为了求合力做的功,根据物体合力做的功,我们就可以求解物体受到的牵引力.师:请同学们把具体的解答过程写出来.投影展示学生的解答过程,帮助能力较差的学生完成解题过程.解题过程参考师:用动能定理和我们以前解决这类问题的方法相比较,动能定理的优点在哪里呢?生1:动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿定律方便.生2:动能定理能够解决变力做功和曲线运动问题,而牛顿运动解决这样一类问题非常困难.师:下面大家总结一下用动能定理解决问题的一般步骤.(投影展示学生的解决问题的步骤,指出不足,完善问题)参考步骤用动能定理解题的一般步骤:1.明确研究对象、研究过程,找出初末状态的速度情况.2.要对物体进行正确的受力分析,明确各个力的做功大小及正负情况.3.明确初末状态的动能.4.由动能定理列方程求解,并对结果进行讨论.师:刚才这位同学分析得很好,我们现在再看例题2.投影展示例题2一辆质量为m,速度为v0的汽车在关闭发动机后于水平地面滑行了距离l后停下来,试求汽车受到的阻力.师:这个问题和上一个问题的不同之处在哪里?生1:首先是运动状态变化的情况不同,上一个问题中飞机是从静止开始加速运动的,是初速度为零的加速运动,而这个问题中汽车是具有一个水平方向的初速度,速度逐渐减小的一个减速运动,最终的速度为零.生2:两个物体受力是不相同的,飞机受到的合力的方向和运动方向相同,而汽车受到的合力方向和运动方向相反。
生3:它们的动能变化情况也不相同,飞机的动能是增加的,而汽车的动能是减小的.师:这也说明一个问题,在应用动能定理时我们应该注意到,外力做功可正可负。
如果外力做正功,物体的动能增加;外力做负功,物体的动能减少.现在大家把这个问题的具体的解答过程写出来.(投影展示学生的解答过程,指导学生正确的书写解答过程)参考解答过程师:通过以前的学习我们知道,做功的过程是能量从一种形式转化为另一种形式的过程.在上面的例题中,阻力做功,汽车的动能到哪里去了?生:汽车的动能在汽车与地面的摩擦过程中转化成内能,以热的形式表现出来,使汽车与地面间的接触面温度升高.[小结]本节课的内容是高中物理的一个重中之重,是高考中必考的内容之一,并且所占的比重非常大,所以要引起老师和学生的高度重视。