各种排序算法比较

合集下载

常用排序算法分析比较

常用排序算法分析比较

常用排序算法分析比较排序算法是计算机科学中的基本概念之一,它主要用于对一组元素进行排序,使得这些元素按照某种规则有序排列。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等等,这些算法都有自己的特点和适用场景,下面针对这些排序算法进行分析比较。

1.冒泡排序冒泡排序是一种简单的排序算法,它的主要思想是依次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置,可以保证每次循环后最后一个元素是已经排序好的。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

2.插入排序插入排序是一种稳定的排序算法,它的基本思想是将待排序的数据分为两个区间,已排序区间和未排序区间,在未排序区间内遍历,将每个元素插入到已排序区间的合适位置。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

3.选择排序选择排序是一种比较简单的排序算法,它的主要思想是通过不断选择未排序区间内的最小值,然后和未排序区间的第一个元素交换位置,以此类推,直到排序完毕。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

4.快速排序快速排序是一种经典的排序算法,它的思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行快速排序,最后合并两个排好序的子序列。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

5.归并排序归并排序是一种稳定的排序算法,它的基本思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行排序,最后将两个排好序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

通过比较以上五种排序算法,可以发现每种算法都有自己的特点和适用场景,对于元素数量较少的情况下,可以选择冒泡排序、插入排序或选择排序,这些算法思路简单易懂,实现也比较容易;对于大规模数据排序,可以选择归并排序或快速排序,因为它们的时间复杂度比较优秀。

比较冒泡算法,选择算法,希尔排序算法

比较冒泡算法,选择算法,希尔排序算法

一、算法简介冒泡排序算法、选择排序算法和希尔排序算法是三种常用的排序算法。

这三种算法的共同点是都属于比较排序算法,即通过比较元素之间的大小,进行排序。

下面将分别对这三种算法进行介绍。

二、冒泡排序算法冒泡排序算法的基本思想是对相邻的元素进行比较,如果逆序则交换它们的位置,直到整个序列有序为止。

具体实现过程如下:1. 设置循环次数为 n-1,n 为待排序序列长度。

2. 对于每一次循环,从第一个元素开始,依次比较相邻的两个元素,如果逆序则交换它们的位置。

3. 每一次循环结束后,待排序序列中最大的元素就会被排到末尾。

4. 重复执行上述步骤,直到整个序列有序。

冒泡排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较好,适用于数据量较小的情况。

三、选择排序算法选择排序算法的基本思想是从待排序序列中选择最小的元素,放到已排序序列的末尾,直到整个序列有序为止。

具体实现过程如下:1. 设置循环次数为 n-1,n 为待排序序列长度。

2. 对于每一次循环,从第一个元素开始,找到待排序序列中最小的元素,并将其放到已排序序列的末尾。

3. 重复执行上述步骤,直到整个序列有序。

选择排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较小的情况。

四、希尔排序算法希尔排序算法也称为缩小增量排序算法,是插入排序算法的一种改进。

希尔排序算法的基本思想是将待排序序列分成若干个子序列,对每个子序列进行插入排序,然后再对整个序列进行一次插入排序,直到整个序列有序为止。

具体实现过程如下:1. 设置一个增量值 gap,将待排序序列分成若干个子序列,每个子序列包含的元素个数为 gap。

2. 对于每个子序列,进行插入排序。

3. 减小增量值 gap,重复执行上述步骤,直到 gap=1。

4. 对整个序列进行一次插入排序,使得序列有序。

希尔排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较大的情况。

排序的几种方式

排序的几种方式

排序的几种方式在日常生活中,我们经常需要对事物进行排序,以便更好地组织和理解信息。

排序是一种将元素按照一定的规则进行排列的方法,可以应用于各种领域,如数字排序、字母排序、时间排序等。

本文将介绍几种常用的排序方式,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单直观的排序方法,通过比较相邻元素的大小,将较大的元素逐渐“冒泡”到右侧,较小的元素逐渐“沉底”到左侧。

这个过程会不断重复,直到所有元素都按照升序排列。

冒泡排序的基本思想是从第一个元素开始,依次比较相邻的两个元素,如果前面的元素大于后面的元素,则交换它们的位置。

经过一轮比较后,最大的元素会“冒泡”到最右侧,然后再对剩下的元素进行相同的比较,直到所有元素都有序排列。

二、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到所有元素都有序排列。

选择排序的过程可以分为两个部分:首先,在未排序的序列中找到最小(或最大)的元素,然后将其放到已排序序列的末尾;其次,将剩下的未排序序列中的最小(或最大)元素找到,并放到已排序序列的末尾。

这个过程会不断重复,直到所有元素都有序排列。

三、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的元素逐个插入到已排序序列的适当位置,最终得到一个有序序列。

插入排序的过程可以分为两个部分:首先,将第一个元素看作已排序序列,将剩下的元素依次插入到已排序序列的适当位置;其次,重复上述过程,直到所有元素都有序排列。

插入排序的过程类似于整理扑克牌,将新抓到的牌插入到已有的牌中。

四、快速排序快速排序是一种常用的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都小于另一部分的所有元素。

然后对这两部分继续进行排序,直到整个序列有序。

快速排序的过程可以分为三个步骤:首先,从序列中选择一个基准元素;其次,将比基准元素小的元素放在左侧,比基准元素大的元素放在右侧;最后,递归地对左右两个部分进行排序。

所有排序的原理

所有排序的原理

所有排序的原理排序是将一组数据按照某种特定顺序进行排列的过程。

在计算机科学中,排序是一种基本的算法问题,涉及到许多常见的排序算法。

排序算法根据其基本原理和实现方式的不同,可以分为多种类型,如比较排序、非比较排序、稳定排序和非稳定排序等。

下面将详细介绍排序的原理和各种排序算法。

一、比较排序的原理比较排序是指通过比较数据之间的大小关系来确定数据的相对顺序。

所有常见的比较排序算法都基于这种原理,包括冒泡排序、插入排序、选择排序、归并排序、快速排序、堆排序等。

比较排序算法的时间复杂度一般为O(n^2)或O(nlogn),其中n是待排序元素的数量。

1. 冒泡排序原理冒泡排序是一种简单的比较排序算法,其基本思想是从待排序的元素中两两比较相邻元素的大小,并依次将较大的元素往后移,最终将最大的元素冒泡到序列的尾部。

重复这个过程,直到所有元素都有序。

2. 插入排序原理插入排序是一种简单直观的比较排序算法,其基本思想是将待排序序列分成已排序和未排序两部分,初始状态下已排序部分只包含第一个元素。

然后,依次将未排序部分的元素插入到已排序部分的正确位置,直到所有元素都有序。

3. 选择排序原理选择排序是一种简单直观的比较排序算法,其基本思想是每次从待排序的元素中选择最小(或最大)的元素,将其放到已排序部分的末尾。

重复这个过程,直到所有元素都有序。

4. 归并排序原理归并排序是一种典型的分治策略下的比较排序算法,其基本思想是将待排序的元素不断地二分,直到每个子序列只包含一个元素,然后将相邻的子序列两两归并,直到所有元素都有序。

5. 快速排序原理快速排序是一种常用的比较排序算法,其基本思想是通过一趟排序将待排序的元素分割成两部分,其中一部分的元素均比另一部分的元素小。

然后,对这两部分元素分别进行快速排序,最终将整个序列排序完成。

6. 堆排序原理堆排序是一种常用的比较排序算法,其基本思想是利用堆这种数据结构对待排序的元素进行排序。

排序有哪几种方法

排序有哪几种方法

排序有哪几种方法排序是计算机科学中非常重要的概念之一,它指的是将一组元素按照某种规则进行重新排列的过程。

排序算法可以分为多种类型,包括插入排序、交换排序、选择排序、归并排序、快速排序、堆排序、计数排序、桶排序、基数排序等。

下面我将详细介绍每种排序方法的原理、特点和应用场景。

1. 插入排序(Insertion Sort)插入排序是一种简单且直观的排序算法。

它的原理是将一个未排序的元素逐个地插入到已排序的部分中,最终形成一个完全有序的序列。

具体操作是从第二个元素开始,将其与前面已排序的元素逐个比较并插入到正确的位置。

插入排序的时间复杂度为O(n^2),适用于小规模或部分有序的序列。

2. 交换排序(Exchange Sort)交换排序包括冒泡排序和快速排序。

冒泡排序(Bubble Sort)的原理是从头到尾依次比较相邻的两个元素,如果顺序不对则交换位置,一轮下来可以将最大的元素移动到末尾。

快速排序(Quick Sort)使用了分治的思想,通过选择一个基准元素将序列分成左右两部分,左边的元素都小于该基准值,右边的元素都大于该基准值,然后递归地对左右两部分进行快速排序。

交换排序的平均时间复杂度为O(nlogn),适合用于排序大规模随机数据。

3. 选择排序(Selection Sort)选择排序的原理很简单:每一次从未排序的部分中选择最小(或最大)的元素,放到已排序部分的末尾。

具体操作是通过不断找到最小元素的索引,然后将其与第一个未排序元素交换,如此循环直到所有元素都被排序。

选择排序的时间复杂度为O(n^2),适用于简单的排序需求。

4. 归并排序(Merge Sort)归并排序采用了分治的思想,将一个序列递归地分成两个子序列,直到每个子序列只有一个元素,然后将两个有序的子序列合并成一个有序的序列。

具体操作是比较两个子序列的第一个元素,将较小的元素放入结果序列,然后再比较较小元素所在子序列的下一个元素与另一个子序列的第一个元素,直到所有元素都被放入结果序列。

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。

第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。

要达到这个目的,我们可以用顺序比较的方法。

首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

各种排序方法的综合比较

各种排序方法的综合比较

各种排序方法的综合比较在计算机科学中,排序是一种常见的算法操作,它将一组数据按照特定的顺序重新排列。

不同的排序方法具有不同的适用场景和性能特点。

本文将综合比较几种常见的排序方法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单但效率较低的排序方法。

它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素逐渐“冒泡”到数组的末尾。

冒泡排序的时间复杂度为O(n^2),其中n为待排序元素的数量。

二、选择排序选择排序是一种简单且性能较优的排序方法。

它通过多次遍历数组,在每次遍历中选择最小的元素,并将其与当前位置交换。

选择排序的时间复杂度同样为O(n^2)。

三、插入排序插入排序是一种简单且适用于小规模数据的排序方法。

它通过将待排序元素逐个插入已排序的部分,最终得到完全有序的数组。

插入排序的时间复杂度为O(n^2),但在实际应用中,它通常比冒泡排序和选择排序更快。

四、快速排序快速排序是一种高效的排序方法,它通过分治法将数组划分为两个子数组,其中一个子数组的所有元素都小于另一个子数组。

然后递归地对两个子数组进行排序,最终将整个数组排序完成。

快速排序的平均时间复杂度为O(nlogn),但最坏情况下可能达到O(n^2)。

五、归并排序归并排序是一种稳定且高效的排序方法。

它通过将数组分成两个子数组,递归地对两个子数组进行排序,然后合并两个有序的子数组,得到最终排序结果。

归并排序的时间复杂度始终为O(nlogn),但它需要额外的空间来存储临时数组。

综合比较上述几种排序方法,可以得出以下结论:1. 冒泡排序、选择排序和插入排序都属于简单排序方法,适用于小规模数据的排序。

它们的时间复杂度都为O(n^2),但插入排序在实际应用中通常更快。

2. 快速排序和归并排序都属于高效排序方法,适用于大规模数据的排序。

它们的时间复杂度都为O(nlogn),但快速排序的最坏情况下性能较差,而归并排序需要额外的空间。

五种常用的排序算法详解

五种常用的排序算法详解

五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。

常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。

由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。

冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。

以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。

该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。

以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排序算法一、插入排序(Insertion Sort)1. 基本思想:每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。

2. 排序过程:【示例】:[初始关键字] [49] 38 65 97 76 13 27 49J=2(38) [38 49] 65 97 76 13 27 49J=3(65) [38 49 65] 97 76 13 27 49J=4(97) [38 49 65 97] 76 13 27 49J=5(76) [38 49 65 76 97] 13 27 49J=6(13) [13 38 49 65 76 97] 27 49J=7(27) [13 27 38 49 65 76 97] 49J=8(49) [13 27 38 49 49 65 76 97]Procedure InsertSort(Var R : FileType);//对R[1..N]按递增序进行插入排序, R[0]是监视哨//Beginfor I := 2 To N Do //依次插入R[2],...,R[n]//beginR[0] := R[I]; J := I - 1;While R[0] < R[J] Do //查找R[I]的插入位置//beginR[J+1] := R[J]; //将大于R[I]的元素后移//J := J - 1endR[J + 1] := R[0] ; //插入R[I] //endEnd; //InsertSort //二、选择排序1. 基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [38 65 97 76 49 27 49]第二趟排序后13 27 [65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 97Procedure SelectSort(Var R : FileType); //对R[1..N]进行直接选择排序//Beginfor I := 1 To N - 1 Do //做N - 1趟选择排序//beginK := I;For J := I + 1 To N Do //在当前无序区R[I..N]中选最小的元素R[K]//beginIf R[J] < R[K] Then K := Jend;If K <> I Then //交换R[I]和R[K] //begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;endEnd. //SelectSort //三、冒泡排序(BubbleSort)1. 基本思想:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。

2. 排序过程:设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。

【示例】:49 13 13 13 13 13 13 1338 49 27 27 27 27 27 2765 38 49 38 38 38 38 3897 65 38 49 49 49 49 4976 97 65 49 49 49 49 4913 76 97 65 65 65 65 6527 27 76 97 76 76 76 7649 49 49 76 97 97 97 97Procedure BubbleSort(Var R : FileType) //从下往上扫描的起泡排序//BeginFor I := 1 To N-1 Do //做N-1趟排序//beginNoSwap := True; //置未排序的标志//For J := N - 1 DownTo 1 Do //从底部往上扫描//beginIf R[J+1]< R[J] Then //交换元素//beginTemp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;NoSwap := Falseend;end;If NoSwap Then Return //本趟排序中未发生交换,则终止算法//endEnd. //BubbleSort//四、计数排序计数排序的思想是若待排序的记录的关键字在一个明显的有限范围内(整数)时,可设计一个数组,出现与数组下标值一样的数,该下标的数组元素值加1,最后扫描整个数组,根据统计的信息给出一个有序数列。

五、快速排序(Quick Sort)1. 基本思想:在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。

2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一次交换后[27 38 65 97 76 13 49 49]第二次交换后[27 38 49 97 76 13 65 49]J向左扫描,位置不变,第三次交换后[27 38 13 97 76 49 65 49]I向右扫描,位置不变,第四次交换后[27 38 13 49 76 97 65 49]J向左扫描[27 38 13 49 76 97 65 49](一次划分过程)初始关键字[49 38 65 97 76 13 27 49]一趟排序之后[27 38 13]49 [76 97 65 49]二趟排序之后[13]27 [38]49 [49 65]76 [97]三趟排序之后13 27 38 49 49 [65]76 97最后的排序结果13 27 38 49 49 65 76 97各趟排序之后的状态Procedure Parttion(Var R : FileType; L, H : Integer; Var I : Integer);//对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置//BeginI := 1; J := H; X := R[I] ; //初始化,X为基准//RepeatWhile (R[J] >= X) And (I < J) DobeginJ := J - 1 //从右向左扫描,查找第1个小于X的元素//If I < J Then //已找到R[J] 〈X//beginR[I] := R[J]; //相当于交换R[I]和R[J]//I := I + 1end;While (R[I] <= X) And (I < J) DoI := I + 1 //从左向右扫描,查找第1个大于X的元素///end;If I < J Then //已找到R[I] > X //begin R[J] := R[I]; //相当于交换R[I]和R[J]//J := J - 1endUntil I = J;R[I] := X //基准X已被最终定位//End; //Parttion //Procedure QuickSort(Var R :FileType; S,T: Integer); //对R[S..T]快速排序//BeginIf S < T Then //当R[S..T]为空或只有一个元素是无需排序//beginPartion(R, S, T, I); //对R[S..T]做划分//QuickSort(R, S, I-1); //递归处理左区间R[S,I-1]//QuickSort(R, I+1,T); //递归处理右区间R[I+1..T] //end;End. //QuickSort//六、几种排序算法的比较和选择1. 选取排序方法需要考虑的因素:(1) 待排序的元素数目n;(2) 元素本身信息量的大小;(3) 关键字的结构及其分布情况;(4) 语言工具的条件,辅助空间的大小等。

2. 小结:(1) 若n较小(n <= 50),则可以采用直接插入排序或直接选择排序。

由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。

(2) 若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。

(3) 若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。

快速排序是目前基于比较的内部排序法中被认为是最好的方法。

(4) 在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlog2n)的时间。

(5) 当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。

通过实验我们可将结果列入下表。

以下是VC6.0(Release)+win2000pro+128MDDR+P4(1.6G)因为在多任务操作系统下,系统将进行进程序调度,影响实验结果。

以下是经过稍微修正过的值。

如果要取得更准确的值,我们得多次实验求其平均值。

算法与结果联合分析冒泡排序:在最优情况下只需要经过n- 1次比较即可得出结果,(这个最优情况那就是序列己是正序,从100K的正序结果可以看出结果正是如此),但在最坏情况下,即倒序(或一个较小值在最后),下沉算法将需要n(n-1)/2次比较。

所以一般情况下,特别是在逆序时,它很不理想。

它是对数据有序性非常敏感的排序算法。

冒泡排序2:它是冒泡排序的改良(一次下沉再一次上浮),最优情况和最坏情况与冒泡排序差不多,但是一般情况下它要好过冒泡排序,它一次下沉,再一次上浮,这样避免了因一个数的逆序,而造成巨大的比较。

相关文档
最新文档