5.1 and 5.2 传递函数的时域辨识 [系统辨识理论及Matlab仿真]
基于Matlab系统辨识的参数辨识与仿真

提高了系统和网络的可靠性、稳定性。 5.结束语 桌面虚拟化平台的应用,分散了PC的
集中管理,使得企业对资源的利用更加高 效,管理手段更加灵活,保护了企业的数 据安全,降低了部署应用复杂度,提高了 业务弹性,不但大大降低了企业在内部网 络管理中的总成本,而且大幅度的提高了 企业的办公效率,使得投资受益最大化, 最终帮助企业提高核心竞争力。实践证 明,桌面虚拟化平台技术在企业中有广泛 应用前景。
(上接第199页)形界面调用的命令和程序 代码调用的命令是一样的。
3.2 参数模型辨识 对时间序列: y(t) = sin(1.2t) + sin(1.5t) + 0.2v(t −1) + 0.1v(t) 分别采用最小二乘法估计、辅助变量 法进行AR模型估计,并绘制频谱图.式中 v(t) 为有色噪声。 程序: v=randn(501,1); y=sin([1:500]'*1.2)+sin([1: 500]'*1.5)+0.2*v([1:500'])+0.1 *v([1:500]); thiv=ivar(y,4); thls=ar(y,4); giv=th2ff(thiv); gls=th2ff(thls); figure(1) bodeplot(gls,'--')
图4 辨识结果
图5 辨识结果
可以看到辨识结果同直接输入命令 得到的结果相同,原因在于图(下转封三)
-199-
(上接第198页)和优化整个机构的桌面环 境。DVP的虚拟架构可以通过高安全性、 增加效率、可靠性、灵活性和响应能力来 降低用户的IT开销。这样的桌面虚拟架构 可以让IT部门更快的反应、管理和控制用 户分散的桌面,以满足业务所需和业务改 变,能更好的适应企业的发展所需,提高 办公效率。
5.4-1 and 5.4-2 闭环系统频域测试及辨识 [系统辨识理论及Matlab仿真]
![5.4-1 and 5.4-2 闭环系统频域测试及辨识 [系统辨识理论及Matlab仿真]](https://img.taocdn.com/s3/m/a64404f2ce2f0066f5332275.png)
5.4.1 基本原理
针对线性控制系统,要设计前馈控制器,传统的 方法是确定系统的闭环传递函数。采用建模方法难免 产生较大的建模误差。目前在实际应用中,更多的是 采用实验测试建模方法,即频率特性方法,通过频域 辨识技术来确定闭环系统的传递函数。
1
由闭环系统的正弦激励响应,通过最小 二乘方法和Bode图拟合来确定闭环系统的传 递函数。闭环系统测试框图如图1所示。
b0 0
(14)
显然,如果用不变性原理设计前馈控制器,则控制器表示为:
zd A z1 F z1
Bu z1 Ba z1
由于闭环系统的不稳定零点成为前馈控制器的极点,采用上式作为 控制器会造成控制系统不稳定。为了克服这种情况,对于闭环系统(13), 通过在控制器中引入零点 Bu (z) 来补偿闭环系统的不稳定零点 Bu (z1) , 设计零相差前馈控制器为:
图1 控制系统原理图 图2 等效框图
不失一般性,Gc (z1) 可以写成如下形式:
Gc
z 1
zd Bu z1 Ba A z1
z 1
(13)
其中, A(z1) 为分母多项式,其所有的根都位于单位圆内部。 d 为 非负整数,zd 为 d 步延迟。Bu (z1) 和 Ba (z1)为多项式, Bu (z1) 中
F
z 1
zd A
z 1
Bu z
Ba z1 Bu (1)2
(15)
5.4.3.2 系统相移
定理1[1] 对于(14)式定义的 Bu (z1) ,设H z1 Bu z Bu z1 ,则有:
(1) H e jT 0, R
《自动控制原理》MATLAB中的传递函数模型实验

《自动控制原理》MATLAB中的传递函数模型实验一、实验目的1、熟练运用matlab软件,求解控制系统数学模型2、掌握传递函数在matlab中的表达方法3、掌握matlab求解拉氏变换和反变换4、掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器Matlab2014b版三、实验原理(一)MATLAB中的传递函数模型传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den) 其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:若控制系统的模型形式为零极点增益形式:此时,系统的传递函数模型用zpk函数生成,句法为:sys=zpk(z, p, k)。
zpk函数也可用于将传递函数模型转换为零极点增益形式,句法为:zpksys=zpk(sys)如:z=[-0.5 -1 -3]; p=[1 -2 -1.5 -5]; k=10;sys=zpk(z, p, k)传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
series函数计算两子系统串联后的新系统模型。
句法:sys = series(sys1, sys2)sys1, sys2分别为两子系统模型parallel函数计算两子系统并联后的新系统模型。
句法: sys = parallel(sys1, sys2)feedback函数计算两子系统反馈互联后的新系统模型。
时域控制理论工程中的系统辨识与滤波设计

时域控制理论工程中的系统辨识与滤波设计时域控制理论工程涉及到系统辨识和滤波设计两个重要方面。
系统辨识是指通过分析系统输入与输出之间的关系,建立系统的数学模型;滤波设计则是为实现所期望的控制效果,设计合适的滤波器对信号进行处理。
本文将就这两个方面进行详细的探讨。
一、系统辨识系统辨识是时域控制理论工程中的核心内容之一,它旨在通过实验数据或观测数据建立系统的数学模型。
常用的系统辨识方法包括参数辨识、非参数辨识和结构辨识等。
1. 参数辨识参数辨识是一种根据已知输入输出数据来识别系统参数的方法。
通过假设系统满足某种数学模型(如ARX模型、ARMA模型等),可以通过最小二乘法、最大似然估计等方法估计参数的值。
参数辨识方法适用于线性系统,且要求系统具有一定的稳定性。
2. 非参数辨识非参数辨识是一种不依赖于系统模型假设的辨识方法。
主要通过频域分析或自回归-移动平均模型(ARMA)来描述和分析系统的频率响应性质。
这种方法在系统具有非线性、非稳态或随机性质的情况下更为适用。
3. 结构辨识结构辨识是一种通过试验和观测数据来确定系统的结构模型的方法。
它可以用于估计系统的状态方程、传递函数、状态空间模型等。
常用的结构辨识方法包括系统辩识算法、频域辩识法和小波分析法等。
二、滤波设计滤波设计是时域控制理论工程中的另一个重要环节。
通过设计适当的滤波器,可以实现对信号的滤波处理,达到所需的控制效果。
1. 低通滤波器低通滤波器主要用于去除高频噪声、抑制高频分量。
在时域控制工程中,低通滤波器对于滤除系统中的高频干扰信号具有重要作用。
2. 高通滤波器高通滤波器主要用于滤除低频分量,提取系统中的高频信号。
在某些情况下,需要突出系统的高频响应,这时可以使用高通滤波器。
3. 带通滤波器带通滤波器可以通过滤除信号的低频和高频成分,仅保留某一频率范围内的信号。
在时域控制理论工程中,带通滤波器常常用于提取特定频率范围内的控制信号。
4. 带阻滤波器带阻滤波器可以阻断某一特定频率范围内的信号,也被称为陷波器。
系统传递函数时域法辨识

T1 = (K - y(maxt))/maxSl + (maxt-1)* dt -tao1 %时间常数T H1 = K/(T1 * s +1); H1.InputDelay = tao1 y1 = lsim(H1,U,t); figure(2); plot(t,y,t,y1); legend('y','y1'); title('切线法'); ylabel('Step Response') xlabel('Time, Seconds') %采用两点法进行辨识 for j = 1 : (tmax/dt + 1) if y(j)> K*0.9 break end end t2 = j; t1=(t2-mod(t2,3))/3; y1 = y(t1); y2 = y(t2); T2 = ((t2 + 1)*dt - (1 + t1) * dt)/( log(K - y1) - log(K - y2)) tao2 = (t1+1)*dt + T2*log((K-y1)/K) H2 = K/(T2 * s +1); H2.InputDelay = tao2 y2 = lsim(H2,U,t); figure(3); plot(t,y,t,y2); legend('原响应','辨识响应'); ylabel('Step Response') xlabel('Time, Seconds') %辨识得到的系统传递函数 %时滞参数τ %时间常数T %辨识得到的系统传递函数
提示:选用阶跃信号,调试系统运行时间,获得相应的阶跃输出响应数据。 6.自己设定教材(2.43)描述的三阶系统(自行选定 a1, a2, a3) ,验证所学面积法的 有效性。 提示:选用阶跃信号,调试系统运行时间,获得相应的阶跃输出响应数据。
基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB的自动控制系统时域频域分析与仿真摘要自动控制系统就是在无人直接操作或干预的条件下,通过控制装置使控制对象自动的按照给定的规律运行,使被控量按照给定的规律去变化的系统。
在现代工业生产中,自动控制系统已经遍布每一个角落,对于线性时不变控制系统,可以通过时域、频域分析法来分析系统的性能,但是对于多输入多输出的控制系统,时域、频域分析已经无能为力,鉴于这样的控制系统,可以通过线性系统的状态空间分析法来分析。
本文针对自动控制系统的设计很大程度上还依赖于实际系统的反复实验,结合具体的实例,介绍了利用先进的MATLAB软件对自动控制系统进行时域、频域分析与仿真和线性系统状态空间分析的方法,通过快速直观的仿真和分析达到自动控制系统的优化。
关键词:MATLAB 自动控制系统时域频域状态空间ABSTRACTAutomatic control system makes object operate according to a certain law automatically to let the controlled quantity change by given law on the condition that nobody operate and control directly. Automatic control system exists every corner of the world in the modern industrialized production, which can analyze the performance of the system by time domain and frequency domain for the linear time-invariant control systems. However, to the system with multiple inputs and multiple outputs, the way to analyze through time domain and frequency domain can not do anything . Due to the control system, it can analyze through linear system state space. Due to this point that the design of automatic control system largely depends on repeated practice and modification, combined with the concrete example,this paper introduces the ways to analyze and simulate the time domain and frequency domain and linear system state space of automatic control system by advanced MATLAB,it can reach the optimal of automatic control system by direct and fast.Key words: MATLAB Automatic control system Time domain Frequency domain State space目录一绪论 (1)1.1 题目背景、研究意义 (1)1.2 国内外研究现状 (1)1.3 研究内容 (1)二自动控制系统基础 (2)2.1 自动控制系统的概述 (2)2.2 开环、闭环控制系统 (2)2.3 控制系统的性能要求 (3)三MATLAB基础介绍 (4)3.1 MATLAB简介 (4)3.2 Simulink简介 (4)3.3 Simulink仿真过程 (4)3.4 Simulink仿真实例 (5)四自动控制系统的时域分析 (7)4.1 时域分析简介 (7)4.2 动态过程与动态性能 (7)4.3 稳态过程与稳态性能 (7)4.4 控制系统的稳定性 (8)4.5 时域分析法的MATLAB实现 (8)4.5.1 控制系统的动态性能分析 (8)4.5.2 控制系统的稳态性能分析 (10)4.5.3 控制系统的稳定性分析 (11)五自动控制系统的频域分析 (13)5.1 频域分析法简介 (13)5.2 有关频率分析法的几个概念 (13)5.3 频率特性的性能指标 (13)5.4 频域分析法的MATLAB实现 (14)5.4.1 Bode图的绘制 (14)5.4.2 Bode图分析控制系统的稳定性 (15)六线性系统的状态空间分析 (18)6.1 状态空间模型 (18)6.2 状态反馈 (18)6.3 控制系统的可控性和可观性 (19)6.3.1 控制系统的可控性 (19)6.3.2 控制系统的可观性 (20)6.4 极点配置 (21)6.4.1 极点配置简介 (21)6.4.2 单输入单输出系统的极点配置 (21)七总结 (24)参考文献 (25)一绪论1.1题目背景、研究意义自动控制技术在航空航天、机器人控制、导弹制造及等高新技术领域中的应用越来越深入广泛,自动控制理论和技术必将进一步发挥更加重要的作用。
由系统阶跃响应辨识传递函数的Matlab实现方法

由系统阶跃响应辨识传递函数的Matlab 实现方法典型二阶系统传递函数为:121)(22++=Ts s T s G ξ工业生产过程中,大多数系统的阶跃响应曲线是临界阻尼或过阻尼的,即ξ≥1。
只要求出T 和ξ就能确定系统的传递函数。
G(s)可以分解为:))((1)(212ωω++=s s T s G其中,[][]11112221--=-+=ξξωξξωTT1ω、2ω都是实数且均大于零。
则有:211ωω=T ,21212ωωωωξ+= 传递函数进一步化为:))(()(2121ωωωω++=s s s G因此,辨识传递函数就转化为求解1ω、2ω。
当输入为单位阶跃函数时,对上式进行拉普拉斯反变换,得系统时域下的单位阶跃响应为:t te et y 212111221)(ωωωωωωωω---+--=, 即 tteet y 21211122)(1ωωωωωωωω-----=-令1ω=2ωk )1(>k,得tk t ek e k k t y 22111)(1ωω-----=-⎥⎦⎤⎢⎣⎡--=---t k t e k e k k 2)1(2111ωω对上式两边取以e 为底的对数得[]⎥⎦⎤⎢⎣⎡-+--=---t k e k t k k t y 2)1(211ln 1ln )(1ln ωω 当∞→t 时,⎥⎦⎤⎢⎣⎡---t k e k 2)1(11ln ω0→,则上式化简为 []t k k t y 21ln )(1ln ω--=-,该式的形式满足直线方程b at t y +=)(*其中,)(*t y =[])(1ln t y -,1ln,2-=-=k kb a ω)1(>k 通过最小二乘算法实现直线的拟合,得到a ,b 的值,即可得到1ω、2ω的值,进而可得系统的传递函数。
Matlab 程序代码 %identification.mclcclose allt=[1 3 5 7 9 11 13 15 17 19];y=[0.149086 0.5890067 0.830617 0.933990 0.973980 0.991095 0.995868 0.998680 0.999490 0.999850]; %实验数据,数据来源:《系统辨识方法及应用》.国防工业出版社 y2=log(1-y); plot(t,y2,'*'); grid onpm=polyfit(t,y2,1) value=polyval(pm,t); hold onplot(t,value,'r')title('\fontname{黑体}\fontsize{20}y(t)=at+b') w2=-pm(1)w1=w2/(1-exp(-pm(2))) T=1/sqrt(w1*w2)theta=(w1+w2)/(2*sqrt(w1*w2)) z=[];p=[-w1 -w2]; k=w1*w2; sys=zpk(z,p,k) figure(2)step(sys,[0:0.5:20]); axis([0 20 0 1.2]) hold on plot(t,y,'r*')运行结果:系统的传递函数为)4797.0)(126.1(54034.0)(++=S S S G 阻尼比为0925.1=ξ自然振荡周期为T=1.3604 s。
基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真MATLAB是一款强大的数学软件,也是自动控制系统设计的常用工具。
它不仅可以进行时域分析和频域分析,还可以进行相关仿真实验。
本文将详细介绍MATLAB如何进行自动控制系统的时域和频域分析,以及如何进行仿真实验。
一、时域分析时域分析是指对系统的输入信号和输出信号进行时域上的观察和分析,以了解系统的动态特性和稳定性。
MATLAB提供了一系列的时域分析工具,如时域响应分析、稳态分析和步骤响应分析等。
1.时域响应分析通过时域响应分析,可以观察系统对于不同的输入信号的响应情况。
在MATLAB中,可以使用`lsim`函数进行系统的时域仿真。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
-定义输入信号。
- 使用`lsim`函数进行时域仿真,并绘制系统输出信号。
例如,假设我们有一个二阶传递函数模型,并且输入信号为一个单位阶跃函数,可以通过以下代码进行时域仿真:```num = [1];den = [1, 1, 1];sys = tf(num, den);t=0:0.1:10;u = ones(size(t));[y, t, x] = lsim(sys, u, t);plot(t, y)```上述代码中,`num`和`den`分别表示系统的分子和分母多项式系数,`sys`表示系统模型,`t`表示时间序列,`u`表示输入信号,`y`表示输出信号。
通过绘制输出信号与时间的关系,可以观察到系统的响应情况。
2.稳态分析稳态分析用于研究系统在稳态下的性能指标,如稳态误差和稳态标准差。
在MATLAB中,可以使用`step`函数进行稳态分析。
具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。
- 使用`step`函数进行稳态分析,并绘制系统的阶跃响应曲线。
例如,假设我们有一个一阶传递函数模型,可以通过以下代码进行稳态分析:```num = [1];den = [1, 1];sys = tf(num, den);step(sys)```通过绘制系统的阶跃响应曲线,我们可以观察到系统的稳态特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yt y
同理,可得与被控对象相对应的阶跃相应无量纲形式为
y* (t) 1 T1 et/T1 T2 et/T2
T1 T2
T2 T1
图5 根据阶跃响应曲线上的两个点的数据确定 T1 和 T2
确根定据参上数式T可1和利T用2 ,响一应般曲取线上y*的(t) 两为个0.4数和据0点.8,[t1再y从*(t1曲)] 和线[上t2 定y*(
第5章 传递函数的时域和频域辨识
图1 系统辨识的时域与频域方法
5.1 传递函数辨识的时域法
传递函数辨识的时域方法包括阶跃响应法、脉 冲响应法和矩形脉冲响应法等,其中以阶跃响应 法最为常用。阶跃响应法利用阶跃响应曲线对系 统传递函数进行辨识,阶跃响应曲线即为输入量 作为阶跃变化时,系统输出的变化曲线。
t 2 ln ln
1 y* t1 1 y* t1
t1 ln 1 y* t 2 ln 1 y* t 2
如果选择 y*(t1) 0.39 和 y*(t2) 0.63 这两个固定值,则
2t1 t2
t
)]
2
t
1
出 t 2 和 ,然后可得:
T1 e t1 / T1 T2 et1 / T2 0.4
T1 T2
T1 T2
T1 e t2 / T1 T2 et2 / T2 0.8
T1 T2
T1 T2
将 y*(t)所取两点对应的 t1 响应如图2所示。
Step Response 1
0.9
0.8
0.7
0.6
y
0.5
0.4
0.3
0.2
0.1
0
0
50
100
150
200
250
300
350
400
450
time (sec)
图2 阶跃响应
1、一阶惯性滞后环节的辨识
Kes G(s)
Ts 1
设系统的输入u的变化量为 u ,则放大倍数为
第5章 传递函数的时域和频域辨识
时域是描述数学函数或物理信号对时间的关系。例如一个信 号的时域波形可以表达信号随着时间的变化。频域是描述信号 在频率方面特性时用到的一种坐标系。频域法和时域法在线性 系统理论和控制理论许多重要问题上是互相补充的。上世纪六 十年代以前,频域法在系统辨识理论和实践中占据统治地位。 从上世纪六十年代末以来,时域法地位逐渐提高。如图5-1所示 为系统辨识的时域与频域方法比较。
迟环节。如果虚线和实线相差较多,则系统存在
纯延迟。选取若干个频率 k k 1, 2, , n,对
应于每一个 k 可找出其实测曲线与拟合曲线的
相差角 k 'k ,k 于是
k
k k
'k k k
,
k 1, 2,
,n
再求平均值得 ,
1 n
1
2
,
K y y
u u
则
Ty y Kut y t
首先将其转化为无量纲形式y*(t), 取
则
y* t
yt y
Ty*t y*t 1
解上述方程,可得与被控对象相对应的阶跃相应无量纲形式为
0
t<
y*
K y y y 0
u
u
如果初始值取零,则
y Ku
(1) 切线法 阶跃响应曲线如图3所示,在其S型曲线的变化速率
最快处作一切线,分别与时间轴t及阶跃相应的渐近线 y()
相交于 0, 和 t0, y() ,这样便得到时滞 和时间
常数 T t0 。
d
因此,根据频率 ω趋于无穷时实验所得 相频特性的相角变化率,即可确定延迟环 节的延迟时间τ 。但在高频时相频特性的实 验数据难以测量,所以工程上采用下列方 法确定系统的纯延迟。
如图1所示,图中实线为实验得到的对数相频曲
线,虚线为拟合的传递函数 G's 所决定的对数相
频特性。如果虚线和实线很接近,则系统不含延
为求解方便,上式可以近似表示为:
TT11T2
T2 (T1
(t2 t1) T2 )2
2.16 1.74t1
t2 0.55
根据上式,可推广到n阶惯性加纯迟延的传递函数具有如下特性 :
nT (t1 t2 ) 2.16
在固定选取 y*(t) 分别为0.4和0.8后,其对应的 t1 t2 能够反映
4. 测试响应曲线的步骤
(1)将响应曲线化为无延迟无量纲的标准形式;
(2)求取 y*(t) 分别为0.4和0.8所对应的 t1、t 2 ,根据 t1 t2
的值来确定n。
(3)若 0.32 t1 t2 0.46,则可选用二阶惯性环节加纯延 迟传递函数。
(4)若 t1 t2 0.46,则根据表一找其相近的数据对应的n
Amplitude
3 2.5
2 1.5
1 0.5
0
0
Step Response
K y
y
u
u
T5
10
15
Time (sec.)
图3 用作图法确定参数T和
参数 和 T 的这种求解方法也可称为图解法,其优点
是特别简单。但对于一些实际响应曲线,寻找该曲线的最 大斜率处并非易事,主观因素也比较大。
且T 可由 1/ T 求得。
表1 基本环节频率响应渐进特性
被测对象按最小相位系统处理,得到的 传递函数是 G(s),如果所求得G(s)的相角 与实验结果不符,且两者相差一个恒定的 角频变化率,则说明被控对象包含延迟环
节。若被控对象传递函数为 Gses ,则有
lim d G s e j
n
即可作为系统的纯延迟。
图1 对数频率特性曲线
例 设一个系统的实验频率响应曲线如图2所示,试确定系统 的传递函数。
• 图2 被测试系统的对数相频特性曲线
(1)根据近似对数幅频曲线低频下的斜率
为 20dB/dec. ,则由表1可知被测对象包含一
个积分环节 sn n 1 。
(2)近似对数幅频曲线有3个转折频率,即 0.1rad/sec,1 rad/sec和10 rad/sec,按转折频率 处的斜率变化和转折频率10rad/sec附近的谐振 峰值来确定传递函数的阻尼比和时间常数。
第5章 传递函数的时域和频域辨识
在控制系统研究中经常会遇到这样的问题,即用户没有办 法从物理上得出所研究系统的数学模型,但可以通过适当的实 验手段测试出系统的某种响应信息,如可以通过频率响应测试 仪来测试出系统的频率响应数据,或通过数据采集系统来测试 出系统时间响应的输入与输出数据,有了系统的某种响应数据 ,就可以根据它来获得系统的数学模型,这种获得系统模型的 过程称为系统辨识。
t1/t2
8
0.685
9
10
0.71
11
12 0.735
13
14
0.75
3.用n阶惯性加纯迟延的传递函数拟合
若 t1 t2 0.46,需用高阶环节近似
G(s)
K (Ts 1)n
取 y*(t)为0.4和0.8,再从曲线上定出 t1, t2 ,然后可从
表1中得到n,再根据下式确定T。
nT (t1 t2 ) 2.16
通过实验测定系统的频率响应之后,就 可以利用表1 中各种基本环节频率特性的渐 进特性,获得相应的基本环节特性,从而 得到传递函数。具体方法是用一些斜率为 0, 20dB/dec,. 40dB/de…c. …的直线来逼 近幅频特性,并设法找到频率拐点,就可 以求式 的传递函数。
以表1的第三行为例, 如果低频下幅频 和相频分别为0dB 和0度 ,高频下幅频和 相频分别为 20dB和90度 ,且相频为45度 时,幅频为 3dB,则说明基本环节为 Ts+1,
二阶惯性环节加纯滞后传递函数:
G(s)
(T1s
Ke s 1)(T2s
1)
,
T1
T2
增益K值按下式计算:
K y() y(0) y()
u
u
时间延迟 可根据阶跃响应曲线脱离起始的毫无反应
的阶段到开始变化的时刻来确定,见图5。
首先将其转化为无量纲形式y*(t),即
y* t
t
1
exp
t
T
t
则得
y*(t1) 1 exp
t1 T
y*(t2 ) 1 exp
t2 T
解得
T
ln
t 2 t1
1 y* t1 ln
1 y* t 2
被控对象:
实例
G(s) e80s 60s 1
阶跃响应Matlab仿真程序:chap5_1.m
figure(1); sys=tf([1],[60,1],'inputdelay',80); [y,t]=step(sys); line(t,y),grid; xlabel('time');ylabel('y');
G
s
K
p i 1
T1is 1
q i 1
T22i s2 2T2i1is 1
•
s
n
r i 1
T3is 1
l i 1
T42i s2 2T4i2is 1
其中 T1i 和 T3i是一阶微分环节和惯性环节的时间常数, 1i 和 2i 是二阶微分环节和振荡环节的阻尼比, T2i 和T4i 是二阶微分环节和振荡环节的时间常数。