几种排序算法的平均性能比较(实验报告)
算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。
为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。
二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。
实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。
实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。
同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。
三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。
从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。
在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。
总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。
2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。
实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。
与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。
3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。
实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。
可以看出,随着数据量的增加,插入排序的性能明显下降。
排序程序实验报告

一、实验目的1. 理解排序算法的基本原理和常用排序方法。
2. 掌握几种常见的排序算法(冒泡排序、选择排序、插入排序、快速排序等)的实现过程。
3. 分析不同排序算法的时间复杂度和空间复杂度。
4. 能够根据实际情况选择合适的排序算法。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容本次实验主要实现了以下排序算法:1. 冒泡排序2. 选择排序3. 插入排序4. 快速排序以下是对每种排序算法的具体实现和性能分析。
### 1. 冒泡排序算法原理:冒泡排序是一种简单的排序算法。
它重复地遍历待排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```性能分析:冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
### 2. 选择排序算法原理:选择排序是一种简单直观的排序算法。
它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
代码实现:```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]return arr```性能分析:选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。
从本质上来说,它是归并排序的就地版本。
快速排序可以由下面四步组成。
(1 )如果不多于1 个数据,直接返回。
(2 )一般选择序列最左边的值作为支点数据。
(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4 )对两边利用递归排序数列。
快速排序比大部分排序算法都要快。
尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。
快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。
2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。
合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。
3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。
堆排序不需要大量的递归或者多维的暂存数组。
这对于数据量非常巨大的序列是合适的。
比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。
接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。
4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。
平均效率是O(nlogn) 。
其中分组的合理性会对算法产生重要的影响。
现在多用D.E.Knuth 的分组方法。
Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。
Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。
排序实验报告_排序综合实验报告材料

班级
2*10^7
10 电信 1 班
10^8
操作系统
10^5
Microsoft Windows 7 旗舰版 (64 位/Service Pck 1)
正序
xxxxxxxxxxxxx
逆序
编译软件
直接插入
Visul C++ 6.0
(带监视哨〕
emil
C
609803959.
24.874
10^4
100.158
2*10^4
中选出键值最小的记录,与无序区第一个记录 R 交换;新的无序区为 R 到
各种排序试验结果:
R[n],从中再选出键值最小的记录,与无序区第一个记录 R 交换;类似, CPU
第 i 趟排序时 R 到 R[i-1]是有序区,无序区为 R[i]到 R[n],从中选出键
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
〔1〕二路并归排序:开始时,将排序表 R 到 R[n]看成 n 个长度为 1
录,顺序放在已排好序的子序列的后面〔或最前〕,直到全部记录排序完 的有序子表,把这些子表两两并归,便得到 n/2 个有序的子表〔当 n 为奇
毕。
数时,并归后仍是有一个长度为 1 的子表〕;然后,再把这 n/2 个有序的
〔1〕直接选择排序:首先,全部记录组成初始无序区 R 到 R[n],从 子表两两并归,如此反复,直到最终得到一个程度为 n 的有序表为止。
指导老师: 胡圣荣
序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
日期: 20XX.12.15~20XX.1.5
〔1〕冒泡排序:设想排序表 R 到 R[n]垂直放置,将每个记录 R[i]看
查找排序实验报告

查找排序实验报告一、实验目的本次实验的主要目的是深入理解和比较不同的查找和排序算法在性能和效率方面的差异。
通过实际编程实现和测试,掌握常见查找排序算法的原理和应用场景,为今后在实际编程中能够选择合适的算法解决问题提供实践经验。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
计算机配置为:处理器_____,内存_____,操作系统_____。
三、实验内容1、查找算法顺序查找二分查找2、排序算法冒泡排序插入排序选择排序快速排序四、算法原理1、顺序查找顺序查找是一种最简单的查找算法。
它从数组的一端开始,依次比较每个元素,直到找到目标元素或者遍历完整个数组。
其时间复杂度为 O(n),在最坏情况下需要遍历整个数组。
2、二分查找二分查找适用于已排序的数组。
它通过不断将数组中间的元素与目标元素进行比较,将查找范围缩小为原来的一半,直到找到目标元素或者确定目标元素不存在。
其时间复杂度为 O(log n),效率较高。
3、冒泡排序冒泡排序通过反复比较相邻的两个元素并交换它们的位置,将最大的元素逐步“浮”到数组的末尾。
每次遍历都能确定一个最大的元素,经过 n-1 次遍历完成排序。
其时间复杂度为 O(n^2)。
4、插入排序插入排序将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分的合适位置。
其时间复杂度在最坏情况下为 O(n^2),但在接近有序的情况下性能较好。
5、选择排序选择排序每次从待排序数组中选择最小的元素,与当前位置的元素交换。
经过 n-1 次选择完成排序。
其时间复杂度为 O(n^2)。
6、快速排序快速排序采用分治的思想,选择一个基准元素,将数组分为小于基准和大于基准两部分,然后对这两部分分别递归排序。
其平均时间复杂度为 O(n log n),在大多数情况下性能优异。
五、实验步骤1、算法实现使用Python 语言实现上述六种查找排序算法,并分别封装成函数,以便后续调用和测试。
算法分析及复杂性理论实验报告基本排序

深圳大学实验报告课程名称:算法设计与分析实验名称:多种排序算法的算法实现及性能比较学院:计算机与软件学院专业:计算机科学与技术报告人:张健哲学号: 2013150372 班级: 3 同组人:无指导教师:李炎然实验时间: 2015/3/25——2015/4/8 实验报告提交时间: 2015/4/8教务处制一.实验目的1.掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理2.掌握不同排序算法时间效率的经验分析方法,验证理论分析与经验分析的一致性。
二.实验步骤与结果实验总体思路:利用switch结构来选择实验所要用的排序算法,每一种排序都用相同的计算运行时间的代码,不同的算法就在算法实现部分进行改动(如下代码1至5所示)。
不断的改变数据规模,每一个规模在实验时,用循环进行多次实验并作为样本记录消耗的时间。
最后输出在不同排序算法下,不同的数据规模的20次实验样本和平均用时(如下图1至5所示)。
各排序算法的实现及实验结果:(注1:以下代码全部为伪代码,具体代码实现请参照程序中的代码)(注2:图中显示的时间单位均为毫秒,图中“排序所花时间”一项为平均消耗时间,平均消耗时间结果以20组样本计算平均值后取整得到(并非四舍五入)。
)1、选择排序代码1:for i=0 to n-2min=ifor j= i+1 to n-1if ele[min]>ele[j] min=jswap(ele[i],ele[min]) //交换图1、选择排序在不同数据规模下排序所消耗的时间2、冒泡排序代码2:for i= 0 to n-1for j=0 to n-1-iif a[j]>a[j+1]swap(a[j],a[j+1]) //交换图2、冒泡排序在不同数据规模下排序所消耗的时间3、合并排序代码3:Merge(ele[1...n],left,right)middle=(left+right)/2if right>1eft+1Merge(ele,left,middle)Merge(ele,middle+1,right)l←left r←right i←leftwhile l<=middle&&r<=right //两组分别一一比较,数据小的放入ele if ele[l]<=ele[r]t[i++]←ele[l++]elset[i++]←ele[r++]while l>middle&&r<=r //只剩一组还有剩余的时,将剩下的按顺序放入ele[i++]=s[r++]while l<=middle && r>rightele[i++]=s[l++];图3、合并排序在不同数据规模下排序所消耗的时间4、快速排序代码4:quick(ele[0...n-1],left,right)if l<rl←left r←right x←ele[l];while l<rwhile l<r && x<=ele[r] //找到一个比x小的数之后交换到前面的部分r--if l<rele[l]←ele[r] l++while l<r && x>ele[l] //与上面相反ll++if l<rele[r]←ele[l] r--ele[l]←x;quick(ele,left,l-1) // 递归调用quick(ele,l+1,right)图4、快速排序在不同数据规模下排序所消耗的时间5、插入排序代码5:for i=1→n-1if ele[i]<ele[i-1] temp=ele[i]for j= i-1 to 0 && ele[j]>tempele[j+1]←ele[j]ele[j+1]←temp图5、插入排序在不同数据规模下排序所消耗的时间三.实验分析选择排序:图6、由图1数据整合而成的折线图为了更清晰的看到排序的数据规模与排序所需时间之间的影响,我将实验的数据规模进行了一些调整,得到的平均数据依旧是以20组数据样本取平均数算得(如下表1、图7所示):(由于图片占空间大且表达不直白,我将所得数据做成表格分析,下同)表1、选择排序在不同数据规模下排序所消耗的时间图7、由表1数据整合而成的折线图图形上:形状基本符合n2(二次增长)数据上:我们发现当数据规模增大两倍时:当数据规模增大两倍时:10000→20000: 158*22=632≈634 10000→30000:158*32=1422≈142420000→40000: 634*22=2536≈2541其他倍数也可得到类似的结果。
算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
各种查找算法的性能比较测试(顺序查找、二分查找)

算法设计与分析各种查找算法的性能测试目录摘要 (2)第一章:简介(Introduction) (3)1.1 算法背景 (3)第二章:算法定义(Algorithm Specification) (4)2.1 数据结构 (4)2.2顺序查找法的伪代码 (4)2.3 二分查找(递归)法的伪代码 (5)2.4 二分查找(非递归)法的伪代码 (6)第三章:测试结果(Testing Results) (8)3.1 测试案例表 (8)3.2 散点图 (9)第四章:分析和讨论 (11)4.1 顺序查找 (11)4.1.1 基本原理 (11)4.2.2 时间复杂度分析 (11)4.2.3优缺点 (11)4.2.4该进的方法 (12)4.2 二分查找(递归与非递归) (12)4.2.1 基本原理 (12)4.2.2 时间复杂度分析 (13)4.2.3优缺点 (13)4.2.4 改进的方法 (13)附录:源代码(基于C语言的) (15)摘要在计算机许多应用领域中,查找操作都是十分重要的研究技术。
查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。
我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。
比较的指标为关键字的查找次数。
经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。
这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。
关键字:顺序查找、二分查找(递归与非递归)第一章:简介(Introduction)1.1 算法背景查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。
对于查找问题来说,没有一种算法在任何情况下是都是最优的。
有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课程:算法分析与设计实验名称:几种排序算法的平均性能比较(验证型实验)实验目标:(1)几种排序算法在平均情况下哪一个更快。
(2)加深对时间复杂度概念的理解。
实验任务:(1)实现几种排序算法(selectionsort, insertionsort,bottomupsort,quicksort, 堆排序)。
对于快速分类,SPLIT中的划分元素采用三者A(low),A(high),A((low+high)/2)中其值居中者。
(2)随机产生20组数据(比如n=5000i,1≤i≤20)。
数据均属于围(0,105)的整数。
对于同一组数据,运行以上几种排序算法,并记录各自的运行时间(以毫秒为单位)。
(3)根据实验数据及其结果来比较这几种分类算法的平均时间和比较次数,并得出结论。
实验设备及环境:PC;C/C++等编程语言。
实验主要步骤:(1)明确实验目标和具体任务;(2)理解实验所涉及的几个分类算法;(3)编写程序实现上述分类算法;(4)设计实验数据并运行程序、记录运行的结果;(5)根据实验数据及其结果得出结论;(6)实验后的心得体会。
问题分析(包括问题描述、建模、算法的基本思想及程序实现的技巧等):选择排序:令A[1…n]为待排序数组,利用归纳法,假设我们知道如何对后n-1个元素排序,即对啊[A…n]排序。
对某个j,1<=j<=n,设A[j]是最小值。
首先,如果就!=1,我们交换A[1]和A[j]。
然后由假设,已知如何对A[2..n]排序,因此可对在A[2…n]中的元素递归地排序。
可把递归改为迭代。
算法程序实现如下:void SelectionSort(int *Array,int n,int &c){int i,j,k;int aa;c=0;for(i=0;i<n;i++){k=i;for(j=i+1;j<n;j++){c++;if(Array[j]<Array[k])k=j;}if(k!=i){aa=Array[i];Array[i]=Array[k];Array[k]=aa;}}}插入排序:将n个元素的数列分为已有序和无序两个部分,每次处理就是将无序数列的第一个元素与有序数列的元素从后往前逐个进行比较,找出插入位置,将该元素插入到有序数列的合适位置中。
算法程序实现如下:void InsertionSort(int *Array,int n,int &c){int i,j;int aa;c=0;for(i=0;i<n;i++){aa=Array[i];j=i-1;while(j>=0 && Array[j]>aa){c++;Array[j+1]=Array[j];j=j-1;}Array[j+1]=aa;}}自底向上合并排序:利用分治法思想,将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。
然后再把有序子序列合并为整体有序序列。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
算法程序实现如下:void Merge(int *A,int p,int q,int r,int &c) {int *B=new int[r-p+1];int s=p;int t=q+1;int k=0;while(s<=q && t<=r){c++;if(A[s]<=A[t]){B[k]=A[s];s=s+1;}else{B[k]=A[t];t=t+1;}k=k+1;}if(s==q+1){while(t<=r){B[k]=A[t];k=k+1;t=t+1;}}else{while(s<=q){B[k]=A[s];k=k+1;s=s+1;}}k=0;while(p<=r){A[p]=B[k];k++;p++;}delete B;}void BottomupSort(int *Array,int n,int &c){int s,i, t=1;c=0;while(t<n){s=t;t=2*s;i=0;while(i+t<n){Merge(Array,i,i+s-1,i+t-1,c);i=i+t;}if(i+s<n)Merge(Array,i,i+s-1,n-1,c);}}快速排序:设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。
快速排序就是递归调用此过程。
算法程序实现如下:void Split(int *A,int low,int high,int &w,int &c){int aa,x;int j,i=low;int mid=(low+high)/2;if(A[low]<A[high]){if(A[mid]<A[low])w=low;else if(A[mid]<A[high])w=mid;else w=high;}else{if(A[mid]<A[high])w=high;else if(A[mid]<A[low])w=mid;else w=low;}c++;x=A[w];aa=A[low];A[low]=A[w];A[w]=aa;for(j=low+1;j<=high;j++){c++;if(A[j]<=x){i=i+1;if(i!=j){aa=A[i];A[i]=A[j];A[j]=aa;}}}aa=A[low];A[low]=A[i];A[i]=aa;w=i;}void Quick(int *A,int low,int high,int &c) {int w;if(low<high){Split(A,low,high,w,c);Quick(A,low,w-1,c);Quick(A,w+1,high,c);}}void QuickSort(int *Array,int n,int &c) {c=0;Quick(Array,0,n-1,c);}堆排序:堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区,再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].ke y,由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n- 1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
…… 直到无序区只有一个元素为止。
void Siftdown(int *H,int n,int i,int &c){bool done=false;int j,a;if(2*i+1>n)return;while(2*i+1<=n && !done){j=i;i=2*i+1;c=c+2;if(i+1<=n && H[i+1]>H[i])i=i+1;if(H[j]<H[i]){a=H[i];H[i]=H[j];H[j]=a;}else done=true;}}void MakeHeap(int *A,int n,int &c){int i;for(i=(n-2)/2;i>=0;i--)Siftdown(A,n-1,i,c);}void HeapSort(int *A,int n,int &c){c=0;MakeHeap(A,n,c);int j;int x;for(j=n-1;j>=1;j--){x=A[0];A[0]=A[j];A[j]=x;Siftdown(A,j-1,0,c);}}实验数据及其结果(可用图表形式给出):实验结果分析及结论:选择排序算法最稳定,算法的效率只跟输入规模有关,与元素序列无关,但也是效率最差。
插入排序的效率跟元素的序列有关,最好情况(已排序)时间复杂度为0,最坏情况(逆序)时间复杂度为Θ(n2).自底向上合并排序、快速排序、堆排序的效率差不多,最坏情况和最好情况时间复杂度都为o(n㏒n),对于绝大部分元素有序的数组,这三种排序算法的效率不如插入排序。
实验自我评价及心得体会:通过这次实验,我对这五种排序的原理和执行过程有了更清楚地了解,由于本次实验是在VC++2008平台下利用MFC实现,在学习算法的过程中同时也让我更加熟悉了windows的界面编程方法。
主要参考文献:《算法设计技巧与分析》[沙特]M.H.Alsuwaiyel 著。