高一理科实验班适应性考试数学试卷 (2)

合集下载

2021年高一上学期期末适应性考试数学试题 Word版含答案

2021年高一上学期期末适应性考试数学试题 Word版含答案

2021年高一上学期期末适应性考试数学试题 Word 版含答案一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.的值为 ▲ .2.函数的定义域为 ▲ .3.已知幂函数...的图象过点,则 ▲ . 4.若函数为偶函数,则实数的值为 ▲ .5.已知扇形的中心角为,半径为,则此扇形的面积为 ▲ .6.将函数的图象向右平移个单位后所得图象的函数解析式是▲ .7. ▲ .8.在平面直角坐标系中,已知以轴为始边的角、的终边分别经过点、,则 ▲ .9.函数的单调增区间是 ▲ .10.如图,在的方格纸中,若起点和终点均在格点的向量满足(x ,y R ),则的值为 ▲ .11.若函数的定义域与值域都是,则实数 ▲. 12.定义在区间上的函数的图像与的图像的交点为P ,过点P 作PP 1⊥轴于点P 1,直线PP 1与的图像交于点P 2,则线段P 1P 2的长为▲ 。

13.已知点、分别为的重心(三条中线的交点)、垂心(三条高所在直线的交点),若,则的值为 ▲ .14.若关于x 的不等式ax 2+x -2a <0的解集中仅有4个整数解...,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演第10题图算步骤.)15.(本小题满分14分)已知集合,,全集.(1)求;(2)若集合,,求实数的取值范围.(3)若集合,,求实数m 的取值范围.16.(本小题满分14分)已知函数的部分图象如图所示.(1)求的值;(2)(3)17.(本小题满分15分)设,向量⑴,求;⑵若,求的值;⑶若,求证:.18.(本小题满分15分)噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.(1)当声音强度满足时,求对应的声音能量满足的等量关系式;(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.19.(本小题满分16分)若函数在定义域内某区间上是增函数,而在上是减函数,则称在上是“弱增函数”. (1)请分别判断=,在是否是“弱增函数”,并简要说明理由;(2)若函数(是常数)(i)若,求的最小值.(用表示);(ii)在上是“弱增函数”,试探讨及正数应满足的条件,并用单调性的定义证明........。

黄高预录数学试题

黄高预录数学试题

绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3B.0<a<5或6<a≤7C.1<a≤2或3≤a<5D.0<a<2或3≤a<5个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种B.6种C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为分钟、分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y ≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)199 21519 3223323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.24.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D 在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.参考答案与试题解析一.选择题1.∴等式成立,∴I=(n+1)2+n﹣(n+1)2=n>0,故选A.2.解:∵[]=3有正整数解,∴3≤<4,即6≤3x+a<8,6﹣a≤3x<8﹣a,∴≤x<,∵x是正整数,a为正数,∴x<,即x可取1、2;①当x取1时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴3≤a<5;②当x取2时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴0<a<2;综上可得a的范围是:0<a<2或3≤a<5.故选D.3.解:∵6个相同的球,放入四个不同的盒子里,∴若有三个盒子里放了1个,一个盒子里放了3个,这种情况下的方法有4种;若有两个盒子里放了2个,两个盒子里放了1个,这种情况下:设四个盒子编号为①②③④,可能放了两个小球的盒子的情况为:①②,①③,①④,②③,②④,③④,所以有6种情况;∴6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有:4+6=10.故选C.4. 这道题可以采用逆推法,我们可以先分析最后一位会用多长时间,很显然不管是谁最后灌水都得用3分钟,所以只需考虑前两个接水的,怎样能够更加节省时间,显然乙第一个灌水会最省时,因为只需分钟.接着是丙,丙灌水的时间加上等乙的时间,也就是分钟,最后是甲.所以只有按乙,丙,甲安排灌水才最省时.【解答】解:按乙,丙,甲安排灌水最省时,这三位同学花费的时间(包括等待时间)的总和最少是+(+1)+(+1+)=5分钟.故选B.【点评】考查了应用类问题,运用了逆推法,按照灌水所需的时间由少到多的顺序安排灌水花费的时间的总和最少.5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.【分析】作DK∥BC,交AE于K.首先证明BE=DK=CD,CE=AD,设BE=CD=DK=a,AD=EC=b,由DK ∥EC,可得=,推出=,即a2+ab﹣b2=0,可得()2+()﹣1=0,求出即可解决问题.【解答】解:作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab﹣b2=0,∴()2+()﹣1=0,∴=或(舍弃),∴==,故选B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、平行线分线段成比例定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,本题体现了数形结合的思想,属于中考选择题中的压轴题.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6D.8【分析】作AH⊥BC,根据折叠的性质得到BE=DE,∠BDE=∠DBE=45°,则∠DEB=90°,再根据等腰梯形的性质得到BH=CE,可计算出CE=2,DE=BE=4,然后根据三角形面积公式进行计算.【解答】解:作AH⊥BC,如图,∵翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F,∴BE=DE,∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC,∵梯形ABCD为等腰梯形,∴BH=CE,而AD=HE,AD=2,BC=6,∴CE=(6﹣2)=2,∴DE=BE=4,∴△ADB的面积=×2×4=4.故选B.【点评】本题考查了折叠的性质:折叠前后两图象全等,即对应线段相等,对应角相等.也考查了等腰梯形的性质.8.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定【分析】易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定△ADE∽△AEF,即可解题.【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【点评】本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.11.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4【分析】首先过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上,然后设OB=y,AB=x,由勾股定理即可求得:y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,整理可得x2﹣(y﹣4)2=48,然后将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,继而可求得答案.【解答】解,过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上.设OB=y,AB=x,∵∠AOM=60°,∴OC=OB?cos60°=y,∴AC=OA﹣OC=8﹣y或AC=OC﹣OA=y﹣8,∵BC2=OB2﹣OC2,BC2=AB2﹣AC2,∴y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,∴x2﹣(y﹣4)2=48,∵x与y是正整数,且y必为正整数,x﹣4为大于等于﹣4的整数,将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,∵(X+Y)和(X﹣Y)同奇同偶,∴(X+Y)和(X﹣Y)同为偶数;∴X2﹣Y2=48可能有几组正整数解:,,,解得:,,,∴x的可能值有3个:x=7,x=8或x=13,当x=7时,y﹣4=±1,y=3或y=5;当x=8时,y﹣4=±4,y=8或y=0(舍去);当x=13时,y﹣4=±11,y=15或y=﹣7(舍去);∴共有4组解:或或或.故选D.【点评】此题考查了勾股定理的应用以及整数的综合应用问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为1.【分析】本题用换元法解分式方程,由于x2+x是一个整体,可设x2+x=y,可将方程转化为简单的分式方程求y,将y代换,再判断结果能使x为实数.【解答】解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.【点评】当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意换元后得到的根也必须验根.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.14.多项式6x3﹣11x2+x+4可分解为(x﹣1)(3x﹣4)(2x+1).【分析】将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.【解答】解:6x3﹣11x2+x+4,=6x3﹣6x2﹣5x2+x+4,=6x2(x﹣1)﹣(5x2﹣x﹣4),=6x2(x﹣1)﹣(x﹣1)(5x+4),=(x﹣1)(6x2﹣5x﹣4),=(x﹣1)(3x﹣4)(2x+1).【点评】本题考查了用分组分解法进行因式分解,要考虑分组后还能进行下一步分解,把﹣11x2分成﹣6x2和﹣5x2两部分是解题的关键,也是难点.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=0?25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.三.解答题(共4小题)16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q 作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(2)由二次函数最值的求法得到两种情况下的△PBQ的面积最大值,进行比较即可得到答案;(3)根据三角形的面积公式得到符合条件的点应该是:到三边的距离之比为12:15:20.【解答】解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;分两种情况:①如图1,当点Q在边BC上运动时,过点Q作QH⊥AB于H.∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴=,∴QH=x,y=BP?QH=(10﹣x)?x=﹣x2+8x(0<x≤3),②如图2,当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴=,即:=,解得:QH′=(14﹣2x),∴y=PB?QH′=(10﹣x)?(14﹣2x)=x2﹣x+42(3<x<7);(2)①当0<x≤3时,y=﹣(x﹣5)2+20.∵该抛物线的开口方向向下,对称轴是x=5,∴当x=3时,y取最大值,y最大=.当3<x<7时,y=x2﹣x+42=(x﹣)2+(3<x<7);∵该抛物线的开口方向向上,对称轴是x=,∴当x=3时,y取最大值,但是x=3不符合题意.综上所述,△PBQ的面积的最大值是.(3)存在.理由如下:设点T到AB、AC、BC的距离分别是a、b、c.∵AB=10cm,AC=8cm,BC=6cm,∴AB?a=AC?c=BC?c,即5a=4b=3c,故a:b:c=12:15:20.∴当满足条件的点T到AB、AC、BC的距离之比为12:15:20时,△ACT、△ABT、△BCT的面积均相等.【点评】本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)【分析】(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).【点评】本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)【分析】(1)根据已知求出EN,根据正切的概念求出EM,求差得到答案;(2)根据坡度和锐角三角函数的概念求出截面积和土石方数,根据题意列出分式方程,解方程得到答案.【解答】解:(1)在Rt△PEN中,∵∠PNE=45°,∴EN=PE=30米,在Rt△PEM中,∠PME=31°,tan∠PME=,∴ME=≈50(米),∴MN=EM﹣EN=20米,答:两渔船M,N之间的距离约为20米;(2)过点F作FK∥AD交AH于点K,过点F作FL⊥AH交直线AH于点L,则四边形DFKA为平行四边形,∴∠FKA=∠DAB,DF=AK=3,由题意得,tan∠FKA=tan∠DAB=4,tan∠H=,在Rt△FLH中,LH==36,在Rt△FLK中,KL==6,∴HK=30,AH=33,梯形DAHF的面积为:×DL×(DF+AH)=432,所以需填土石方为432×100=43200,设原计划平均每天填x立方米,由题意得,12x+(﹣12﹣20)×=43200,解得,x=600,经检验x=600是方程的解.答:原计划平均每天填筑土石方600立方米.【点评】本题考查的是解直角三角形和分式方程的应用,掌握锐角三角函数的概念和解直角三角形的一般步骤、根据题意正确列出分式方程是解题的关键,注意分式方程解出未知数后要验根.19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.【分析】(1)由关于x的方程4x2+mx+m﹣4=0 有两根,可知此一元二次方程的判别式△>0,即可得不等式,又由x1<0<x2,可得x1?x2<0,根据根与系数的关系,可得不等式=m﹣1<0,解此不等式组即可求得答案;(2)由一元二次方程根与系数的关系即可得4x12+mx1+m﹣4=0,x1+x2=﹣,x1?x2==m ﹣1,然后将6x12+mx1+m+2x22﹣8=0变形,可得4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1?x2]=4,则可得方程(﹣)2﹣2[m﹣1]=2,解此方程即可求得答案.【解答】解:(1)∵关于x的方程4x2+mx+m﹣4=0 有两根,∴△=m2﹣4×4×(m﹣4)=m2﹣8m+64=(m﹣4)2+48>0,∵两根x1,x2满足x1<0<x2,∴x1?x2==m﹣1<0,∴m<8,(2)∵x1、x2是方程的根,∴4x12+mx1+m﹣4=0,x1+x2=﹣,x1?x2==m﹣1,∵6x12+mx1+m+2x22﹣8=0,∴4x12+mx1+m﹣4+2(x12+x22)﹣4=0∴4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1?x2]=4,∴(x1+x2)2﹣2x1?x2=2,即(﹣)2﹣2[m﹣1]=2,化简得:m2﹣4m=0,解得:m=0 或m=4,∴m的值为0或4.【点评】此题考查了一元二次方程判别式、根与系数的关系等知识.此题难度较大,解题的关键是注意利用根与系数的关系将原方程变形求解,注意方程思想的应用.20.【解答】解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”B在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM?BC=.【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.21.解:(1)反比例函数y=是闭区间[1,2014]上的“闭函数”,理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2014;当x=2014时,y=1,所以,当1≤x≤2014时,有1≤y≤2014,符合闭函数的定义,故反比例函数y=是闭区间[1,2014]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣2x=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴该二次函数的图象开口方向向上,最小值是﹣2,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=x2﹣2x的最小值是﹣2=c,根据“闭函数”的定义知,d=c2﹣2c或d=d2﹣2d;★)当d=c2﹣2c时,由于d=×(﹣2)2﹣2×(﹣2)=6>2,符合题意;★)当d=d2﹣2d时,解得d=0或6,由于d>2,所以d=6;②当c≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵c<d,∴不合题意,舍去.综上所述,c,d的值分别为﹣2,6.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.22.【解答】解:月用水量为x立方米,支付费用为y元,则有:y=;(2)由表知第二、第三月份的水费均大于13元,故用水量15m3,22m3均大于最低限量am3,于是就有,解得b=2,从而2a=c+19,再考虑一月份的用水量是否超过最低限量am3,不妨设9>a,将x=9代入x>a的关系式,得9=8+2(9﹣a)+c,即2a=c+17,这与2a=c+19矛盾.∴9≤a.从而可知一月份的付款方式应选0≤x≤a的关系式,因此就有8+c=9,解得c=1.故a=10,b=2,c=1.23.【解答】解:(1)由题意可知,当废弃处理量x满足0<x<40时,每天利用设备处理废气的综合成本y=40x+1200,∴当该制药厂每天废气处理量计划为20吨,即x=20时,每天利用设备处理废气的综合成本为y=40×20+1200=2000元,又∵转化的某种化工产品可得利润为80×20=1600元,∴工厂每天需要投入废气处理资金为400元;(2)由题意可知,y=,①当0<x<40时,令80x﹣(40x+1200)≥0,解得30≤x<40,②当40≤x≤80时,令80x﹣(2x2﹣100x+5000)≥0,即2x2﹣180x+5000≤0,∵△=1802﹣4×2×5000<0,∴x无解.综合①②,x的取值范围为30≤x<40,故当该制药厂每天废气处理量计划为[30,40)吨时,工厂可以不用投入废气处理资金就能完成计划的处理量;(3)∵当40≤x≤80时,投入资金为80x﹣(2x2﹣100x+5000),又∵市政府为处理每吨废气补贴a元就能确保该厂每天的废气处理不需要投入资金,∴当40≤x≤80时,不等式80x+ax﹣(2x2﹣100x+5000)≥0恒成立,即2x2﹣(180+a)x+5000≤0对任意x∈[40,80]恒成立,令g(x)=2x2﹣(180+a)x+5000,则有,即,即解得,答:市政府只要为处理每吨废气补贴元就能确保该厂每天的废气处理不需要投入资金.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.【解答】解:(1)△DAB中,∠DAB=60°,DA=AB=6则:D到y轴的距离=AB=3、D到x轴的距离=DA?sin∠DAB=3;∴D(3,3);由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3);设抛物线的解析式为:y=ax2+bx,有:,解得∴抛物线解析式为:y=﹣x2+x.(2)如图1,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,若PQ⊥DB,则PQ∥AC,∵点P在BC上时,PQ与AC始终相交,和PQ∥AC矛盾,∴点P在BC上时不存在符合要求的t值,当P在DC上时,由于PC∥AQ且PQ∥AC,所以四边形PCAQ是平行四边形,则PC=AQ,有6﹣2t=t,得t=2.(3)①如图1,当点P在DC上,即0<t≤3时,有△EDP∽△EAQ,则===,那么AE=AD=2,即y=2;②如图2,当点P在CB上,即3<t≤6时,有△QEA∽△QPB,则=,即=,。

浙江省杭州第二中学2022-2023学年高一上学期分班考数学试题及参考答案

浙江省杭州第二中学2022-2023学年高一上学期分班考数学试题及参考答案

杭二中高一新生实验班选拔考试数学试卷注意:(1)本试卷分三部分,17小题,满分150分,考试时间60分钟. (2)请将解答写在答题卷相应题次上,做在试题卷上无效. 一、选择题.(5分×6=30分)1.如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b +++++的值为( ) A.6B.7C.9D.102.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ) A.1B.2C.3D.43.若质数a ,b 满足2940a b −−=,则数据a ,b ,2,3的中位数是( ) A.4B.7C.4或7D.4.5或6.54. ()62121110121110102x x a x a x a x a x a −−=+++⋅⋅⋅++,则12108642a a a a a a +++++=( ) A.-32B.0C.32D.645.若四个互不相等的正实数a ,b ,c ,d 满足()()20122012201220122012ac ad −−=,()()20122012201220122012bc bd −−=,则()()20122012ab cd −的值为( )A.-2012B.-2011C.2012D.2011二、填空题(6分×8=48分)6.设下列三个一元二次方程:24430x ax a +−+=;()211?0x a x a +−++=;22230x ax a +−+=,至少有一个方程有实根,则实数a 的取值范围是___________.7.如图所示,把大正方形纸片剪成五个部分,在分别距离大正方形的四个顶点5厘米处沿450方向剪开,中间的部分正好是小正方形,那么小正方形的面积是__________平方厘米.8.点A 为y 轴正半轴上一点,A ,B 两点关于x 轴对称,过点A 任作直线交抛物线2y x =于P ,Q 两点.若点A 的坐标为()0,1,且60PBQ ∠=°,则所有满足条件的直线PQ 的函数解析式为:___________.9.111005−>成立的正整数n 的值的个数等于___________.10.如图,四边形ABCD 中,AB BC CD ==,78ABC ∠=°,162BCD ∠=°.设AD ,BC 延长线交于E ,则AEB ∠=____________.11. D 是ABC △的边AB 上的一点,使得3AB AD =,P 是ABC △外接圆上一点,PB 使得ADP ACB ∠=∠,则PBPD的值___________.三、解答题.(12分×6=72分)12.已和x ,y ,z 均为非负数,且满足142x y z y z =+−=−−. (1)用x 表示y ,z ;(2)求222u x y z =−+的最小值.13、由于受到手机更新换代的影响,某手机店经销的Iphone 手机二6月售价比一月每台降价500元.如果卖出相同数量的Iphone6手机,那么一月销售额为9万元,二月销售额只有8万元. (1)一月Iphone6手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone6s 手机销售,已知Iphone6每台进价为3500元,Iphone6s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone6的尾货进行销售,决定在二月售价基础上每售出一台Iphone6手机再返还顾客现金a 元,而Iphone6s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值?14.如图,在ABC △中,AC BC =,90ACB ∠=°,D 、E 是边AB 上的两点,3AD =,4BE =,45DCE ∠=°,则ABC △的面积是多少?15.若直线l :3y x =+交x 轴于点A ,交y 轴于点B .坐标原点O 关于直线l 的对称点O ′在反比例函数ky x=的图象上.(1)求反比例函数ky x=的解析式; (2)将直线l 绕点A 逆时针旋转角()045θθ<<°°,得到直线l ′,l ′交y 轴于点P ,过k 点P 作x 轴的平行线,与上述反比例函数k y x =的图象交于点Q ,当四边形APQO ′的面积为9θ的值. 16.已和关于x 的方程()()221331180m x m x −−−+=有两个正整数根(n 是整数). ABC △的三边a 、b 、c 满足:c =,2280m a m a +−=,2280m b m b +−=. 求:(1)m 的值; (2)ABC △的面积.17.如图ABC △为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是ABD △和ACD △的外接圆的直径,连结EF ,求证:tan EFPAD BC∠=.附加题(同分优先):18.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作A ,A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作B ,B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与A 和B 相切.参考答案一、选择题1-5BDCAA二、填空题6. 12a ≥或32a ≤− 7.508.如图,分别过点P ,Q 作y 轴的垂线,垂足分别为C ,D . 设点A 的坐标为()0,t ,则点B 的坐标为()0,t −.设直线PQ 的函数解析式为y kx t =+,并设P ,Q 的坐标分别为(),P P x y ,(),Q Q x y .由2,23y kx t y x =+=得2203x kx t −−=, 于是32P Q x x t =−,即23P Q t x x =−.于是()()22222222333322223333p p p Q p p Q p p Q Q Q Q p Q Q Q px t x x x x x x y t x BC BD y t x x t x x x x x x +−−+=====−++−−.又因为P Q x PCQD x =−,所以BC PC BD QD=. 因为90BCP BDQ ∠=∠=°,所以BCP BDQ ∽△△, 故ABP ABQ ∠=∠.(2)设PC a =,DQ b =,不妨设0a b ≥>, 由(1)可知30ABP ABQ ∠=∠=°,BC =,BD =,所以2AC =−,2AD =.因为PC DQ ∥,所以ACP ADQ ∽△△.于是PC AC DQ AD =,即a b =所以a b +.由(1)中32p Q x x t =−,即32ab −=−,所以32ab =,a b +,于是可求得2a b==将b =代入223y x =,得到点Q的坐标12. 再将点Q 的坐标代入1y kx =+,求得k =. 所以直线PQ的函数解析式为1y x +.9.1008015 10.21°11.解:连接AP ,∵APB ∠与ACB ∠是 AB 所对的圆周角,∴APB ACB ∠=∠, ∵ADP ACB ∠=∠,∴APB ACB ADP ∠=∠=∠, ∵DAP DAP ∠=∠,∴APB ADP ∽△△,∴APAD PD AB AP PB ==,∴()233AP AD AB AD AD AD =⋅=⋅=,∴PB AP PDAD==.三、解答题.12.(1)32y x =−,23z x =−+ (2)当32x =时,min 12u =− 13.(1)一月Iphone4每台售价为4500元 (2)有5种进货方案(3)当100a =时(2)中所有方案获利相同 14. 36ABC S =△15.(1)9y x=− (2)15θ=°16.(1)2m =(2)1ABC S =△ 17.证明:如图,连接ED ,FD .∵BE 和CF 都是直径,∴ED BC ⊥,FD BC ⊥, ∴D ,E ,F 三点共线,连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠, ∴ABC AEF ∽△△. 作AH EF ⊥,重足为H .又∵AP BC ⊥,DF BC ⊥,∴四边形APDH 是矩形,∴AH PD =, ∵ABC AEF ∽△△,∴EF AHBC AP=, ∴EF PD BC AP=,∴tan PD EFPAD AP BC ∠==.18.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作CE AB ⊥,DF AB ⊥, 垂足分别为E ,F∴CE DF ∥,90AEC ∠=°,90BFD ∠=°. ∵AB 是O 的直径,∴90ACB ADB ∠=∠=°, 又∵CAB ∠是ACB △和AEC △的公共角. ∴ACB AEC ∽△△. ∴::AC AB AE AC =即22·PA AC AE AB ==,同理22·PB BD BF AB ==. 两式相减可得()22PA PB AB AE BF −=−,∴()()()22PA PB PA PB PA PB AB PA PB −=+−=−,∴AE BF PA PB −=−,即PA AE PB BF −=−, ∴PE PF =,∴点P 是线段EF 的中点, ∵M 是CD 的中点,∴MP 是直角梯形CDEF 的中位线, ∴MP AB ⊥,∴MP 分别与A 和B 相切.。

江苏省启东中学2019级高一实验班自主招生数学试题及答案【PDF版高清打印】

江苏省启东中学2019级高一实验班自主招生数学试题及答案【PDF版高清打印】

江苏省启东中学2019年创新人才培养实验班自主招生考试数学试卷一、选择题(本大题共 6 小题,每小题 5 分,共 30 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 把2232x y xy y -+分解因式正确的是 A .()222y x xy y -+B .()2y x y -C .()22y x y -D .()2y x y +2. 已知a ,b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值为A .﹣7B .0C .7D .113. 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 A .r ≥1B .1≤r ≤ 5C .1≤r ≤10D .1≤r ≤44. 如图,等边△ABC 中,AC =4,点D ,E ,F 分别在三边AB ,BC ,AC 上,且AF =1,FD ⊥DE ,且∠DFE =60°,则AD 的长为 A .0.5B .1C .1.5D .25. 如图,△ABC 中,AB =BC =4cm ,∠ABC =120°,点P 是射线AB 上的一个动点,∠MPN =∠ACP ,点Q 是射线PM 上的一个动点.则CQ 长的最小值为 AB .2C.D .4(第3题)B C(第4题)(第5题)NMQPCAB6. 二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x << 时,它的图象位于x 轴的上方,则m 的值为 A .8 B .10-C .42-D .24-二、填空题(本大题共6小题,每小题5分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 计算-82015×(-0.125)2016= ▲ .8. 市政府为了解决老百姓看病贵的问题,决定下调药品的价格.某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意,可列方程为 ▲ .9. 在平面直角坐标系中,点A ,B 的坐标分别A (3,0),B (8,0),若点P 在y 轴上,且△P AB 是等腰三角形,则点P 的坐标为 ▲ . 10.关于x 的方程2101x ax +-=-的解是正数,则a 的取值范围是 ▲ . 11.如图,在平面直角坐标系中,四边形OABC 是边长为8的正方形,M (8,s ),N (t ,8)分别是边AB ,BC 上的两个动点,且OM ⊥12.如图,△ABC 在第一象限,其面积为5.点P 从点A 出发,沿△ABC 的边从A —B —C —A运动一周,作点P 关于原点O 的对称点Q ,再以PQ 为边作等边三角形PQM ,点M 在第二象限,点M 随点P 的运动而运动,则点M 随点P 运动所形成的图形的面积为 ▲ .三、解答题(本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)图113.(本小题满分15分)阅读下面材料,并解决问题.材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于 A (1,3)和B (-3,-1①当3x =-或1时,12y y =;②当30x -<<或x 即通过观察函数的图象,可以得到不等式ax b +>问题:求不等式32440x x x +-->的解集.下面是他的探究过程,请将(2),(3),(4(1)将不等式按条件进行转化当x =0时,原不等式不成立;当x >0时,原不等式可以转化为2441x x x +->; 当x <0时,原不等式可以转化为2441x x x+-<. (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系中分别画出这两个函数的图象. 双曲线44y x=如图2画出抛物线.....2341y x x =+-.(3)确定两个函数图象公共点的横坐标代入函数解析式验证可知满足34y y =所有x 的值为 ▲ ; (4)借助图象,写出解集结合(1可知不等式32440x x x +-->如图,“元旦”期间,学校在综合楼上从点A 到点B 悬挂了一条宣传条幅,小明和小芳所在的教学楼正好在综合楼的对面.小明在四楼D 点测得条幅端点A 的仰角为30 o ,测得条幅端点B 的俯角为45o ;小芳在三楼C 点测得条幅端点A 的仰角为45o ,测得条幅端点B 的俯角为30 o .若楼层高度CD 为3米,请你根据小明和小芳测得的数据求出条幅AB 的长.(结果保留根号)15.(本小题满分14分)如图1,A ,B ,C ,D 四点都在⊙O 上,AC 平分∠BAD ,过点C 的切线与AB 的延长线交于点E .(1)求证:CE ∥BD ;(2)如图2,若AB 为⊙O 的直径,AC =2BC ,BE =5,求⊙O 的半径.(第14题)(第15题)图1图2惠民超市试销一种进价为每件60元的服装,规定试销期间销售单价不低于进价,且获利不得高于40%.经试销发现,销售量y (件)与销售单价x (元)满足一次函数y =kx +b ,且当x =70时,y =50;当x =80时,y =40. (1)求一次函数y =kx +b 的解析式;(2)设该超市获得的利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,超市可获得最大利润,最大利润是多少元? (3)若该超市预期的利润不低于500元,试确定销售单价x 的取值范围.17.(本小题满分16分)如图,已知抛物线223y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D . (1)求直线B C 的解析式;(2)点M 在抛物线上,且△BMC 的面积与△BCD 的面积相等,求点M 的坐标; (3)若点P 在抛物线上,点Q 在y 轴上,以P ,Q ,B ,D 四个点为顶点的四边形是平行四边形,请直接写出点P 的坐标.(第如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴和y轴上,OA=8,OB=6.点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动,点P,点M同时出发,它们移动的速度均为每秒一个单位长度,设两个点运动的时间为t秒(0≤t≤6).(1)连接矩形的对角线AB,当t为何值时,以P,O,M为顶点的三角形与△AOB 相似;(2)在点P,点M运动过程中,线段PM的中点Q也随着运动,请求出CQ的最小值;(3)将△POM沿PM所在直线翻折后得到△PDM,试判断D点能否在对角线AB上,如果能,求出此时t的值,如果不能,请说明理由.数学答案一、选择题(本大题共6小题,每小题5分,共30分) 1. B2. D3. C4. C5. A6. D二、填空题(本大题共6小题,每小题5分,共30分) 7.-0.1258. ()272156x -= 9.(0,4),(0,-4) 10. a <-1且a ≠-211. 1012. 15三、解答题(本大题共6小题,共90分) 13.(本小题满分15分)(2)抛物线如图所示; ……………………5分(3)x =4-,1-或1;……………………11分 (4)41x -<<-或1x >.…………………15分14.(本小题满分12分)过D 作DM ⊥AE 于M ,过C 作CN ⊥AE 于N ,则DM =CN ,MN =CD =3米, 设AM =x ,则AN =x +3,由题意:∠ADM =30o, ∴∠MAD =60o. 在Rt △ADM 中,DM =AM ·tan60o.在Rt △ANC 中,CN =AN =x +3, ………6分=x +3,解之得,)312x =,…………10分∵MB =MD ,∴AB =AM +MB =x=6+.……12分EF15.(1)连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………2分 ∵AC 平分∠BAD ,∴点C 平分弧BD .∴OC ⊥BD ……………………………4分 ∵BD ∥CE . ………………………6分 (2)∵BD ∥CE ,∴∠CBD =∠BCE .∵∠CBD =∠CAD ,∠CAD =∠CAE , ∴∠CAE =∠BCE . ∵∠E =∠E ,∴△ACE ∽△CBE . ………………10分 ∴AC AE CE CBCEBE==.∴25AE CE CE==.∴CE =10,AE =20, ………………………12分 ∴AB =15,⊙O 的半径为7.5. ………………………14分16.(1)根据题意得7050,8040.k b k b ì+=ïí+=ïî解得k =-1,b =120.所求一次函数的表达式为y =-x +120. ………………………4分 (2)()()60120W x x =--+21807200x x =-+-()290900x =--+.…………………8分抛物线的开口向下,∴当x <90时,W 随x 的增大而增大, 而60≤x ≤84,∴当x =84时,()28490900864W =--+=.∴当销售单价定为84元时,商场可获得最大利润,最大利润是864元.……10分(3)由W =500,得500=-x 2+180x -7200,整理得,x 2-180x +7700=0,解得,x 1=70,x 2=110. ……………………13分 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之 间.而60≤x ≤84,所以,销售单价x 的取值范围是70≤x ≤84.…………………15分17.(1)易得A (-1,0),B (3,0),C (0,3) ,D (1,4),所以直线BC 的解析式为 y =-x +3 …………………4分 (2)过点D 作直线BC 的平行线交y 轴于点E ,直线DE 与抛物线的交点即为所求的点M .易得直线DE 的解析式为y =-x +5,所以点E 的坐标为(0,5).解25,23y x y x x ì=-+ïí=-++ïî 得点M 的坐标为(2,3). …………………6分 在y 轴上取F (0,1),则CE =CF ,所以过F 且平行于BC 的直线与抛物线的交点也是所要求的M 点. 解21,23y x y x x ì=-+ïí=-++ïî得点M 的坐标为:. …………………………10分 综合得点M 的坐标为: (2,3),.(3)符合要求的点P 有三个:(4,-5),(-2,-5),(2,3). ……………16分(第17题)18.(1)由题意得OM =6-t ,OP =t .若△POM ∽△AOB ,则624,867t tt -==解得; ……………3分若△POM ∽△BOA ,则618,687t tt -==解得. ……………6分 (2)过点Q 作QH ⊥OP ,垂足为易得1122OH OP t ==,QH ∴点Q (6,22t t-).过点Q 作QG ⊥AC ,垂足为则182QG t =-,662t CG -=-∴CQ ∴当t =5时,CQ 有最小值2. ……… ……12分 (3)不能.理由如下:设OD 与PM 相交于点E ,则OE ⊥PM ,OD =2OE .在Rt △POM 中, PM 则OE =2OP OM PM ?当t =3时,2(3)9t --+有最大值9, 所以,当t =3时,OE 所以OD 有最大值O 到AB 的最短距离为684.810´=. 因为 4.8,所以,点D 不可能在AB 上. ……………18分。

瓯海中学理科实验班选拔考试数学试卷

瓯海中学理科实验班选拔考试数学试卷

2002年瓯海中学理科实验班选拔考试数学试卷考生须知:本试卷满分120分,考试时间100分钟。

一.填空题:(本题有10小题,每小题4分,共40分。

) 1.2= 。

2. 规定两数a b 、通过""*运算得到4ab ,即4a b ab *=。

例如,2642648*=⨯⨯=。

若不论x 是什么数时,总有a x x *=,则a = 。

3. 一次函数my x m a=+的图象如图所示,则AOB ∆的面积等于 。

4. 已知:如图,A B C D 、、、四点对应的实数都是整数,若点A 对应于实数a ,点B 对应于实数b ,且27b a -=,那么数轴上的原点应是 点。

5. 已知一个梯形的四条边长分别为1,2,3,4,则此梯形面积等于 。

6. 如图,直角ABC ∆中,90,31,ABC A ABC ∠=∠=∆o o 绕点B旋转至''A BC ∆的位置,此时C 点恰落在''AC 上,且'A B与AC 交于D 点,那么BDC ∠= 度。

7. 如图,12l l 与是同一平面内的两条相交直线,它们有一个交点。

如果在最这个平面内,再画第三条直线3l ,那么这三条直线多可有 个交点;如果在这个平面内再画第4条AB CD姓名____________座号__________中考准考证号____________直线4l ,那么这4条直线最多可有 个交点。

由此,我们可以猜想:在同一平面内,6条直线最多可有 个交点,n (n 为大于1的整数)条直线最多可有 个交点(用含n 的代数式表示)。

8. 有左、中、右三个抽屉,左边的抽屉里放5个白球,中间的抽屉里放1个红球与1个白球,右边的抽屉里放2个红球与1个白球,则从三个抽屉里任取一个是红球的概率是________ 。

9. 已知21()()()0,4b c a b c a a -=--≠且则b ca+= 。

10.如图,正方形ABCD 的边长是1,E 为CB 延长线上一点,连ED 则BE PB -的值为 。

高一数学下学期期末适应性考试试题_1

高一数学下学期期末适应性考试试题_1

2021学年第二学期期末诊断性考试高一年级数学试题卷一、选择题:〔本大题一一共10小题,每一小题3分,一共30分.在每一小题给出的四个选项里面,只有一项符合题目要求〕1、设6x π= , 那么)tan(x +π等于〔 〕 A .33- B .3- C .33 D .3 2、设函数2, 0,()1, 0,x x f x x x -≤⎧=⎨+>⎩那么))1((-f f 的值是〔 〕 A. 2- B. 1- C. 1 D. 23、函数()23x f x e x =+-的零点所在的一个区间是 〔 〕A.1,02⎛⎫-⎪⎝⎭ B.10,2⎛⎫ ⎪⎝⎭ C.1,12⎛⎫ ⎪⎝⎭ D.31,2⎛⎫ ⎪⎝⎭4、函数f 〔x 〕是定义域为R 的奇函数,当x>0时,f 〔x 〕=-x+1,那么当x<0时,f 〔x 〕的表达式为〔 〕A.1)(+-=x x fB.1)(--=x x fC.1)(+=x x fD.1)(-=x x f5、设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,那么=+FC EB 〔 〕B.A .AD B.12AD C. 12BC D. BC 6、函数2ln x y x x=+的图象可能是〔 〕A B C D7、为了得到函数πsin(2)3y x =+的图象,只需把函数sin 2y x =图象上所有的点〔 〕A .向左平行挪动π6个单位长度B .向右平行挪动π6个单位长度 C .向左平行挪动π3个单位长度 D .向右平行挪动π3个单位长度 8、函数x x x f cos sin )(λ+=的图象的一个对称中心是点)0,3(π,那么函数()g x =x x x 2sin cos sin +λ的图象的一条对称轴是直线〔 〕.A 65π=x .B 34π=x .C 3π=x .D 3π-=x9、函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 假设实数a 满足212(log )(log )2(1)f a f f a ≤+, 那么a 的取值范围是〔 〕A. 1,22⎡⎤⎢⎥⎣⎦B.[1,2]C. 10,2⎛⎤ ⎥⎝⎦D.(0,2] 10、函数()lg f x x =,假设对任意的正数x ,不等式()()()2f x f t f x t +≤+恒成立,那么实数t 的取值范围是〔 〕A.()0,4B.(]1,4C.(]0,4D.[)4,+∞二、填空题:〔本大题一一共7小题,每一小题4分,一共28分〕11、=+ 7cos 52cos 83cos 52sin ___________.12、()2320211.08336.9412--+⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛=___________.13、圆心角为23π,半径为3的扇形的弧长等于 14、函数212log (45)y x x =--的递减区间为______ 15、202πβαπ<<<<-,53)cos(=-βa ,135sin =β, αtan =___________ 16、如图,正方形ABCD 的边长为2,点P 是线段BC 上的动点,那么()PB PD PC +的最小值为 .17、对于任意实数x ,符号[x]表示不超过x 的最大整数,例如[2]]]=﹣3,那么[log 31]+[log 32]+[log 33]+…+[log 3243]的值是 _________ .三、解答题:〔本大题一一共4小题,一共42分,要写出详细的解答过程或者证明过程〕18、,为平面向量,且||=,||=2,,的夹角为30°. 〔Ⅰ〕求|+|及|﹣|;〔Ⅱ〕假设向量+与﹣λ垂直,务实数λ的值.19、集合2{310}M x x x =-≤,{121}N x a x a =+≤≤+.(1)假设2a =,求M(R N ); (2)假设MN M =,务实数a 的取值范围;20、设函数f 〔x 〕=sinx 〔sinx+cosx 〕.〔Ⅰ〕求f 〔〕的值;〔Ⅱ〕假设函数f 〔x 〕在[0,a]上的值域为[0,],务实数a 的取值范围.〔第16题〕 P D C BA21、函数2()2=++f x ax bx c (∈x ,R 0)≠a〔Ⅰ〕假设1,0=-=a c ,且()=y f x 在[1,3]-上的最大值为()g b ,求()g b ; 〔Ⅱ〕假设0>a ,函数)(x f 在[8,2]--上不单调,且它的图象与x 轴相切,求(1)2-f b a的最小值.励志赠言经典语录精选句;挥动**,放飞梦想。

2014年杭二中高一新生实验班选拔考试数学试卷(含答案)

2014年杭二中高一新生实验班选拔考试数学试卷注意:(1) 试卷共有三大题16小题,满分150分,考试时间60分钟.(2) 请把解答写在答题卷的对应题次上, 做在试题卷上无效.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.(7分)设,则代数式a2+2a﹣12的值为()A.﹣6 B.24 C.D.2.(7分)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是()A. 1 B. 2 C. 3 D. 43.(7分)在等边△ABC所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有()A.1个B.7个C.10个D.无数个4.(7分)若x>1,y>0,且满足,则x+y的值为()A.1B.2C.D.5.(7分)设,则4S的整数部分等于()A.4B.5C.6D.7二、填空题(共5小题,每小题7分,共35分)6.(7分)若a是一个完全平方数,则比a大的最小完全平方数是_________.7.(7分)若关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是_________.8.(7分)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是_________.9.(7分)如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线(x>0)于C,D 两点.若BD=2AC,则4OC2﹣OD2的值为_________.10.(7分)如图,在Rt△ABC中,斜边AB的长为35,正方形CDEF内接于△ABC,且其边长为12,则△ABC 的周长为_________.三、解答题(共4题,每题20分,共80分)11.(20分)已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,试求a、b的值.12.(20分)已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c 的值.13.(10分)如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线于P,Q两点.(1)求证:∠ABP=∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.14.(10分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC 的面积.15、(10分)如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N 是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.16、(10分)已知点M(p,q)在抛物线y=x2-1上,若以M为圆心的圆与x轴有两个交点A、B,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根.(1)当M在抛物线上运动时,⊙M在x轴上截得的弦长是否变化?为什么?(2)若⊙M与x轴的两个交点和抛物线的顶点C构成一个等腰三角形,试求p、q的值.2014年杭二中实验班选拔考试试卷数学答案一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.(7分)设,则代数式a2+2a﹣12的值为()A.﹣6 B.24 C.D.考点:完全平方式;代数式求值;二次根式的乘除法.专题:计算题.分析:此题可先把代数式a2+2a﹣12变形为(a+1)2﹣13,再把代入变形得式子计算即可.解答:解:∵a2+2a﹣12=(a+1)2﹣13,∴当时,原式=(﹣1+1)2﹣13=7﹣13,=﹣6.故选A.点评:本题考查了完全平方公式(a﹣b)2=a2﹣2ab+b2和(a+b)2=a2+2ab+b2的运用.2.(7分)解:过点D作DG垂直于BC于G,过E作EF垂直于AD交AD的延长线于F,∵∠EDF+∠CDF=90°,∠CDF+∠CDG=90°,∴∠EDF=∠CDG,又∵∠EFD=∠CGD=90°,DE=DC,∴△EDF≌△CDG(AAS),∴EF=CG,∴CG=BC﹣BG=5﹣3=2,∴EF=2,∴S△ADE=×AD×EF=×3×2=3.故选C.3.(7分)在等边△ABC所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有()A.1个B.7个C.10个D.无数个考点:等腰三角形的判定.分析:过B点作△ABC的中垂线,可知在三角形内有一点P满足△PBC、△PAC、△PAB都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B和圆A,从而可以得出一条中垂线上有四个点满足△PBC、△PAC、△PAB都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.解答:解:作三边的中垂线,交点P肯定是其中之一,以B为圆心,BA为半径画圆,交AC的中垂线于P1、P2两点,作△P2AB、△P2BC、△P2AC,它们也都是等腰三角形,因此P1、P2是具有题目所说的性质的点;以A为圆心,BA为半径画圆,交AC的中垂线于点P3、P3也必具有题目所说的性质.依此类推,在△ABC的其余两条中垂线上也存在这样性质的点,所以这些点一共有:3×3+1=10个.故选:C.点评:本题考查了等腰三角形的性质以及同学们对图形的整体理解,三角形中任意两条边相等就是等腰三角形.4.(7分)若x>1,y>0,且满足,则x+y的值为()A.1B.2C.D.考点:同底数幂的乘法.专题:计算题.分析:首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.解答:解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1.故,从而x=4.于是.故选C.点评:此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同.5.(7分)设,则4S的整数部分等于()A.4B.5C.6D.7考点:部分分式.专题:计算题;整体思想.分析:由于,由此可以得到1<S=,然后即可求出4S的整数部分.解答:解:当k=2,3…99,因为,所以1<S=.于是有4<4S<5,故4S的整数部分等于4.故选A.点评:此题主要考查了部分分式的计算,解题的关键是利用了.二、填空题(共5小题,每小题7分,共35分)6.(7分)若a是一个完全平方数,则比a大的最小完全平方数是a+2+1.考点:完全平方数.专题:计算题.分析:由于a是一个完全平方数,则a=()2.可知比a大的最小完全平方数是(+1)2.解答:解:∵a是一个完全平方数,∴a的算术平方根是,∴比a的算术平方根大1的数是+1,∴这个完全平方数为:(+1)2=a+2+1.故答案为:a+2+1.点评:本题考查了完全平方数.解此题的关键是能找出与a之差最小且比a大的一个完全平方数是紧挨着自然数后面的自然数:(+1)2.7.(7分)若关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是3<m≤4.考点:根与系数的关系;三角形三边关系.专题:计算题.分析:根据原方程可知x﹣2=0,和x2﹣4x+m=0,因为关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,所以x2﹣4x+m=0的根的判别式△>0,然后再由三角形的三边关系来确定m的取值范围.解答:解:∵关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,∴①x﹣2=0,解得x1=2;②x2﹣4x+m=0,∴△=16﹣4m≥0,即m≤4,∴x2=2+,x3=2﹣,又∵这三个根恰好可以作为一个三角形的三条边的长,且最长边为x2,∴x1+x3>x2;解得3<m≤4,∴m的取值范围是3<m≤4.故答案为:3<m≤4.点评:本题主要考查了根与系数的关系、根的判别式及三角形的三边关系.解答此题时,需注意,三角形任意两边和大于第三边.8.(7分)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是.考点:列表法与树状图法.分析:利用列表法求出所有的举朝上的面两数字之和,得出5的个数,即能得出朝上的面两数字之和为奇数5的概率.解答:解:∵正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8,用列表法列举朝上的面两数字之和所有可能是:∴朝上的面两数字之和为奇数5的概率是:=.故答案为:.点评:此题主要考查了用列举法求概率,列举出所有的可能结果是解决问题的关键.9.(7分)如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线(x>0)于C,D 两点.若BD=2AC,则4OC2﹣OD2的值为6.考点:反比例函数综合题.专题:计算题;数形结合.分析:根据A,B两点在直线y=x上,分别设A,B两点的坐标为(a,a),(b,b),得到点C的坐标为(a,),点D的坐标为(b,),线段AC=a﹣,线段BD=b﹣,根据BD=2AC,有b﹣=2(a﹣),然后利用勾股定理进行计算求出4OC2﹣OD2的值.解答:解:设A(a,a),B(b,b),则C(a,),D(b,)AC=a﹣,BD=b﹣,∵BD=2AC,∴b﹣=2(a﹣)4OC2﹣OD2=4(a2+)﹣(b2+)=4[+2]﹣[+2]=4+8﹣4﹣2=6.故答案为:6.点评:本题考查的是反比例函数综合题,根据直线与反比例函数的解析式,设出点A,B的坐标后可以得到点C,D的坐标,运用勾股定理进行计算求出代数式的值.10.(7分)如图,在Rt△ABC中,斜边AB的长为35,正方形CDEF内接于△ABC,且其边长为12,则△ABC 的周长为84.考点:相似三角形的判定与性质;勾股定理;正方形的性质.分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以,即,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解﹣25舍去),所以a+b+c=49+35=84.故答案为:84.点评:此题考查了正方形的性质和相似三角形的判定与性质,以及勾股定理等知识.此题综合性较强,解题时要注意合理应用数形结合与方程思想.三、解答题(共4题,每题20分,共80分)11.(20分)已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,试求a、b的值.考点:二元一次方程组的解.分析:首先把根x=1代入原方程中得到一个关于k的方程,再根据方程与k无关的应满足的条件即可得a、b的值.解答:解:把x=1代入原方程并整理得(b+4)k=7﹣2a要使等式(b+4)k=7﹣2a不论k取什么实数均成立,只有满足,解之得,b=﹣4.点评:本题要求同学们不仅熟悉代入法,更需要熟悉二元一次方程组的解法,解题时要根据方程组的特点进行有针对性的计算.12.(20分)已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c 的值.考点:一元二次方程的整数根与有理根.专题:计算题.分析:设出第一个方程的两根,表示出后面方程的另2根.利用根与系数的关系均得到与a的关系,进而消去a,得到两个一次项的积为一个常数的形式,判断可能的整数解,得到a,b,c的值,相加即可.解答:解:设方程x2+ax+b=0的两个根为α,β,∵方程有整数根,设其中α,β为整数,且α≤β,则方程x2+cx+a=0的两根为α+1,β+1,∴α+β=﹣a,(α+1)(β+1)=a,(5分)两式相加,得αβ+2α+2β+1=0,即(α+2)(β+2)=3,∴或(10分)解得或又∵a=﹣(α+β)=﹣[(﹣1)+1]=0,b=αβ=﹣1×1=﹣1,c=﹣[(α+1)+(β+1)]=﹣[(﹣1+1)+(1+1)]=﹣2,或a=﹣(α+β)=﹣[(﹣5)+(﹣3)]=8,b=αβ=(﹣5)×(﹣3)=15,c=﹣[(α+1)+(β+1)]=﹣[(﹣5+1)+(﹣3+1)]=6,∴a=0,b=﹣1,c=﹣2;或者a=8,b=15,c=6,∴a+b+c=0+(﹣1)+(﹣2)=﹣3或a+b+c=8+15+6=29,故a+b+c=﹣3,或29.(20分)点评:主要考查一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;消去a后得到两个一次项的积为一个常数的形式是解决本题的难点.13.(20分)如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线于P,Q两点.(1)求证:∠ABP=∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.考点:二次函数综合题.分析:(1)利用抛物线的图象上点的坐标特征,待定系数法球函数解析式,根与系数的关系和相似三角形的判定与性质解答即可;(2)利用(1)中已知与结论,继续由相似三角形,根与系数的关系、函数解析式求得结果.解答:(1)证明:如图,分别过点P,Q作y轴的垂线,垂足分别为C,D.设点A的坐标为(0,t),则点B的坐标为(0,﹣t).设直线PQ的函数解析式为y=kx+t,并设P,Q的坐标分别为(x P,y P),(x Q,y Q).由,得,于是,即.于是=.,又因为,所以.因为∠BCP=∠BDQ=90°,所以△BCP∽△BDQ,故∠ABP=∠ABQ;(2)解:设PC=a,DQ=b,不妨设a≥b>0,由(1)可知∠ABP=∠ABQ=30°,BC=,BD=,所以AC=,AD=.因为PC∥DQ,所以△ACP∽△ADQ.于是,即,所以.由(1)中,即,所以,于是可求得.将代入,得到点Q的坐标(,).再将点Q的坐标代入y=kx+1,求得.所以直线PQ的函数解析式为.根据对称性知,所求直线PQ的函数解析式为或.点评:此题主要考查相似三角形的判定与性质、根与系数的关系、待定系数法求函数解析式以及对称解决问题.14.(20分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC 的面积.考点:相似三角形的判定与性质;勾股定理;勾股定理的逆定理.分析:首先作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,即可得△ABQ∽△ACP,即可得△ABQ与△ACP 相似比为2,继而可得△APQ与△BPQ是直角三角形,根据直角三角形的性质,即可求得△ABC的面积.解答:解:如图,作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP,∵AB=2AC,∴△ABQ与△ACP相似比为2,∴AQ=2AP=2,BQ=2CP=4,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°,∵AQ:AP=2:1,∴∠APQ=90°,∠AQP=30°,∴PQ===3,∴BP2=25=BQ2+PQ2,∴∠BQP=90°作AM⊥BQ于M,由∠BQA=∠BQP+∠AQP=120°,∴∠AQM=60°,QM=,AM=3,∴AB2=BM2+AM2=(4+)2+32=28+8,∴S△ABC=AB•ACsin60°=AB2=.点评:此题考查了相似三角形的判定与性质、直角三角形的判定与性质以及三角函数的性质.此题难度较大,解题的关键是辅助线的构造,还要注意勾股定理与勾股定理的逆定理的应用.15、考点:等边三角形的性质;全等三角形的判定与性质。

高一数学期末适应性考试试题一 试题

卜人入州八九几市潮王学校三学实验二零二零—二零二壹高一数学期末适应性考试试题〔一〕本卷须知:1.本套试卷分总分值是100分.考试时间是是100分钟。

3.选择题使需要用2B 铅笔填涂,非选择题用0.5毫米黑色签字笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内答题,超区域书写之答案无效;在草稿纸、试卷上答题无效。

第I 卷〔选择题,一共48分〕一、选择题:本大题一一共12小题,每一小题4分,总分值是48分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.假设全集{}2 1 0 1 2U =--,,,,,{}22A x Z x =∈-<<,那么U C A =〔〕 A .{}2 2-,B .{}2 0 2-,,C .{}2 1 2--,,D .{}2 1 0 2--,,, 2.函数()()()130,1x f x a a a -=+>≠且的图象一定经过定点〔〕A.()1,0B.()0,3C.()1,3D.()1,43.tan 3θ=,那么2sin 5cos 2sin cos θθθθ-+的值是〔〕A.17±B.17-C.17D.1-4.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,那么((3))f f =〔〕 A .15B .3C .23D .1395.23)35sin(0=+α,那么)55cos(0α-的值是〔〕A.23B.21C.21- D.23-6.假设函数f (x )=x 3+x 2-2x -2的一个正数零点用二分法计算,附近的函数值参考数据如下:那么方程x 3+A .5C .3757.函数y 的定义域为〔〕A.()0,+∞B.10,2⎡⎫⎪⎢⎣⎭C.()1,2D.[)0,18. 5.10.9m=,0.95.1n =,0.9log 5.1p =,那么m n p 、、的大小关系〔〕A.p n m <<B.n p m <<C.n m p <<D.m n p <<9.将函数()x x f sin =的图象上所有点的横坐标缩短为原来的21倍〔纵坐标不变〕,再向右平移6π个单位,得到函数()x g 的图象,那么函数()x g 的图象的一条对称轴为〔)A .12π=xB .6π=x C.12π-=x D .6π-=x 10.)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,假设实数a 满足)2()2(1->-f f a ,那么a 的取值范围是〔〕 A.)21,(-∞B.),23(+∞ C.),23()21,(+∞-∞ D.)23,(-∞11.函数[]ππ,,4)(cos -∈⋅=x x x f x的图象大致是〔 )[]函数时,且当满足已知函数,)(1,1,)(1)1())((.12x x f x x f x f R x x f y =-∈=+∈= [])(上的零点个数为在区间则函数5,5-)()()(,0,10,sin )(x g x f x h x x x x x g -=⎪⎩⎪⎨⎧<-≥=πA .8B .9C .10D .11第II 卷(非选择题,一共52分)二、填空题:本大题一一共4小题,每一小题3分,一共12分.13.假设幂函数αx x f =)((α为常数〕的图像过点)2,2(,那么)9(f 的值是. 14.函数]),[)(62cos(πππ-∈-=x x y 的最小值是. ()sin(2)f x x ωϕ=+〔0ω>,22ππϕ-<<〕的局部图象如下列图,那么()4f π=.16.有以下表达:①半径为1的圆中,︒60的圆心角所对的弧的长度为3π;②函数()()22111xf x x x+=≠±-,那么()()()1112343234f f f f f f ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ③函数3tan 24y x π⎛⎫=--⎪⎝⎭的单调递减区间是5,2828k k ππππ⎛⎫++ ⎪⎝⎭,k ∈Z ; ④设集合110,,,122A B ⎡⎫⎡⎤==⎪⎢⎢⎥⎣⎭⎣⎦,函数()()()1222x x A f x x x B ⎧+∈⎪=⎨⎪-+∈⎩,假设0x A ∈,且()0f f x A ⎡⎤∈⎣⎦,那么0x 的取值范围是11,42⎛⎫⎪⎝⎭。

2015年杭二中高一新生实验班选拔考试数学试卷

2015年杭二中高一新生实验班选拔考试数学试卷注意:(1)本试卷分三部分,17小题,满分150分,考试时间60分钟。

(2)请将解答写在答题卷相应题次上,做在试题卷上无效。

一、选择题。

(5分×6=30分)1、如果a,b,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为( )。

(A )6 (B) 7 (C) 9 (D) 102、小倩和小玲每人都有若干面值为整数元的人民币。

小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )(A )1 (B )2 (C )3 (D )43、若质数a,b 满足2940a b --=,则数据a,b,2,3的中位数是( )(A )4 (B)7 (C)4或7 (D)4.5或6.54、2612111012111010(2)x x a x a x a x x a --=++++…+a ,则12108642a a a a a a +++++=( )(A )-32 (B ) 0 (C ) 32 (D ) 645、若四个互不相等的正实数,,,a b c d 满足2012201220122012()()2012a c a d --=,2012201220122012()()2012b c b d --=,则20122012()()ab cd -的值为( )(A ) -2012 (B ) -2011 (C ) 2012 (D ) 2011二、填空题(6分×8=48分)6、设下列三个一元二次方程:24430x ax a +-+=;22(1)10x a x a +-++=;22230x ax a +-+=,至少有一个方程有实根,则实数a 的取值范围是 。

7、如图所示,把大正方形纸片剪成五个部分,在分别距离大正方形的四个顶点5厘米处沿450方向剪开,中间的部分正好是小正方形,那么小正方形的面积是 平方厘米。

竞赛及提前招生长郡中学理科实验班招生考试数学试卷

2011年湖南省长沙市长郡中学理科实验班招生考试数学试卷一、选择题(共8小题,每小题4分,满分32分)1.(4分)函数图象的大致形状是()A.B.C.D.2.(4分)(2007•临沂)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.B.πC.πD.3.(4分)满足不等式n200<5300的最大整数n等于()A.8B.9C.10D.114.(4分)甲、乙两车分别从A,B两车站同时开出相向而行,相遇后甲行驶1小时到达B站,乙再行驶4小时到达A站.那么,甲车速是乙车速的()A.4倍B.3倍C.2倍D.1。

5倍5.(4分)图中的矩形被分成四部分,其中三部分面积分别为2,3,4,那么,阴影三角形的面积为()A.5B.6C.7D.86.(4分)如图,AB是圆的直径,CD是平行于AB的弦,且AC和BD相交于E,∠AED=α,那么∠CDE与∠ABE的面积之比是()A.c osαB.s in2αC.c os2αD.1﹣sinα7.(4分)两杯等量的液体,一杯是咖啡,一杯是奶油.舀一勺奶油到咖啡杯里,搅匀后舀一勺混合液注入到奶油杯里.这时,设咖啡杯里的奶油量为a,奶油杯里的咖啡量为b,那么a和b的大小为()A.a>b B.a<b C.a=b D.与勺子大小有关8.(4分)设A,B,C是三角形的三个内角,满足3A>5B,3C<2B,这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能二、填空题(共6小题,每小题5分,满分30分)9.(5分)用数字1,2,3,4,5,6,7,8不重复地填写在下面连等式的方框中,使这个连等式成立:1+□+□=9+□+□=8+□+□=6+□+□_________.10.(5分)如图,正三角形与正六边形的边长分别为2和1,正六边形的顶点O是正三角形的中心,则四边形OABC 的面积等于_________.11.(5分)计算:=_________.12.(5分)五支篮球队举行单循坏赛(就是每两队必须比赛1场,并且只比赛一场),当赛程进行到某一天时,A队已赛了4场,B队已赛了3场,C队已赛了2场,D队已赛了1场,那么到这一天为止一共已经赛了_________场,E队比赛了_________场.13.(5分)(2006•无锡)已知∠AOB=30°,C是射线OB上的一点,且OC=4.若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是_________.14.(5分)如图,∠ABC为等腰直角三角形,若AD=AC,CE=BC,则∠1_________∠2(填“>"、“<”或“=”)三、解答题(共3小题,满分38分)15.(12分)(2009•深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?16.(12分)如图,∠ABC是∠O的内接三角形,AC=BC,D为∠O中上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC∠BC,求证:AD+BD=CD.17.(14分)(2007•河北)如图,在等腰梯形ABCD中,AD∠BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA﹣AD﹣DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK∠BC,交折线段CD﹣DA﹣AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQ∠DC;(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)(4)∠PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.2011年湖南省长沙市长郡中学理科实验班招生考试数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)函数图象的大致形状是()A.B.C.D.考点:反比例函数的图象.分析:由题意只需找到图象在x轴下方的不经过原点的函数图象即可.解答:解:由函数解析式可得x可取正数,也可取负数,但函数值只能是负数;所以函数图象应在x轴下方,并且x,y均不为0.故选D.点评:解决本题的关键是根据在函数图象上的点得到函数图象的大致位置.2.(4分)(2007•临沂)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.B.πC.πD.考点:几何概率.专题:计算题.分析:针扎到内切圆区域的概率就是内切圆的面积与正三角形面积的比.解答:解:∠如图所示的正三角形,∠∠CAB=60°,设三角形的边长是a,∠AB=a,∠∠O是内切圆,∠∠OAB=30°,∠OBA=90°,∠BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=.故选C.点评:用到的知识点为:边长为a的正三角形的面积为:a2;求三角形内切圆的半径应构造特殊的直角三角形求解.3.(4分)满足不等式n200<5300的最大整数n等于()A.8B.9C.10D.11考点:幂的乘方与积的乘方.分析:将不等式左右两边理由幂的乘方运算法则变形为指数相同的两个幂,通过计算可求出n的最大值.解答:解:n200=(n2)100,5300=(125)100,所以n2<125,最大整数n=11.故选D.点评:本题利用了幂的乘方、积的乘方以及分数的基本性质进行变形而求的.4.(4分)甲、乙两车分别从A,B两车站同时开出相向而行,相遇后甲行驶1小时到达B站,乙再行驶4小时到达A 站.那么,甲车速是乙车速的()A.4倍B.3倍C.2倍D.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奉化中学新高一理科实验班数学期中考试试卷 姓名__________班级___________________

一、选择题(每小题4分,共40分) 1、已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ABAU则 ∪B)等于 ( ) A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}

2、.已知f满足f(ab)=f(a)+ f(b),且f(2)=p,qf)3(那么)72(f等于 ( ) A.qp B.qp32 C.qp23 D.23qp

3、函数xxxf9lg)(的零点所在的大致区间是( ) A.(6 ,7 ) B.(7 ,8 ) C.(8 ,9 ) D.(9 ,10 )

4、化简)31()3)((656131212132bababa的结果 ( ) A.a9 B.a C.a6 D.29a 5、在同一坐标系内作出了两个函数的图象(如图1所示),则这两 个函数可以为( ) A.y=ax 和y=loga(-x) B.y=ax 和y=logax-1 C.y=a-x 和y=logax-1

D.y=a-x 和y=loga(-x)

6、函数y=-log2(2x-x2 ) 的递增区间 ( ) A.(-,2) B.(1,2) C.[1,2] D.(2, +) 7、.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下 图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该 学生走法的是 ( )

8.函数0,0,12)(21xxxxfx,满足1)(xf的x的取值范围 ( ) A.)1,1( B. ),1( C.}20|{xxx或 D.}11|{xxx或

9、设f(x)=ax,g(x)=x31,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有 ( )

d d0 t0 t O A. d d0

t0 t O B.

d d0 t0 t O C. d d0

t0 t O D. A.h(x)<g(x)<f(x) B.h(x)<f(x)<g(x) C.f(x)<g(x)<h(x) D.f(x)<h(x)<g(x) 10、某地的中国移动“神州行”卡与中国联通130网的收费标准如下表: 网络 月租费 本地话费 长途话费 甲:联通130网 12元 每分钟0.36元 每6秒钟0.06元 乙:移动“神州行”卡 无 每分钟0.6元 每6秒钟0.07元 (注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费) 若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间 (60,70)内,则选择较为省钱的网络为 ( ) A.甲 B.乙 C.甲乙均一样 D.分情况确定 二、填空题(每小题4分,共16分)

11、已知集合}023|{2xaxxA至多有一个元素,则a的取值范围 . 12、已知定义在R上的奇函数f(x),当x>0时,1||)(2xxxf,那么x<0时,f(x)= . 13、用二分法求函数)(xfy在区间(2,4)上的近似解,验证0)4()2(ff,给定精度为0.1,需将区间等分 次. 14、若直线y=a2与y=1xa(a>0且a1)的图象有两个公共点,则实数a的取值范 围为 。

15、求值8(lg5lg+)1000lg+2lg32+61lg+06.0lg=______________________________

16、已知是第二象限角,且,4|2|则的范围是 . 17、若是第一象限角,则2cos,2tan,2cos,2sin,2sin中能确定为正值的分别为 ________________________________________(把所有可能为正的均写出来)

奉化中学高一数学期中考试答题卷 满分:100分 时间:120分钟 一、选择题(共10题,每小题4分,共40分。) 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题(共4小题,每小题4分,共16分。) 11. 12. 13. 14. 15._____________________ 16.____________________ 17.______________________ 三、解答题(本大题共6小题,共44分。解答请写出文字说明、证明过程或演算步骤。) 18、(6分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系. .6543212132323123xyxyxyxyxyxy);();()(;);();()( (A) (B) (C) (D) (E) (F) 解: (A) ( ) (B)  ( ) (C) ( ) (D) ( ) (E) ( ) (F) ( )

19、(7分)若集合A={x|x2-3x+2=0}, B={x|x2-ax+a-1=0}C={x|x2-mx+1=0},且A∪B=A,A∩C=C,求实数a,m的取值范围.

20、已知关于x的方程4x2-2(m+1)x+m=0的两个根恰好是一个直角三角形的两个锐角的余弦,求实数m的值. 21、某工厂有216名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成. 每个工人每小时能加工6个G型装置或3个H型装置. 现将工人分成两组同时开始....

加工,每组分别加工一种装置。设加工G型装置的工人有x人,他们加工完G型装置所需时间为)(xg,其余工人

加工完H型装置所需时间为)(xh(单位:小时,可不为整数). (Ⅰ)写出)(),(xhxg解析式; (Ⅱ)比较)(xg与)(xh的大小,并写出这216名工人完成总任务的时间)(xf的解析式; (Ⅲ)应怎样分组,才能使完成总任务用的时间最少? 22、已知二次函数cbacbxaxxf,,()(2均为实数,满足a-b+c=0, 对于任意实数x都有

.)21()(,)2,0(,0)(2xxfxxxf有时并且当 (Ⅰ)求f(1)的值; (Ⅱ)说明161161还是小于是大于ac试证明你的结论; (Ⅲ)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f(x)-mx(m为实数)是单调的,求m的范围。 答案及评分标准 一、选择

题号 1 2 3 4 5 6 7 8 9 10 答案 A C D A D B B D B A 二、填空

11、890aa或 12、1||2xx

13、5 14、)21.0( 15、1 16、]2,2(),23( 17、2tan,2sin 三、解答题 18、(A) ( 1 ) (B)  ( 6 ) (C) ( 4 )

(D) ( 5 ) (E) ( 3 ) (F) ( 4 ) 19、解:A={1,2},B={x|(x-1)[x-(a-1)]=0},又ABABA,

因为0)1(4)(2aa,所以B 若B={1},则a=2,若B={1,2},则a=3 又ACCCA,

04,2mC则若,.22m 若1∈C,则m=2,此时}1{C,,CCA

25,2mC则若,此时}21,2{C,.25,mCCA

2a或3,22m. 20、解:设直角三角形的两个锐角分别为α、β,则可得α+β=, ∴cosα=sinβ ∵方程4x2-2(m+1)x+m=0中,Δ=4(m+1)2-4·4m=4(m-1)2≥0 ∴当m∈R,方程恒有两实根. 又∵cosα+cosβ=sinβ+cosβ=21m,cosα·cosβ=sinβcosβ=4m ∴由以上两式及sin2β+cos2β=1,得1+2·4m=(21m)2 解得m=±3 当m=3时,cosα+cosβ=213>0,cosα·cosβ=43>0,满足题意,

当m=-3时,cosα+cosβ=231<0,这与α、β是锐角矛盾,应舍去. 综上,m=3 21、解:(Ⅰ)由题意知,需加工G型装置4000个,加工H型装置3000个,所用工人分别为x人,x216人. .3)216(3000)(,64000)(xxhxxg

即*).,2160(2161000)(,32000)(Nxxxxhxxg。 (Ⅱ).)216(3)5432(1000216100032000)()(xxxxxxhxg。 .0216,2160xx 当h(x)g(x)0,h(x)-g(x)0,5x-,432860时x; 当h(x).g(x)0,h(x)-g(x)0,5x-,43221687时x

)(xf



.*,21687,2161000*;,860,32000Nxxx

Nxxx

(Ⅲ)完成总任务所用时间最少即求)(xf的最小值. 当860x时,)(xf递减,,12910008632000)86()(fxf ),86()(minfxf此时,130216x 当21687x时,)(xf递增, ,1291000872162000)86()(fxf),87()(minfxf此时,129216x

,1291000)87()86()(minffxf ∴加工G型装置,H型装置的人数分别为86,130或87,129。 22、解:(Ⅰ)∵对于任意x∈R,都有f(x)—x≥0,且当x∈(0,2)时,

有f(x)≤(21x)2·令x=1 ∴1≤f(1)≤(211)2.即f(1)=1.„„4分 (Ⅱ)由a—b+c=0及f(1)=1.

有1,0cbacba 可得b=a+c=21

又对任意x,f(x)—x≥ 0,即ax2—21x+c≥0. ∴a>0且△≤0. 即41—4ac≤0。解得ac≥161.

(Ⅲ)由(Ⅱ)可知a>0,c>0. a+c≥2ac≥2·161=21. 当且仅当

相关文档
最新文档