斐波那契螺旋(黄金分割)

合集下载

黄金分割与斐波那契数列

黄金分割与斐波那契数列

第八讲 黄金分割与斐波那契数列一、 黄金分割1. 黄金分割的概念把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是(√5-1):2,取其小数点后三位的近似值是0.618。

由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字。

德国天文学家开普勒(J.Kepler )曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。

前者如黄金,后者如珍珠。

”所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法:A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less.分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。

关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。

德国天文学家开普勒称之为神圣分割。

当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。

黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。

这种算法在印度称之为“三率法”或“三数法则”,也就是我们常说的比例方法。

数列教案二斐波那契数列的性质与应用

数列教案二斐波那契数列的性质与应用

数列教案二:斐波那契数列的性质与应用引言:斐波那契数列是数学上一种非常有趣的数列,被广泛运用在各个领域中。

它的前几项是:1、1、2、3、5、8、13、21、34、……(后面的项依次为前面两项之和)。

在本文中,我们将介绍斐波那契数列的性质与应用。

一、斐波那契数列的性质1.黄金分割比:斐波那契数列的性质之一是黄金分割比。

定义为,将一个线段分成两段,较长的一段与整个线段的比值等于较短的一段与较长的一段的比值,该比值为φ (phi),即:$\frac{a+b}{a}=\frac{a}{b}=\phi$其中,a 和 b 分别为较长和较短的线段。

斐波那契数列中,相邻两个数的比值逐渐趋近于黄金分割比,即:$\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, ……$这个比值在美学和建筑学中应用广泛。

2.递归性:斐波那契数列的定义是:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。

这个定义具有递归性质,即当前的某一项可以由前面的两项推导而来。

这个递归特性可以简化许多计算程序。

3.对称性:斐波那契数列具有左右对称性,即第 n 个项与第 (n+1)个项在黄金分割比两侧的距离是相等的。

例如:F(6)=8=F(7)-F(5)F(7)=13=F(6)+F(5)F(8)=21=F(7)+F(6)……由此可见,斐波那契数列在建筑学和对称性的应用上正好符合黄金分割比的几何形态。

二、斐波那契数列的应用1.斐波那契螺旋线:斐波那契数列可以绘制成螺旋线,称为斐波那契螺旋线。

它有以下性质:(1)外形美观,符合数学美学;(2)螺旋线与出生生长的自然界中普遍存在的螺旋形态极为相似;(3)斐波那契螺旋线可以用于编程、、图像处理等领域。

2.斐波那契数列的金融应用:(1)股票投资:斐波那契数列被广泛应用于股票市场。

斐波那契螺旋(黄金分割)

斐波那契螺旋(黄金分割)

斐波那契(Leonardo Fibonacci, 约1175-约1240)也许是在生活在丢番图(Diophantos)之后费尔马(Pierre de Fermat)之前这2000年间欧洲最杰出的数论学家。

我们对他的生平知道得很少。

他出生在意大利那个后来因为伽里略做过落体实验而著名的斜塔所在的城市里,现在那里还有他的一座雕像。

他年轻是跟随经商的父亲在北非和欧洲旅行,大概就是由此而学习到了世界各地不同的算术体系。

在他最重要的著作《算盘书》(Liber Abaci,写于1202年)中,引进了印度-阿拉伯数码(包括0)及其演算法则。

数论方面他在丢番图方程和同余方程方面有重要贡献。

坐落在意大利比萨的斐波那契雕像数学中有一个以他的名字命名的著名数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……从第三项开始每一项都是数列中前两项之和。

这个数列是斐波那契在他的《算盘书》的“兔子问题”中提出的。

在问题中他假设如果一对兔子每月能生一对小兔(一雄一雌),而每对小兔在它出生后的第三个月,又能开始生小兔,如果没有死亡,由一对刚出生的小兔开始,一年后一共会有多少对兔子?将问题一般化后答案就是,第n个月时的兔子数就是斐波那契数列的第n项。

斐波那契数列和黄金分割数有很密切的联系。

斐波那契并没有把这个问题和这个数列看得特别重要,在《算盘书》中兔子问题只不过是书里许多问题中并不特别的其中一个罢了。

但是在此后的岁月中,这个数列似乎和题中的高产兔子一样,引发了为数众多的数学论文和介绍文章(本文似乎也在步此后尘)。

不过在这里我不想介绍浩如烟海的有关斐波那契数列的数学文章,只想欣赏大自然的造化。

在现实的自然世界中,《算盘书》里那样的神奇兔子自然是找不到的,但是这并不妨碍大自然使用斐波那契数列。

本期封面上是起绒草椭球状的花头,你可以看见那上面有许多螺旋。

很容易想像,如果从上面俯视下去的话,这些螺旋从中心向外盘旋,有些是顺时针方向的,还有些是逆时针方向的。

斐波那契数列是黄金分割

斐波那契数列是黄金分割

斐波那契数列是黄金分割
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用,为此,美国数学会从1963 年起出版了以《斐波那契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

定义
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89...这个数列从第3项开始,每一项都等于前两项之和。

斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。

他被人称作“比萨的莱昂纳多”。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

另外斐波那契还在计算机C语言程序题中应用广泛。

黄金分割法和斐波那契法的区别

黄金分割法和斐波那契法的区别

黄金分割法和斐波那契法的区别黄金分割法和斐波那契法是两种在数学、艺术和自然界中被广泛运用的概念,它们都具有独特而重要的意义。

今天,我们将深入探讨这两种方法的区别,并且探讨它们在不同领域的应用。

黄金分割法,也称为黄金比例,是指一种在美学和艺术中被广泛运用的比例原则。

它的数学定义是:将一条线段分成两部分,在使得整体和较大部分之间的比值等于较大部分和较小部分之间的比值。

这种比例约等于1:1.618,被认为是最具美感和和谐的比例之一。

黄金分割法在建筑、绘画、雕塑等艺术领域中被广泛运用,也被认为是大自然之美的来源之一。

相对的,斐波那契法是一种数学上的数列,以及由这种数列所构成的图形和比例。

具体来说,这个数列的特点是一个数等于前两个数的和,即0、1、1、2、3、5、8、13、21……以此类推。

这个数列的性质非常有趣,它包含了许多有趣的数学特性,并且在计算机科学和自然界的模式中被广泛应用。

那么,黄金分割法和斐波那契法有什么区别呢?黄金分割法更多的是一种比例和比例的原则,它强调的是对称、和谐和美感。

而斐波那契法更多的是一种数列和数学规律,它强调的是数学的严谨性和递推关系。

黄金分割法更多的是在艺术和美学领域中被应用,而斐波那契法更多的是在数学和科学领域中被应用。

在我看来,这两种方法都具有重要的意义。

黄金分割法是一种对称和和谐的原则,它可以帮助人们创造出更美感的作品。

而斐波那契法则是一种严谨和有趣的数学规律,它可以帮助人们理解和描述自然界中的一些模式和现象。

这两种方法虽然有着不同的特点和应用领域,但它们都展示了人类对美感和数学的追求和探索。

黄金分割法和斐波那契法都是非常有价值的概念,它们在艺术、数学和自然界中都有着重要的应用。

希望通过今天的探讨,你能更全面、深刻和灵活地理解这两种方法,并且对它们的意义有更深刻的理解。

希望你能继续探索并运用这些方法,创造出更美感和有趣的作品。

黄金分割法和斐波那契法是两种在数学、艺术和自然界中被广泛运用且具有独特而重要的意义的概念。

黄金分割斐波那契数列--波浪理论的数学基础

黄金分割斐波那契数列--波浪理论的数学基础
从第3个数目开始,每个数 目都是前面两个数目之和。
斐波那契数列
依次类推可以列出下表: 所经过月数:1、2、3、4、5、6、 7、 8、 9、10、11、 12 兔子对数: 1、1、2、3、5、8、13、21、34、55、89、144
黄金分割与斐波纳契数列的关系
黄金数是方程 x2x10的根,整理
方程有: x 1 1 x
建筑中的神秘数字
建筑中的神秘数字
建筑中的神秘数字
绘画艺术中的黄金分割

绘画艺术中的黄金分割
绘画艺术中的黄金分割
武器装备与黄金分割
当发射子弹的步枪刚刚制造出来的时候,它的枪把和 枪身的长度比例很不科学合理,很不方便于抓握和瞄准。 到了1918年,一个名叫阿尔文·约克的美远征军下士, 对这种步枪进行了改造,改进后的枪型枪身和枪把的比 例恰恰符合0.618的比例。
植物的神秘数字
计算机绘制的斐波纳契螺旋
生命的神秘数字
动物界的神秘数字
人体的黄金分割点
人体的黄金分割点
面部的黄金分割
维纳斯的标准体型
芭蕾演员虽然身材 修长,但其腰长与身 高之比平均约为0.58, 只有在翩翩起舞时、 踮起脚尖,方能展现 0.618的魅力。
健康的黄金分割率
气温在人体正常体温的 黄金分割点上23℃左右时, 恰是人的身心最适度的温 度;医学专家也观察到, 当人的脑电波频率下限是8 赫兹,而上限是12.9赫兹, 上下限的比率接近于0.618 时,乃是身心最具快乐欢 愉之感的时刻。正常人的 心跳在心电图上也显示出T 波出现的位置恰好大约是 一次心跳节拍的“黄金分 割”位置上(如图)。
生命的黄金分割
最有意味的是,在人的生命程序 DNA 分子中,也包含着“黄金分割 比”。它的每个双螺旋结构中都是 由长 34个埃与宽21个埃之比组成 的,当然34和21是斐波那契系列中 的数字,它们的比率为1.6190476, 非常接近黄金分割的1.6180339。 这是否说明黄金分割律是比DNA中 的遗传密码更基本的东西?因为承 载DNA的结构——双螺旋结构—— 也遵循黄金分割律。黄金分割律也 许是我们的宇宙的DNA中的遗传密 码?

数学文化之旅------神奇的斐波那契数列与黄金分割

数学文化之旅------神奇的斐波那契数列与黄金分割

神奇的斐波那契数列与黄金分割石家庄二中南校区孟柳比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

列奥纳多的父亲Guilielmo(威廉),外号Bonacci.因此列奥纳多就得到了外号斐波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,当时仍是小伙子的列奥纳多已经开始协助父亲工作,因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

于是他就学会了阿拉伯数字。

他是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

主要著作有《算盘书》《几何实践》《花朵》《平方数书》斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后就具有了繁殖能力,一对兔子每个月能生出一对兔子,如果兔子都不死,那么一年后能有多少对兔子?拿新出生的一对兔子研究:第一个月兔子没有繁殖能力,两个月后生下一对小兔总数共有两对;三个月后,老兔子生下又一对,因为上一轮的小兔没有繁殖能力,所以总数是三对;…………..1,1,2,3,5,8,13,21,34,55,89,144……依次类推下去,你会发现,它后一个数等于前面两个数的和。

在这个数列中的数字,就被称为斐波那契数。

2是第3个斐波那契数。

斐波那契数列还满足一下特点:1.任一项的平方数都等于与它相邻的两项乘积相差12.相邻的4个数,内积与外积相差13.前一项与后一项的比大约是0.6184.后一项比前一项大约是1.618经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

斐波那契-黄金分割

斐波那契-黄金分割

斐波那契-黄⾦分割斐波那契数列普通递推F0=0,F1=1,F n=F n−1+F n−2快速倍增递推F2n=F n(2F n+1−F n)F2n=F n(F n+1+F n−1)F2n+1=F2n+1+F2n 矩阵递推1 1 1 0F n−1F n−2=F nF n−1通项公式及其推导令ϕ=1+√52,ˆϕ=1−√52∵F_n = \dfrac{1}{\sqrt{5}}(\phi^n-\hat\phi^n)=\lfloor \dfrac{\phi^i}{\sqrt{5}} + \dfrac{1}{2} \rfloor所以、斐波那契以指数形式增长1.母函数法$ \digamma(x)=\sum\limits_{\infin} F_nx n\ \digamma(x)=x2\digamma(x)+x\digamma(x)+x\ \digamma(x)=\dfrac{1-x-x2} $母函数进⾏展开,⾸先我们要知道⽜顿⼆项式定理、⽜顿⼴义⼆项式定理、⼆项式定理的推⼴⽜顿⼆项式定理(n \in N^{+})(x+y)^n = \sum\limits_{i=0}^{n} C_{n}^{i} x^{n-i}y^{i}**⼆项式定理推⼴⾄(n \in N) **(1+x)^n=\sum\limits_{i=0}^{\infin} C_{n}^{i} x^i~~~~(n>0)(1+x)^{-n} = \sum\limits_{i=0}^{\infin} C_{-n}^{i} x^i=\sum\limits_{i=0}^{\infin}(-1)^i C_{n+i-1}^{i} x^i⽜顿⼴义⼆项式定理(\alpha \in R)(x+y)^{\alpha}=\sum\limits_{i=0}^{\infin}\tbinom{\alpha}{i} x^{\alpha-i}y^k其中\tbinom{\alpha}{i}类似组合数\tbinom{\alpha}{i}=\dfrac{\alpha(\alpha-1)\cdots(\alpha-i+1)}{i!}特殊形式(1+x)^n = (1-x)^{-n} = \sum\limits_{i=0}^{\infin} C_{n}^{i}x^i推导开始:设~\digamma(x)=\frac{x}{1-x-x^2}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x} \\=\frac{A+B-x(A\beta+B\alpha)}{1-(\alpha+\beta)x+\alpha\beta x^2}\\ \left\{ \begin{matrix} A+B=0\\A\beta+B\alpha=-1\\ \alpha+\beta=1\\ \alpha\beta=-1 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} A=\frac{1}{\sqrt{5}}\\ B=-\frac{1}{\sqrt{5}}\\ \alpha=\phi\\ \beta=\hat\phi\end{matrix} \right.\\ \therefore \digamma(x)=\frac{1}{\sqrt{5}}(\frac{1}{1-\phi x}-\frac{1}{1-\hat\phi x})\\ \because\frac{1}{1-x}=\sum\limits_{n=0}^{\infin}x^n\\ \digamma(x)=\frac{1}{\sqrt{5}}\sum\limits_{n=0}^{\infin}(\phi^n-\hat\phi^n) x^n2.数列待定系数法类似于求解a_n = pa_{n-1}+q性质1.卡西尼性质F_{n-1}F_{n+1}-F_n^2=(-1)^n证:F_{n-1}F_{n+1}-F_n^2\\ =det \left( \left[ \begin{matrix} F_{n+1}~~F_{n}\\ F_{n}~~F_{n-1} \end{matrix} \right] \right) =det \left( \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right] \right)^n = \left( det \left( \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right] \right) \right)^n=(-1)^n2.附加性质F_{n+m}=F_m F_{n+1}+F_{m-1}F_{n}证:\because \left[ \begin{matrix} F_{n}~~~F_{n-1}\\ F_{n-1}~~~F_{n-2} \end{matrix} \right] = \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{n-1}\\ \therefore \left[ \begin{matrix} F_{n+m}~~~F_{n+m-1}\\ F_{n+m-1}~~~F_{n+m-2} \end{matrix} \right] = \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{n+m-1}=\left[ \begin{matrix} 1~~~~1\\ 1~~~~0\end{matrix} \right]^{n} \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{m-1}= \left[ \begin{matrix} F_{n+1}~~~F_{n}\\ F_{n}~~~F_{n-1} \end{matrix} \right] \left[ \begin{matrix} F_{m}~~~F_{m-1}\\ F_{m-1}~~~F_{m-2} \end{matrix} \right]\\ \therefore F_{n+m}=F_{n+1}F_{m}+F_nF_{m-1}变形:F_{2n} = F_n(F_{n+1}+F_{n-1}) .3.整除与GCD性质\forall a,b \in N,F_a|F_b\Leftrightarrow a|b[][][](F_n,F_m) = F_{(n,m)}证:设~n>m~~则~(F_n,F_m)=(F_{n-km},F_m)\\ 设~r=n-km~,r<m~则~(F_r,F_m)=(F_r,F_{m-kr})\\ 这就类似于欧⼏⾥德算法的过程\\ \therefore~(F_n,F_m)=F_{(n,m)}4.求和公式奇数项:\sum\limits_{i=1}^{2n-1}[2\nmid i] F_{i}= F_{2n}偶数项:\sum\limits_{i=2}^{2n}[2\mid i] F_{i}= F_{2n+1}-1平⽅项:\sum\limits_{i=1}^{n}F_i^2=F_n F_{n+1}证:画图推⼴1.⼴义斐波那契数列当n<0时F_n=F_{n+2}-F_{n+1}F_{-n}=(-1)^{n-1}F_n2 .类斐波那契数列⼜称斐波那契—卢卡斯数列对于数列G,若G_0=a,G_1=b,且数列满⾜递推关系式,则称G是类斐波那契数列G_n =a F_{n-1} + b F_{n}⽤矩阵可证类斐波那契数列也有部分斐波那契数列的性质任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列3. Lucas数列与Fibonacci数列Lucas数列为a=2,b=1的类斐波那契数列,记为LL_n = (\dfrac{1+\sqrt{5}}{2})^n+(\dfrac{1-\sqrt{5}}{2})^n~~~~(n\ge 2)Lucas数列能够辅助写出看似很困难的等式2L_{n+m}=5 F_n F_m+L_n L_m\\ 2F_{n+m}=5 F_n L_m+L_n F_m\\ L_{2n}=L_n^2-2(-1)^n\\ F_{2n}=F_n L_n\\ L_n=F_{n+1}+F_{n-1}4.编码(齐肯多夫定理)齐肯多夫表述法表⽰任何正整数都可以表⽰成若⼲个不连续的斐波那契数之和证:若~m~为斐波那契数,成⽴\\ 否则考虑最⼤~n1~满⾜~F_{n1}< m<F_{n1+1}\\ 继续考虑最⼤~n2~满⾜~F_{n2} < m-F_{n1}<F_{n2+1}\\ 反证:\\ 若~F_{n1}~和~F_{n2}~为连续斐波那契数\\ 则~F_{n1+1}<m~与~F_{n1+1}>m~⽭盾模意义下的循环对于任意整数n , 数列为F_i~(mod~n)周期数列. ⽪萨诺周期\pi(n)记为该数列的周期.例如,模3的斐波那契数列前若⼲项为:0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0\cdots\therefore \pi(3) = 8.性质:1.~~\pi(n)\le 6 n且只有满⾜n=2*5^k的形式时才取得到等号2.~~\forall a,b\in N~且~(a,b)=1,\pi(a)\pi(b)=\pi(ab)Loading [MathJax]/jax/element/mml/optable/MathOperators.js。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契(Leonardo Fibonacci, 约1175-约1240)也许是在生活在丢番
图(Diophantos)之后费尔马(Pierre de Fermat)之前这2000年间欧洲最杰出的数论学家。

我们对他的生平知道得很少。

他出生在意大利那个后来因为伽里略做过落体实验而著名的斜塔所在的城市里,现在那里还有他的一座雕像。

他年轻是跟随经商的父亲在北非和欧洲旅行,大概就是由此而学习到了世界各地不同的算术体系。

在他最重要的著作《算盘书》(Liber Abaci,写于1202年)中,引进了印度-阿拉伯数码(包括0)及其演算法则。

数论方面他在丢番图方程和同余方程方面有重要贡献。

坐落在意大利比萨的斐波那契雕像
数学中有一个以他的名字命名的著名数列:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……
从第三项开始每一项都是数列中前两项之和。

这个数列是斐波那契在
他的《算盘书》的“兔子问题”中提出的。

在问题中他假设如果一对兔子每月能生一对小兔(一雄一雌),而每对小兔在它出生后的第三个月,又能开始生小兔,如果没有死亡,由一对刚出生的小兔开始,一年后一共会有多少对兔子?将问题一般化后答案就是,第n个月时的兔子数就是斐波那契数列的第n项。

斐波那契数列和黄金分割数有很密切的联系。

斐波那契并没有把这个问题和这个数列看得特别重要,在《算盘书》中兔子问题只不过是书里许多问题中并不特别的其中一个罢了。

但是在此后的岁月中,这个数列似乎和题中的高产兔子一样,引发了为数众多的数学论文和介绍文章(本文似乎也在步此后尘)。

不过在这里我不想介绍浩如烟海的有关斐波那契数列的数学文章,只想欣赏大自然的造化。

在现实的自然世界中,《算盘书》里那样的神奇兔子自然是找不到的,但是这并不妨碍大自然使用斐波那契数列。

本期封面上是起绒草椭球状的花头,你可以看见那上面有许多螺旋。

很容易想像,如果从上面俯视下去的话,这些螺旋从中心向外盘旋,有些是顺时针方向的,还有些是逆时针方向的。

为了仔细观察这些螺旋,我们挑选另一种具有类似特点的植物——蓟,它们的头部几乎呈球状。

在下面这个图里,标出了两条不同方向的螺旋。

我们可以数一下,顺时针旋转的
具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部
(和左边那条旋转方向相同)螺旋一共有13条,而逆时针旋转的则有21条。

而下面这幅图中的顺逆方向螺旋数目则恰好相反。

具有13条逆时针旋转和21条逆时针旋转的螺旋的蓟的头部以这样的形式排列种子、花瓣或叶子的植物还有很多(最容易让人想到的是向日葵),下面的图片是一些看起来明显的例子(可以点击看大图),事实上许多常见的植物,我们食用的蔬菜如青菜,包心菜,芹菜等的叶子排列也具有这个特性,只是不容易观察清楚。

尽管这些顺逆螺旋的数目并不固定,但它们也并不随机,它们是斐波那契序列中的相邻数字。

这样的螺旋被称为斐波那契螺旋。

自然界中各种各样的斐波那契螺旋(点击看大图)
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。

这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。

叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360 度之比是黄金分割数1.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。

向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。

由于是自然规律而并非抽象的数学或哲学原理决定了植物各种器官的排列图样;另外还有具体环境的影响,比如地形、气候或病害,你并不总能找到完美的斐波那契螺旋。

即使是生长得很健康的植物,也难免有这样那样的缺陷。

仔细观察上面的图片,你会发现螺旋的中心经常是一片混乱。

所以最后还是让我们来欣赏一下由计算机绘制出来的完美的斐波那契螺旋吧(点击看大图)。

计算机绘制的斐波那契螺旋
斐波那契数列与自然
斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的.
a)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花.
b)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊.
斐波那契数经常与花瓣的数目相结合:
3………百合和蝴蝶花
5………蓝花耧斗菜、金凤花、飞燕草
8…………翠雀花
13…………金盏草
21…………紫宛
34, 55,84…雏菊
C)斐波那契数还可以在植物的叶、枝、茎等排列中发现.例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直至到达与那片叶子正对的位置,则其间的叶子数多半是斐波那契数.叶子从一个位置到达下一个正对的位置称为一个循回.叶子在一个循回中旋转的圈数也是斐波那契数.在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比.多数的叶序比呈现为斐波那契数的比.
d)斐波那契数有时也称松果数,因为连续的斐波那契数会出现在松果的左和右的两种螺旋形走向的数目之中.这种情况在向日葵的种子盘中也会看到.此外,你能发现一些连续的鲁卡斯数①吗?
e)菠萝是又一种可以检验斐波那契数的植物.对于菠萝,我们可以去数一下它表面上六角形鳞片所形成的螺旋线数.
斐波那契数列与黄金比值
相继的斐波那契数的比的数列
1,2,1.5,1.6,1.6,1.625,1.6153,1.619…
它们交错地或大于或小于黄金比φ的值.该数列的极限为φ.这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然.
①原注:鲁卡斯数构成一个类斐波那契数列,它起于数1和3,其后继数可由前两个数相加得到.这样,鲁卡斯数列便是1,3,4,7,11,….这个名字是19世纪数学家后来命名的,他们在研究斐波那契再生数列时,给鲁卡斯数列命了名.鲁卡斯数列还可以直接从它与斐波那契数列之间的关系得出.。

相关文档
最新文档