斐波那契数列 黄金分割 c++
斐波那契数列与黄金分割 ppt课件

F1 1 F2 1
第三个月兔子数
F 3F 1F 2 1 12
随着时间不断流逝。。。。。。
第n个月兔子 数
Fn Fn1Fn2
按照递推公式计算,得到 1,1,2,3,5,8,13,21,34,55,89,144,• • •
从第三项起每一项都等于前两项之和。19世纪法国数 学家路卡斯给这个数列起了一个颇适合的名字:“斐波那契数 列”,数列中的每一个数称为斐波那契数.
数学家们已经发现了许多关于斐波那契数列的特性。例如:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , …
• 从第二项开始,每个奇数项的平方都比前后两项之积多1, 每个偶数项的平方都比前后两项之积少1
• 第3、第6、第9、第12项的数字,能夠被 2整除
古希腊的数学家不必说了,中世纪的意 大利数学家裴波那契(Fibonacci, 约1170— 1240), 文艺复兴时代的德国天文学家开普勒 (Kepler, 1571—1630),以及当代的一些著名 科学家都对它十分关注,并投入了大量的精 力。
意大利的数学家列昂 那多·斐波那契在1202 年提出这样一个问题
1,1,2,3,5,8,13,21,34,55,89,144,• • •
21个花瓣的紫菀
34个花瓣的雏菊 1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契数有时也称松果数,因为连续的 斐波那契数会出现在松果的左和右的两种 螺旋形走向的数目之中
1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契(Leonardo Pisano
F ibonacci ; 1170 1250 )
斐波那契数列与黄金分割

数学文化
主讲教师 李令斗
斐波那契数列与黄金分割
一、兔子问题和斐波那契数列
二、数学的统一美
三、 斐波那契协会和《斐波那契季刊》
一、兔子问题和斐波那契数列
1. 兔子问题
1) 问题 ——取自意大利数学家 斐波那契的《算盘书》 (1202年)
(L.Fibonacci,1170-1250)
D (DB)
AC AB
交A D于 E ,
5 1 2
再作 A ( A E ) 交 A B于 C
,则
D
C , 即
为 A B 的黄金分割点。
5
E
1
A
C
B
2
25
证:不妨令
AD 2 1
2
BD 1
,则
5 1 2
AB 2
,
5 1,
5
, AE
AC AB
AD ED
AC AE
un vn
19
对照
x 1 1
1 1 1 1 1 1
可算得
u1
1 u2 , v1 1 v2
1 1
1 u3 , 1 2 v3 1
1 1 1 1 1 1
2 u4 , 3 v4
1 1 1 1 1 1 1 1
3 5
20
发现规律后可以改一种方法算,
un vn 1
3
兔子问题
假设一对初生兔子要一个月才到成熟期, 而一对成熟兔子每月会生一对兔子,那么, 由一对初生兔子开始,12 个月后会有多少 对兔子呢?
4
解答
1 月 1 对
5
解答
c语言用斐波那契数列求黄金分割比

c语言用斐波那契数列求黄金分割比斐波那契数列是指从0和1开始,后面的每个数都等于前面两个数之和的数列,即0、1、1、2、3、5、8、13、21、34、55、89、144……。
黄金分割比是一种数学比例,通常用希腊字母φ表示,它的值约为1.6180339887。
它与斐波那契数列有着密切的关系,两者的关系在数学上被称为黄金分割定理。
黄金分割比还被广泛应用于建筑、艺术、音乐等领域中。
在C语言中,我们可以通过编写代码来求解斐波那契数列和黄金分割比。
以下是一个简单的例子:#include <stdio.h>int main() {int n;double golden_ratio;double f1 = 0, f2 = 1, fn;printf('请输入斐波那契数列的项数:');scanf('%d', &n);for(int i = 0; i < n; i++) {if(i <= 1) {fn = i;} else {fn = f1 + f2;f1 = f2;f2 = fn;}printf('%.0f ', fn);}golden_ratio = f2 / f1;printf('黄金分割比为:%.10f', golden_ratio);return 0;}在这个例子中,我们通过输入要求斐波那契数列的项数,然后利用for循环来计算斐波那契数列中的每一项,并输出到屏幕上。
最后,我们通过计算斐波那契数列中相邻两项的比值来得到黄金分割比。
在实际应用中,我们可以利用黄金分割比来设计各种物品和系统,以达到更加美观和高效的效果。
同时,利用斐波那契数列和黄金分割比的思想还可以应用到很多其他的领域中,如金融、自然科学等。
数学文化第四讲斐波那契数列与黄金分割

2、兔子数列 如果每对兔子(一雄一雌)每月能生殖一对小兔 子(也是一雄一雌,下同),每对兔子第一个月没有 生育能力,但从第二个月以后便能每月生一对小兔子。 假定这些兔子都不发生死亡现象,那么从一对刚出生 的兔子开始,一年之后会有多少对兔子呢?
解答
1 月 1 对
解答
1 月 1 对 2 月 1 对
斐波那契数列: 1,1,2,3,5,8,13,21,34,55,89, 144,• • • 上述数列中的每一个数称为斐波那契数. 此数列有下述递推公式: u1 = 1, u2 = 1,un = un-1 + un-2 ,n > 2 . 用数学归纳法,可推得斐波那契数列的通项公式:
1 1 5 n 1 5 n , un 5 2 2
二、黄金分割
著名天文学家开普勒说:几何学里有两个 宝库,一个是毕达哥拉斯定理,一个是黄金分 割。前者可以比作金矿,后者可以比作珍贵的 钻石矿。
数学之美
德国天文学家开普勒曾说:“几何学有两大宝 藏,其一为毕氏定理,其二为将一线段分成外内比。 前者如黄金,后者如珍珠。”
A straight line is said to have been cut in extreme and mean radio when,as the whole line is to the greater segment,so is the greater to the less.
+
1 2 3 5 8 13 21 34 55 89 ??
十秒钟加数
请用十秒,计算出 左边一列数的和。
时间到!
答案是 231。
+
34 55 89 144 233 377 610 987 1597 2584 ????
斐波那契数列与黄金分割

我们可以在鹦鹉螺的外壳发现这样的螺线
所谓黄金三角形是一个 等腰三角形其底与腰的长 度比为黄金比值。我们若 以底边为一腰作一等腰三 角形则此三角形亦为一黄 金三角形,如下图。图中 三种不同长度的线段,其 中次长的线段(蓝色)与 最长的线段(红色)比是 黄金比例,最短的线段 (绿色)与次长线段(蓝 色)也是黄金比例。
1 5 ,其正根为 x 2
5 1 x 0.6180339 0.618 2 A B
小段 大段
3.黄金矩形
定义:一个矩形,如果从中裁去 一个最大的正方形,剩下的矩形的宽与长 之比,与原矩形的一样(即剩下的矩形与 原矩形相似),则称具有这种宽与长之比 的矩形为黄金矩形。黄金矩形可以用上述 方法无限地分割下去。
Fn Fn1 Fn2 , n 2.
每月大兔对数 Fn 排成数列为: 0,1,1,2,3,5,8,13,21,34,55,89,144,
•••
4
定义:若一个数列,前两项均等于1,而从 第三项起每一项是其前两项之和,则称该数列
为斐波那契数列。即:
1 , 1 , 2 , 3 , 5 , 8 , 13 , … …
(1)人体各部分的比Fra bibliotek肚 脐:
印堂穴:
(头—脚)
(口—头顶)
肘关节: (肩—中指尖) 膝 盖: (髋关节—足尖)
(2)著名建筑物中各部分的比
如埃及的金字塔,高(137米)与底边长 (227米)之比为0.629
雅典的帕德侬神庙 (Parthenon at Athens) 庄严、宏伟,被认为 是古希腊最伟大的建筑之一。有 人认为它之所以显得那么和谐, 是因为这个建筑符合黄金比。
Field daisies have 34 petals
斐波那契数列与黄金分割(最新)

21
上一页 下一页 主 页 返回 退出
黄金分割大量地出现在绘画艺术中,并形成 了黄金分割学派,其中包括达· 芬奇、A.丢勒、G. 西雷特等许多画家. 15世纪和16世纪早期,几乎所有的绘画大师 都试图将绘画中的数学原理与数学和谐和主要目 的结合起来.米开朗琪罗、拉斐尔及其他许多艺 术家都对数学有浓厚的兴趣,而且力图将数学应 用于艺术.
22上一页 下一页 主源自页 返回 退出例如,画家波提切利的名作“维纳斯的诞生”
女神维纳斯从爱琴海中浮水而出,花神、风神迎送左右的情形.画中也包 含了黄金分割. 23
上一页 下一页 主 页 返回 退出
达· 芬奇与黄金分割 达· 芬奇广泛研 究了人类身体的 各种比例,右面 一张图画的是他 对人体的详细研 究,而且图中标 明了黄金分割的 应用。这是一张 他为数学家L· 帕 西欧里的书《神 奇的比例》所作 的图解,该书出 版于1509年。
上一页 下一页 主 页 返回 退出
24
25
上一页 下一页 主 页 返回 退出
画中耶稣位于正中央,双手摊开,两臂与周围的空间形 成了 一大一小两个倒三角形。
26
上一页 下一页 主 页 返回 退出
未完成的作品《圣 徒杰罗姆》 (Saint Jerome), 该画约作于公元 1483年。在作品中, 圣徒杰罗姆的像完 全位于画上附加的 黄金矩形内。
34
上一页 下一页 主 页 返回 退出
螺线中的秘密
35
上一页 下一页 主 页 返回 退出
CD BC AB 0.618 . DE CD BC
36
上一页 下一页 主 页 返回 退出
古希腊帕提侬神庙是举世闻名的完美建筑,它的高和 宽的比是0.618.建筑师们发现,按这样的比例来设计 殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更 加舒适、美丽.连一扇门窗若设计为黄金矩形都会显 得更加协调和令人赏心悦目.
波浪理论数学结构——斐波那契数列与黄金分割率

波浪理论数学结构——斐波那契数列与黄金分割率斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。
这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
1、波浪理论的推动浪,浪形为5(1、2、3、4、5),调整浪的浪型为3(a\b\c),合起来为8。
若把波浪细化,大的推动浪又可分为1、3、5浪为推动,2、4为调整。
a、c为推动,b为调整。
这样大的推动浪为5+3+5+3+5=21,调整浪为5+3+5=13,合起来为34。
若再进行更详细的浪形划分,大的推动浪为21+13+21+13+21=89,调整浪为21+13+21=55,合起来为144。
所以,波浪理论怎么细分,都精确在这个数列上:1、2、3、5、8、13、21、34、55、89、144、2332、这个数列就是斐波那契数列。
它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的0.618倍;前一个数字约是其后第二个数字的0.382倍;后一个数字约是前一个数字的1.618倍;后一个数字约是前面第二个数字的2.618倍;3、由此计算出常见的黄金分割率为(0.5和1.5外):0.191、0.236、0.382、0.618、0.809、1.236、1.382、1.618、1.764、1.809 4、黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值。
斐波那契数列与黄金分割

斐波那契数列斐波那契数列斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。
定义斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34……这个数列从第三项开始,每一项都等于前两项之和。
斐波那契数列的发明者,是意大利数学家列昂纳多〃斐波那契(Leonardo Fibonacci),自然中的斐波那契数列生于公元1170年,卒于1240年,籍贯是比萨。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《珠算原理》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
通项公式递推公式斐波那契数列:1、1、2、3、5、8、13、21、……如果设F(n)为该数列的第n项(n∈N+)。
那么这句话可以写成如下形式:F(1) = 1,F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3),显然这是一个线性递推数列。
通项公式斐波那契数列通项公式(见上图)(又叫“比内公式”,是用无理数表示有理数的一个范例。
)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)通项公式的推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,,X2=(1-√5)/2。
则F(n)=C1*X1^n + C2*X2^n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斐波那契数列、黄金分割以及它们在C++语言中的应用
一、概述
1.1 斐波那契数列的定义与性质
斐波那契数列是古典数学中最为常见的数列之一,它的定义如下: F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2),其中n为正整数。
斐波那契数列具有许多有趣的性质,例如任意两个相邻的斐波那契数都是互质的等等。
1.2 黄金分割的概念
黄金分割是指一条线段在“分割”时,分割成两部分的比例恰好等于整体与较大部分的比例相同。
这个比例通常用希腊字母φ(phi)表示,其值约为1.618。
1.3 C++语言在数学计算中的应用
C++作为一种广泛应用的编程语言,其在数学计算领域也有着重要的应用。
通过C++语言,我们可以实现对斐波那契数列和黄金分割的计算和应用。
二、斐波那契数列在C++中的实现
2.1 递归方法
在C++中,可以利用递归的方法来实现斐波那契数列的计算。
递归的代码如下所示:
```cpp
int fibonacci(int n) {
if (n <= 1) {
return n;
}
return fibonacci(n - 1) + fibonacci(n - 2);
}
```
2.2 迭代方法
除了递归方法外,我们还可以使用迭代的方法来计算斐波那契数列。
迭代的代码如下所示:
```cpp
int fibonacci(int n) {
int a = 0, b = 1, c;
if (n == 0) {
return a;
}
for (int i = 2; i <= n; i++) {
c = a + b;
a = b;
b = c;
}
return b;
}
```
三、黄金分割在C++中的应用
3.1 黄金分割比例的计算
在C++中,可以编写函数来计算黄金分割的比例。
下面是一个简单的示例代码:
```cpp
double golden_ratio() {
return (1 + sqrt(5)) / 2;
}
```
3.2 黄金分割点的求解
除了计算黄金分割的比例外,我们还可以通过黄金分割的比例来实现对线段的黄金分割点的求解。
下面是一个简单的示例代码:
```cpp
double golden_section(int a, int b) {
return a + (b - a) / golden_ratio();
}
```
四、斐波那契数列和黄金分割的综合应用
4.1 斐波那契数列与黄金分割的通联
斐波那契数列与黄金分割有着紧密的通联,其中最为著名的是在斐波那契数列中,相邻两个数的比值趋近于黄金分割比例。
4.2 利用斐波那契数列和黄金分割的特性优化算法
在实际应用中,我们可以利用斐波那契数列和黄金分割的特性来优化算法,例如在搜索算法或者排序算法中应用黄金分割点来进行优化。
五、结语
5.1 总结
斐波那契数列和黄金分割作为数学中重要的概念,在C++语言中具有广泛的应用。
通过本文的介绍,我们可以了解斐波那契数列和黄金分割在C++中的实现方法以及它们的综合应用。
5.2 展望
随着数学计算和算法优化的深入研究,斐波那契数列和黄金分割在C++中的应用将会变得更加广泛,为更多的领域和问题提供解决方案。
通过以上文章的介绍,读者可以更深入地了解斐波那契数列、黄金分
割以及它们在C++语言中的实现和应用,在实际编程中可以更加灵活地运用这些数学概念解决问题。