三年级较复杂的鸡兔同笼问题练习题

合集下载

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案鸡兔同笼问题是一种经典的数学问题,通常用于训练学生的逻辑推理能力。

这种问题要求学生通过已知的头和脚的总数来确定鸡和兔子的数量。

以下是一些练习题及答案,供学生练习。

练习题1:一个笼子里有鸡和兔子共35个头,94只脚。

问鸡和兔子各有多少只?答案1:设鸡有x只,兔子有y只。

根据题目,我们有以下两个方程:x + y = 35 (头的总数)2x + 4y = 94 (脚的总数)通过解方程组,我们可以得到:2x = 94 - 4yx = (94 - 4y) / 2将x的表达式代入第一个方程:(94 - 4y) / 2 + y = 3594 - 4y + 2y = 70y = 24将y的值代入x的表达式:x = (94 - 4 * 24) / 2x = 11所以,鸡有11只,兔子有24只。

练习题2:笼子里有鸡和兔子共40个头,100只脚。

鸡和兔子各有多少只?答案2:设鸡有a只,兔子有b只。

我们有以下方程:a +b = 402a + 4b = 100解这个方程组,我们得到:2a = 100 - 4ba = (100 - 4b) / 2将a的表达式代入第一个方程:(100 - 4b) / 2 + b = 40100 - 4b + 2b = 80b = 20将b的值代入a的表达式:a = (100 - 4 * 20) / 2a = 20所以,鸡有20只,兔子也有20只。

练习题3:一个笼子里有鸡和兔子共50个头,脚的总数是140只。

问鸡和兔子各有多少只?答案3:设鸡有c只,兔子有d只。

我们有以下方程:c +d = 502c + 4d = 140解这个方程组,我们得到:2c = 140 - 4dc = (140 - 4d) / 2将c的表达式代入第一个方程:(140 - 4d) / 2 + d = 50140 - 4d + 2d = 100d = 20将d的值代入c的表达式:c = (140 - 4 * 20) / 2c = 30所以,鸡有30只,兔子有20只。

三年级较复杂的鸡兔同笼问题专题训练10题

三年级较复杂的鸡兔同笼问题专题训练10题

三年级较复杂的鸡兔同笼问题专题训练10题
1.鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
2.有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?
3.今有鸡兔同笼,鸡是兔的2倍少1,下有94足,问鸡、兔各多少?
4.鸡兔同笼,鸡比兔多25只,一共有脚158只,问鸡兔各多少只?
5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫共18只,有118条腿和20对翅膀。

每种小虫各几只?
6.某人领得工资240元,有2元、5元、10元三种人民币,共50张,其中2
元与5元的张数一样多.那么2元、5元、10元各有多少张?
7.小毛参加数学竞赛,共做20道题,得64分。

已知做对一道得5分,不做得0分,错一题扣1分。

又知道他做错的题和没做的同样多。

问小毛做对几道题?
8.鸡、兔共有脚100只,若将鸡换成兔、兔换成鸡,则共有脚86只。

问:鸡、兔各几只?
9.儿童游乐场分三种游艺券,甲种券每张7元,乙种券每张4元,丙种券每张2元,一天,游乐场售出85张游艺券,共收入人民币500元,其中甲种券比乙种券多售出31张。

甲种券售出多少张?
10.甲、乙、丙三种练习簿每本价钱分别为7角、3角、2角。

三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍。

三种练习簿各买了多少本?。

鸡兔同笼专项练习60题(有答案)

鸡兔同笼专项练习60题(有答案)

鸡兔同笼专项练习60题(有答案)1.鸡和兔共49只,一共有100条腿,问鸡和兔各有多少只?根据题意,设鸡有x只,兔子有y只,则有以下方程组:x + y = 492x + 4y = 100解方程组得到:x = 21,y = 28.因此,鸡有21只,兔子有28只。

2.一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。

设做对的题目数为x,则错的题目数为25 - x。

根据题意,可以列出以下方程:4x - (25 - x) = 90解方程得到:x = 18.因此,这个学生做对了18道题。

3.二元和五元的人民币共40张,面值合计125元,二元和五元的人民币各有多少张?设二元的张数为x,五元的张数为y,则有以下方程组:x + y = 402x + 5y = 125解方程组得到:x = 15,y = 25.因此,有15张二元人民币和25张五元人民币。

4.一辆汽车参加拉力赛,9天行了5000公里,已知他晴天平均每天行688公里,雨天平均每天行390公里,在这次比赛期间共有几天晴天?几天雨天?设晴天的天数为x,雨天的天数为y,则有以下方程组:x + y = 9688x + 390y = 5000解方程组得到:x = 6,y = 3.因此,这辆车有6天是晴天,3天是雨天。

5.XXX进行小测(数学),一共10道题,每做对一道得8分,错一道扣5分,一位同学得了41分,问那位同学对几道,错几道?设做对的题目数为x,则错的题目数为10 - x。

根据题意,可以列出以下方程:8x - 5(10 - x) = 41解方程得到:x = 6.因此,这位同学做对了6道题,错了4道题。

6.一辆汽车给瓷器厂运瓷器100件,运到1件给运费2元,损坏1件不但不给运费,反而赔偿厂方8元。

结果只得运费170元,他损坏了几件?设损坏的件数为x,则有以下方程:100 - x = 运到的件数2(运到的件数) - 8x = 170解方程得到:x = 10.因此,这辆车损坏了10件瓷器。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。

5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。

请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。

求每个笼子中鸡和兔的数量。

8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。

求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。

求每个笼子中鸡和兔的数量。

12. 笼子里有鸡和兔共40只,脚共有110只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。

求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。

求每个笼子中鸡和兔的数量。

14. 笼子里有鸡和兔共60只,脚共有160只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。

问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。

但实际有26只脚,多出来的脚就是兔子比鸡多的脚。

每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。

2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。

求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。

实际34只脚,多了34 - 24 = 10只脚。

因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。

3. 鸡兔同笼,头共10个,脚共30只。

鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。

30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。

每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。

二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。

问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。

46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。

5. 笼子里有鸡和兔,一共20个头,56只脚。

鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。

56 - 40 = 16只脚多出来了,这是兔子的。

每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。

三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。

鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。

兔脚有4x只,鸡脚有2(x + 2)只。

可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。

鸡兔同笼题目练习(附答案)

鸡兔同笼题目练习(附答案)

鸡兔同笼题目练习:1. 某农场里有鸡和兔共120只,它们的总腿数是360只。

如果每只兔子的价格是15元,每只鸡的价格是10元,请问这些鸡和兔的总价值是多少元?2. 一个笼子里有鸡和兔共80只,它们的总腿数是220只。

笼子里的所有鸡被卖出后,剩下的兔子被带到另一个笼子里。

问这个新笼子里有多少只兔子?3. 一个笼子里有鸡和兔共50只,它们的总腿数是140只。

笼子里的鸡和兔被分成两组,一组鸡和兔的总腿数是80只,另一组是60只。

问每组里各有多少只鸡和兔?4. 某农场有鸡和兔共96只,它们的总腿数是264只。

如果农场主要把鸡卖掉,可以得到1800元。

请问农场主还可以从卖兔子中得到多少元?(假设每只鸡卖10元,每只兔子卖15元)5. 一个笼子里有鸡和兔共30只,它们的总腿数是86只。

笼子里的鸡和兔被分成三组,第一组有10只,第二组有12只,第三组有8只。

问每组里各有多少只鸡和兔?6. 某养殖场有鸡和兔共45只,它们的总腿数是125只。

如果每只鸡的重量是2公斤,每只兔子的重量是3公斤,请问这些鸡和兔的总重量是多少公斤?7. 一个笼子里有鸡和兔共72只,它们的总腿数是200只。

笼子里的鸡和兔被卖掉后,得到了2400元。

已知每只鸡卖15元,每只兔子卖20元,请问笼子里有多少只鸡和兔?8. 某农场有鸡和兔共90只,它们的总腿数是260只。

如果每只兔子的重量是4公斤,每只鸡的重量是2公斤,请问这些鸡和兔的总重量是多少公斤?9. 一个笼子里有鸡和兔共40只,它们的总腿数是120只。

如果再放进10只兔子,总腿数会变成160只。

问笼子里最终有多少只鸡和兔?10. 某农场有鸡和兔共100只,它们的总腿数是280只。

如果每只鸡卖12元,每只兔子卖18元,请问农场主总共可以得到多少元?答案:1. 鸡有80只,兔有40只,总价值2400元。

2. 新笼子里有40只兔子。

3. 第一组有20只鸡和20只兔,第二组有10只鸡和10只兔。

三年级数学鸡兔同笼练习题

三年级数学鸡兔同笼练习题

三年级数学鸡兔同笼练习题
(思维突破)姓名:
例1、鸡兔同笼,鸡和兔子一样多,兔子和鸡的腿数总和为30条。

请问:鸡和兔子各有多少只?
练1、鸡兔同笼,鸡和兔子一样多,一共有90条腿,请问:鸡和兔子各有多少只?
例2、鸡兔同笼,兔比鸡多10只,兔子和鸡的腿数总和为100条,请问:鸡和兔子各有多少只?
练2、六一儿童节,老师为全班学生准备了午餐,每个男生3个面包,每个女生2个,班上男生比女生多2名,老师一共准备了86个面包,请问:班里有几名男生?几名女生?
例3、鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和为110条,请问:鸡和兔子各有多少只?练3、鸡兔同笼,兔子的数量是鸡的2倍,两种动物一共有80条腿,请问:兔子有多少只?
例4、鸡兔同笼,兔子是鸡的3倍,且兔子比鸡多80条腿,请问:鸡和兔子各有多少只?
练4、有一群狗追一群鸭子,狗是鸭子的2倍,且狗腿比鸭腿多60条腿,请问:狗和鸭子各有多少只?
课后作业:
1、鸡兔同笼,鸡和兔子一样多,一共有96条腿,鸡有多少只?。

三年级数学思维专题训练—鸡兔同笼问题(含答案解析)

三年级数学思维专题训练—鸡兔同笼问题(含答案解析)

三年级数学思维专题训练—鸡兔同笼问题1.在一次去动物园时,丁丁看到了许多鸟和四足兽共36只,数一数它们共有100只脚.那么,丁丁见到了___________只鸟和____________只四足兽.2.老师和学生一共44人去参加义务植树活动.老师每人植5棵,学生每人植2棵,正好一共植了100棵.参加植树的老师和学生各有多少?3.2角和5角的硬币共30枚,总钱数是102角,2角硬币有_________ 枚,5角硬币有_________枚.4.一次英语考试只有20道题,做对一题加5分,做错一题倒扣3分(不做算错).皮皮这次没考及格,不过他发现,只要他少错一道题就能刚好及格.他做对了_________道题.5.甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲、乙两种农药混合使用,已知两种农药共5千克,要兑水140千克,则其中甲种农药有__________千克.6.张阿姨给幼儿园两个班的孩子分水果,大班每人分得5个橘子和2个苹果,小班每人分得3个橘子和2个苹果.张阿姨一共分出了135个橘子和70个苹果,那么小班有_______个孩子.7.张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中_________发.8.2008年春,我国南方遭受到重大雪灾,实验小学三年级一班的42名同学给南方的灾区捐款450元.其中有12名同学每人捐5元,其他同学捐10元或20元,则捐10元的有________名,捐20元的有__________名.9.一次数学竞赛共有25道题,评分标准是:每做对一题得4分,每做错一题或不做倒扣2分某学生在这次竞赛中做完了全部25道题,得88分,他答对了__________题.10.某班学生在运动会上,进入前三名的有10人次,已知获第一名可得9分,获第二名可得5分,获第三名可得2分,其他名次不记分,该班共计得64分,其中获第一名的至多有___________人次.11.迷宫里的灯有两种:一种是上吊3个大灯,下缀6个小灯的九星连环灯;一种是上吊3个大灯,下缀15个小灯的十八星连环灯.已知大灯有408个,小灯有1437个,那么,九星连环灯有_________个,十八星连环灯有__________个.12.有一场球赛,售出50元、80元、100元的门票共800张,收入56000元.其中80元的门票和100元的门票售出的张数正好相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级较复杂的鸡兔同笼问题练习题
1.鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
2.有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1
题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?
3.今有鸡兔同笼,鸡是兔的2倍少1,下有94足,问鸡、兔各多少?
4.鸡兔同笼,鸡比兔多25只,一共有脚158只,问鸡兔各多少只?
5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫共18只,有118条腿和20对翅膀。

每种小虫各几只?
6.某人领得工资240元,有2元、5元、10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元、5元、10元各有多少张?
7.小毛参加数学竞赛,共做20道题,得64分。

已知做对一道得5分,不做得0分,错一题扣1分。

又知道他做错的题和没做的同样多。

问小毛做对几道题?
8.鸡、兔共有脚100只,若将鸡换成兔、兔换成鸡,则共有脚86只。

问:鸡、兔各几只?
9.儿童游乐场分三种游艺券,甲种券每张7元,乙种券每张4元,丙种券每张2元,一天,游乐场售出85张游艺券,共收入人民币500元,其中甲种券比乙种券多售出31张。

甲种券售出多少张?
10.甲、乙、丙三种练习簿每本价钱分别为7角、3角、2角。

三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍。

三种练习簿各买了多少本?。

相关文档
最新文档