组合图形的惯性矩.

合集下载

惯性矩

惯性矩

1、静矩(求形心)⎰=AZ ydA S⎰=Ay zdA SSz 、Sy 分别定义为图形对z 轴和y 轴的静矩,也称为图形对z 轴和y 轴的一次矩。

平面图形的静矩是对某一坐标而言的,同一图形对不同的坐标轴,其静矩也就不同。

静矩的数值可能为正值,可能为负值,也可能为零。

静矩的量纲是长度的三次方。

静矩用来求平面图形的形心坐标:A zdAz A ydAy AA⎰⎰==对于规则的形状,可以将其划分为若干个规则的简单图形,通过组合求的形心。

212211212211A A z A z A z A A y A y A y ++=++=注:A 为简单图形的面积(空心面积可以为负值),y 、z 为简单图形的形心坐标值2、惯性矩⎰⎰==Ay AZ dAz I dAy I 22Iz 、Iy 分别定义为图形对z 轴和y 轴的惯性矩,也称为图形对z 轴和y 轴的二次轴矩。

惯性矩始终为正值,惯性矩的量纲是长度的四次方。

计算步骤123222332202202bh bx dx x b x bdx dA z I h h Ay =⨯=⨯=⨯⨯==⎰⎰⎰左图三角形面积对z轴的惯性矩1243)()(44322hyhydyyyhydyyhI hhz=-=-=⨯-=⎰⎰右图关于z轴的惯性矩为左图的四倍34hIz=惯性距的平行移轴定理:有了它规则形状的物体就不用通过积分来求惯性矩了,省时省力(但精准度差了一些)截面图形对某轴的惯性矩,等于它对该轴平行的形心轴的惯性矩,加上两轴间距离的平方乘以截面面积。

A a I I xc x 2+=Ix ——截面图形对目标轴的惯性矩(目标轴:组合图形的形心轴) Ixc ——截面图形对形心轴的惯性矩(注意理解:此处的形心轴是指划分的规则截面的形心轴)a ——两轴之间的距离 A ——截面图形的面积3、极惯性矩图形对于任意一对互相垂直的轴的惯性矩之和,等于它对该两轴交点的极惯性矩。

I p=I z+I y4、惯性积在平面图形的坐标(x ,y )处,取微面积dA ,遍及整个图形面积的积分⎰=AyzyzdA I ,定义为图形对y ,z 轴的惯性积。

惯性矩基础知识

惯性矩基础知识
A
ah a
dz
by ybdy 2
b
2 ah
a
h bh(a ) AyC 2
2 b
z
S y zdA zhdz A
0
S zc ydA
A
h 2
hz 2
0 h
b bh AzC 2
2 h 2
ybdy
h 2
by 2 2
0
4
二、简单图形的形心
1、形心坐标公式:
S z A ydA yc A A S y AzdA zc A A
E
C D
z1
z
O
z
B
I z1 I y1 I z I y
上式表明,截面对于通过同一点的任意一对相互垂直 的坐标轴的惯性矩之和为一常数,并等于截面对该坐标原 点的极惯性矩
22
I z1 I y1
Iz Iy 2 Iz Iy 2 2
Iz Iy 2 Iz Iy 2
cos 2 I zy sin 2 cos 2 I zy sin 2
i ci
Az
120
z
yc
A y
i
ci
A
A1 y c1 A2 y c 2 A1 A2
60 1100 34.7(mm) 10 110 80 10 8
y
10 10
解法三:负面积法
A1 9600mm 2 , z c1 40mm, y c1 60mm A2 70 110mm 2 , z c 2 45mm, y c 2 65mm
2
y
z
yc zc
b
c
a
y
dA yc
zc
I zy I zcyc abA
——平行移轴公式

惯性矩的计算方法

惯性矩的计算方法

I等. I等是从不同角度反映了截S,其数学表达式(4 -1a )(4-1b)(4 -2a )(4-2b)式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成(4-3)性质:•若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.•若坐标轴通过截面形心,则截面对此轴的静矩必为零.•由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。

4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式(4-4)(4-5)式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数.即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的.例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.、两个矩形,则设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩.数学表达式为极惯性矩 (4-6)对 y 轴惯性矩 (4 -7a )同理,对 z 轴惯性矩 (4-7b)由图 4-3 看到所以有即(4-8) 式 (4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。

在任一截面图形中 ( 图 4 —3) ,取微面积 dA 与它的坐标 z 、 y 值的乘积,沿整个截面积分,定义此积分为截面图形对 y 、z 轴的惯性积,简称惯积.表达式为(4-9)惯性矩、极惯性矩与惯性积的量纲均为长度的四次方. I,I,I恒为正值.而惯性积 I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零.当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴 ( 或称主形心惯轴 ) .截面对形心主惯性轴的惯性矩称为形心主惯性矩 ( 或称主形心惯矩 ) .例如,图 4-4 中若这对 yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.工程应用中 ( 如压杆稳定中 ) ,有时将惯性矩表示成截面面积与某一长度平方的乘积,即,或写成, ( 4-10 )式中 i分别称为截面图形对 y 轴、 z 轴的惯性半径.其量纲为长度的一次方.例 4-2 已知矩形截面的尺寸 b,h( 图 4-5) ,试求它的形心主惯性矩.解:取形心主惯性轴 ( 即对称轴 )y,z ,及 dA=dy,代入公式 (I— 7a ,) 得同理:例 4-3 设圆的直径为 D( 图 4-6) ,试求图形对其形心轴的惯性矩及惯性半径值.解: (1) 求惯性矩因为图形对称, y,z 为对称轴,所以 I= I这是较简单的解法.本例也可取出图 4-6 上的微面积 dA ,按积分法来求得。

材料力学附录I 平面图形的几何性质2形心主轴和形心主惯性矩

材料力学附录I 平面图形的几何性质2形心主轴和形心主惯性矩

i1
i1
i1
材料力学 附录I 平面图形的几何性质
例I-4-1:已知三角形对底边(x1轴)的惯性矩为bh3/12,
求其对过顶点的与底边平行的x2轴的惯性矩。
解:由于x1、x2轴均非形心轴,所以不
x2
能直接使用平行移轴公式,需先求出 三角形对形心轴xC的惯性矩,再求对
h xC
h/3
x1
x2轴的惯性矩,即进行两次平行移轴
3.求截面形心主惯性矩的方法
①建立坐标系
②计算面积和面积矩 ③求形心位置
x
Sy A
xi Ai A
y
Sx A
yi Ai A
④建立形心坐标系;求:IyC , IxC , IxCyC
⑤求形心主轴方向 — 0
tg2
0
2I xCyC I xC I yC
⑥求形心主惯性矩
I I
xC0 yC0
I
x
C
I 2
b

I xC
I x1
a12 A
bh3 12
h 2 3
bh 2
bh3 36
I x2
I xC
a22 A
bh3 36
2h 2 3
bh 2
bh3 4
材料力学 附录I 平面图形的几何性质
例I-4-2:求图示T型截面对形心轴的惯性矩。
30
5
30
5
材料力学 附录I 平面图形的几何性质
30
求T形截面对形心轴的惯性矩
C O
10 150yC x1
x
由于对称知: xC=0
材料力学 附录I 平面图形的几何性质
§I-2 惯性矩和惯性半径
一、惯性矩

最新惯性矩总结(含常用惯性矩公式)

最新惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。

惯性矩的国际单位为(m^4)。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2—2.5)确定。

(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。

惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。

各种截面下极惯性矩

各种截面下极惯性矩
A
y
dA
y2dA z2dA I z I y
o
A
A
z
y
图形对任一对相互垂直的坐标系的惯性矩之和恒等于此图形对该两轴交点的极惯性矩。
四、惯性半径(Radius of gyration of the area)
iy
Iy A
iz
Iz A
I y I yi
I z I zi
I yz I yizi
(1)两平行轴中,必须有一轴为形心轴,截面对任意两平行轴 的惯性矩间的关系,应通过平行的形心轴惯性矩来换算;
(2)截面图形对所有平行轴的惯性矩中,以对通过形心轴的惯 性矩最小.

6、惯性矩与极惯性矩的关系:
z
I p
2dA
A
( y2 z2 )dA
各种截面下惯性矩,极惯性矩
1.规则图形
d
⑴ 圆形截面:
实心(直径 D)
Iz
Iy
1 D4
64
空心(外径 D,内径 d)——
Iz
Iy
1 (D4
64
d 4)
⑵ 矩形截面:
z y
I y
z2dA
A
b
2 b
2
z 2 hdA
1 12
hb3
Iz
y2dA
A
h
2 h
2
y 2bdy
1 bh3 12
实心圆截面 W I z πd 4 / 64 πd 3 d / 2 d / 2 32
矩形截面
W I z bh3 /12 bh2 h/2 h/2 6
空 心 圆 截 W πD3 (1 4 )

32
抗扭截面系数
Wt

材料力学第五章

材料力学第五章
组合图形形心坐标计算公式为
xC

Sy A

n
x C
Ai
i 1
n
Ai
i 1

n

yC

Sx A

i 1 n
y C
Ai

Ai
i 1

第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图

所示。
求:图形的形心。
50
C2

C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z

ydA
A
Sy AzC
Sz AyC
yC

Sz A

ydA
A
A
zC

Sy A

zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy

极惯性矩常用计算公式[精华]

极惯性矩常用计算公式[精华]

极惯性矩常用计算公式[精华]极惯性矩常用计算公式:Ip=?Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D?16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图?-1所示。

定义式:, (?-1)量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标和。

则由此可得薄板重心的坐标为同理有所以形心坐标, (?-2) 或,由式(?-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为, (?-3), (?-4)【例I-1】求图?-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图?-3所示。

【解】将图形看作由两个矩形?和?组成,在图示坐标下每个矩形的面积及形心位置分别为矩形?:mm2mm,mm矩形?:mm2mm,mm 整个图形形心的坐标为?16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图?-4所示。

, (?-5)量纲为长度的四次方,恒为正。

相应定义, (?-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设为分图形的惯性矩,则总图形对同-轴惯性矩为, (?-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(?-8) 因为所以极惯性矩与(轴)惯性矩有关系(?-9) 式(?-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档