38kHz 红外发射与接收

合集下载

(整理)红外发射和接收器件示例

(整理)红外发射和接收器件示例

图2-2 红外发射和接收器件示例红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。

红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。

交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。

注意输出的高低电平和发射端是反相的。

图2-3为红外发射和接收解码的示意图。

在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。

红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。

图2-3 红外发射和接收解码的示意图3系统硬件设计3.2红外遥控单元本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。

电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。

红外遥控器的内部关键电路和接收管电路如图3-1所示。

图3-13.3单片机控制单元本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。

单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

图3-2为单片机控制电路。

图3-23.4时钟单元3.4.1DS1307简介种低功耗、BCD码的8引脚实时时钟芯片。

38khz红外发射与接收解析

38khz红外发射与接收解析

38khz红外发射与接收38khz红外发射与接收红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示.由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的.红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示.常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定.接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高.图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下:工作电压:4.8~5.3V工作电流:1.7~2.7mA接收频率:38kHz峰值波长:980nm静态输出:高电平输出低电平:≤0.4V输出高电平:接近工作电压3.红外线遥控发射电路红外线遥控发射电路框图如图4所示.框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.利用红外线的特点,可以制作多路遥控器.在遥控发射电路中,有两种电路,即编码器和38kHz载波信号发生器.在不需要多路控制的应用电路中,可以使用常规1.频分制编码的遥控发射器在红外发射端利用专用(彩电,VCD,DVD等)的红外编码在实际应用中,遥控发射器是3V 2.遥控接收解调电路图4为红外接收解调控制电路,图4中IC2是LM567.LM567是一种锁相环集成电路,采用8脚双列直插塑封装,工作电压为+4.75~+9V,工作频率从直流到500kHz,静态电流约8mA.⑧脚为输出端,静态时为高电平,是由内部的集电极开路的三极管构成,允许最大灌电流为100mA.鉴于LM567的内部电路较复杂,这里仅介绍该电路的基本功能.LM567的⑤,⑥脚外接的弄清了LM567的基本组成后,再来分析图4电路的工作过程.ICl是红外接收头,它接收图1发出的红外线信号,接收的调制载波频率仍为38kHz,接收信号经ICl解调后,在其输出端OUT输出频率为f1(见图2)的方波信号,只要将LM567的中心频率f01调到(用RP)与发射端f1(见图2)相同,即f01=fl,则当发射端发射时,LM567开始工作,⑧脚由高电平变为低电平,该低电平使三极管8550导通,在A点输出利用图1和图4的电路,可以实现多路遥控器,即在发射端,将ICl组成的低频振荡器,其电路模式不变,只改变电阻R2,即可构成若干种R组成的多个频率不同的低频振荡器(即编码),利用微动开关转接,38kHz的载波电路共用;在接收电路中,一体化红外接收头共用,再设置与接收端编码器相同个数的LM567锁相器和后级锁相驱动控制电路,各锁相环的振荡频率与各编码器的低频编码信号的频率对应相等.这样发射端(图1)按压不同的按钮,载波信号接入不同频率编码的调制信号时,在接收端(图4),各对应的LM567的⑧脚的电平会发生变化,从而形成多路控制信号.上述所述的工作方式,称为频分制的编码方式.这种频分制工作方式,其优点是可实现多路控制,但缺点是电路复杂,对于路数不多的控制电路,因电路工作原理简单,对一般电子技术人员仍然是有用的.。

红外数据传输

红外数据传输

红外数据传输一、红外通信原理红外遥控有发送和接收两个组成部分。

发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。

红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。

为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。

如图1 所示:红外发送部分由51单片机、键盘、红外发光二极管和7段数码管组成。

键盘用于输入指令,51单片机检测键盘上按键的状态,并对红外信号进行调制,发光二极管产生红外线,数码管用来显示发送的键值。

图2红外发射电路红外接收部分由51单片机、一体化红外接收头HS0038和7段数码管组成。

51单片机检测HS0038,并对HS0038接收到的数据解码,通过数码管显示接收到的键值。

图3红外接收电路二、编码、解码(1) 二进制信号的调制二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz 的间断脉冲串,相当于用二进制信号的编码乘以频率为38kHz 的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号如图4 二进制码的调制所示(2) 红外接收需先进行解调,解调的过程是通过红外接收管进行接收的。

其基本工作过程为:当接收到调制信号时,输出高电平,否则输出为低电平,是调制的逆过程(图5 解调)。

HS0038是一体化集成的红外接收器件,直接就可以输出解调后的高低电平信号;红外接收器HS0038的应用电路(图6)。

有编码的反码,用来检验编码接收的正确性,防止误操作,增强系统的可靠性。

前导码是一个遥控码的起始部分,由一个9ms 的高电平( 起始码) 和一个4. 5ms 的低电平( 结果码) 组成,作为接受数据的准备脉冲。

红外发射与接收测试报告

红外发射与接收测试报告

红外发射与接收测试报告LLZ一、红外线原理红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

它的工作原理:其实就是一个NB的红外光敏电阻在红外照射下处于超低阻值状态分到的电压超级小当红外光断开以后处于高阻状态有接近6K那么大,完全避光可能还不止,在电路中分到的电压就很大了,一般分到4V以上不成问题。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

浅谈38K红外发射接受编码(非常好)

浅谈38K红外发射接受编码(非常好)

浅谈38K红外发射接受编码(非常好)之前做接触过一次红外遥控器,现在有空想用简单的话来聊一聊,下面有错误的地方欢迎改正指出:1:红外的概念不聊,那是一种物理存在。

以下聊38K红外发射接收,主要讲可编程的红外编码。

2:红外遥控红外遥控首先需要用来发“光”的红外发光管,还有一个接收光线的“接收管”(不是那种触发的红外对管),还有一个产生38K的信号源(可以是MCU中断实现还有就是市场上大把的红外编码IC),只需要简单的外围电路即可。

就单片机而言,为了增大红外发光管电流,需要用一个三极管驱动。

红外编码IC也只需要几个外围电路,规格书上都有提供,这里不提。

3:红外接收头(有不理解的地方可以在后面找到你想要的答案或者继续“百度”“谷歌")有必要可以看一下红外接收头内部组成的详细介绍。

接收收头分为电平头还有脉冲头。

电平型的:接收连续的38K信号,可以输出连续的低电平,时间可以无限长。

其内部放大及脉冲整形是直接耦合的,所以能够接收及输出连续的信号。

脉冲型的:只能接收间歇的38K信号,如果接收连续的38K信号,则几百ms后会一直保持高电平,除非距离非常近(二三十厘米以内)。

其内部放大及脉冲整形是电容耦合的,所以不能能够接收及输出连续的信号。

一般遥控用脉冲型的,只有特殊场合,比如串口调制输出,由于串口可能连续输出数据0,所以要用电平型的。

4:红外遥控中的载波到底是什么?(不要影响到你对其它载波的理解)第一次接触红外我看到’载波‘这个词就觉得生涩。

网上很多资料五花八门都描绘得很厉害、我们就从一下几点开始描述,相信的等会就懂:(1)38K怎么来的?这里只谈单片机给出,38K脉冲信号,占空比(脉冲的高电平比周期的值就是占空比)自己决定,既然是38K,那么脉冲的周期就是1/38000 S,记住这个不是高电平的时间长度,这个是一个脉冲的时间长度也就是一个周期,例如我们利用一个中断产生38K脉冲,占空比是1/2,我们的中断时间就要设置为 1/38000/2 S中断一次,然后通过相隔一次中断电平翻转一次就形成了一个频率为38K占空比1/2的脉冲。

单片机红外接受发送实验报告

单片机红外接受发送实验报告

单片机红外发射与接收实验报告指导老师:报告人:一·实验选题:基于单片机的红外发射与接收设计任务要求:设计一个以单片机为核心控制器件的红外收发系统。

发射载频:38KHz工作温度:-40℃--+85℃接收范围:2m二·系统概述方案设计与论证红外遥控收发系统(以下简称红外遥控系统)是指利用红外光波作为信息传输的媒介以实现远距离控制的装置。

从实际系统的硬件结构看,红外遥控系统包括发射装置和接收装置,其中发射装置包括电源模块、输入模块、红外发射模块和单片机最小系统,接收装置包括电源模块、红外接收模块、输出模块和单片机最小系统。

本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统。

其中,发射载波 38KHz,电源 5V/0.2A 5V/0.1A,工作温度-40℃--+85℃,接收范围 2m,传输速率 27bit/s,反应时间 2ms。

利用单片机的定时功能或使用载波发生器(用于产生载波的芯片)均可产生 38KHz 的发射载波。

单片机系统可以直接由 5V/0.1A 的电源供电,也可以通过三端稳压芯片由 9V/0.2A 电源供电。

采用工业级单片机可以工作在-40℃--+85℃。

为保证接收范围达到 2m,在发射载频恒为 38KHz 的前提下,应采用电流放大电路使红外发射管发射功率足够大。

传输速率和反应时间取决于所使用的编码芯片或程序的执行效率。

通过上述分析可知,为实现设计任务并满足设计指标,应采用工业级单片机,由电流放大电路驱动红外发射管。

将针对设计任务提出两种设计方案。

三·程序功能将程序编译通过并下载成功后,两个板上的红外光电器件都要套上黑色遮光罩,就可以进行实验了。

测距实验:手持1号板和2号板,两管相对,慢慢拉远或移近两管的距离,观察LED的读数变化。

阻断实验:可请另一人协助,将一张纸或其他障碍物放在两管之间再拿开,会看到读数有大幅度的变化。

反射实验:将1号和2号实验板并排拿在手中,并形成一个小夹角,向一张白纸移动观察读数变化。

红外避障传感器工作原理

红外避障传感器工作原理

红外避障传感器工作原理一、引言红外避障传感器是一种常见的电子产品,它通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。

本文将详细介绍红外避障传感器的工作原理。

二、红外信号红外信号是指波长在0.75-1000微米之间的电磁波。

人眼无法看到这些波长范围内的光线,但是它们可以被一些电子设备所探测到。

红外信号在工业、医疗、安防等领域有着广泛的应用。

三、红外避障传感器结构红外避障传感器通常由发射模块和接收模块组成。

发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。

四、工作原理1. 发射模块发射模块通常由一个红外二极管组成。

当二极管被通电时,会产生一个特定频率和波长的光线。

这个频率和波长通常是38kHz和940nm。

2. 接收模块接收模块通常由一个红外接收头和一个信号处理电路组成。

当发射模块发出红外信号后,如果有物体遮挡在传感器前方,一部分光线会被物体反射回来,并被接收头接收。

接收头将这个信号转换为电信号,并将其送入信号处理电路中。

3. 信号处理信号处理电路通常由一个滤波器和一个比较器组成。

滤波器用于过滤掉杂波和干扰,只保留38kHz的频率。

比较器用于将接收到的信号与一个参考值进行比较,从而判断是否有物体遮挡在传感器前方。

五、应用场景红外避障传感器可以应用于机器人、智能家居、智能车等领域。

它可以检测机器人或车辆前方是否有障碍物,并及时做出反应,从而避免碰撞和损坏。

六、总结红外避障传感器通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。

它由发射模块和接收模块组成,其中发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。

红外避障传感器在机器人、智能家居、智能车等领域有着广泛的应用。

(整理)红外数据传输

(整理)红外数据传输

红外数据传输一、红外通信原理红外遥控有发送和接收两个组成部分。

发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。

红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。

为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。

如图1 所示:红外发送部分由51单片机、键盘、红外发光二极管和7段数码管组成。

键盘用于输入指令,51单片机检测键盘上按键的状态,并对红外信号进行调制,发光二极管产生红外线,数码管用来显示发送的键值。

图2红外发射电路红外接收部分由51单片机、一体化红外接收头HS0038和7段数码管组成。

51单片机检测HS0038,并对HS0038接收到的数据解码,通过数码管显示接收到的键值。

图3红外接收电路二、编码、解码(1) 二进制信号的调制二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz 的间断脉冲串,相当于用二进制信号的编码乘以频率为38kHz 的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号如图4 二进制码的调制所示(2) 红外接收需先进行解调,解调的过程是通过红外接收管进行接收的。

其基本工作过程为:当接收到调制信号时,输出解调后的高低电平信号;红外接收器HS0038的应用电路(图6)。

(3)红外遥控发射芯片采用PPM 编码方式,当发射器按键按下后,将发射一组108ms 的编码脉冲。

遥控编码脉冲由前导码、16位地址码(8 位地址码、8 位地址码的反码)和16位操作码(8 位操作码、8 位操作码的反码)组成。

通过对用户码的检验,每个遥控器只能控制一个设备动作,这样可以有效地防止多个设备之间的干扰。

编码后面还要有编码的反码,用来检验编码接收的正确性,防止误操作,增强系统的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

38kHz 红外发射与接收
红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点
人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收
人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。

红外线一体化接收头是集红外接收、
放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。

接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外接收头的主要参数如下:
工作电压:4.8~5.3V
工作电流:1.7~2.7mA
接收频率:38kHz
峰值波长:980nm
静态输出:高电平
输出低电平:≤0.4V
输出高电平:接近工作电压
3.红外线遥控发射电路
红外线遥控发射电路框图如图4所示。

框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。

例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。

前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。

图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。

例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。

当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。

因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。

因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。

图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。

利用红外线的特点,可以制作多路遥控器。

在遥控发射电路中,有两种电路,即编码器和38kHz载波信号发生器。

在不需要多路控制的应用电路中,可以使用常规集成电路组成路数不多的红外遥控发射和接收电路,该电路无需使用较复杂的专用编译码器,因此制作容易。

4.频分制编码的遥控发射器
在红外发射端利用专用(彩电、VCD、DVD等)的红外编码通讯协议作编码器,对一般电子技术人员或业余爱好者来说,是难于实现的,但对路数不多的遥控发射电路,可以采用频分制的方法制作编码器,而对一路的遥控电路,还可以不用编码器,直接发射38kHz红外信号,即可达到控制的目的。

图5是一种一路的红外遥控发射电路,在该电路中,使用了一片ICl高速CMOS型4-2输入的“与非”门74HC00集成电路,组成低频振荡器作编码信号(f1),用IC2 555电路作载波振荡器,振荡频率为f0(38kHz)。

f1对f0进行调制,所以IC2的③脚的波形是断续的载波,该载波经红外发光二极管发送到空间。

电路中的关键点A、B、B’波形如图2所示,其中B’是未调制的波形。

在图5中,选用了555电路作载波振荡器,其目的是说明电路的调制工作原理,即利用大家熟悉的555产生38kHz方波信号,再利用555的复位端④脚作调制端,即当④脚为高电平时,555是常规的方波振荡器;当④脚为低电平时,555的③脚处于低电平。

④脚的调制信号是由ICl的与非门的低频振荡器而获得。

在实际应用中,遥控发射器是3V电池供电,为此只需把555电路ICl剩余的两个与非门组成的38kHz取而代之,如图7所示。

注意:这里未引用CMOS 4-2输入的“与非”门CD4011作图5电路中的编码器和载波发生器,是因为CD4011作振荡产生方波信号时,属于模拟信号的应用。

为了保证电路可靠起振,其工作电压需4.5V以上,而74HC00的CMOS集成电路的最低工作电压为2V,所以使用3V电源,完全可以可靠的工作。

5.遥控接收解调电路
图8为红外接收解调控制电路,图8中IC2是LM567。

LM567是一种锁相环集成电路,采用8脚双列直插塑封装,工作电压为+4.75~+9V,工作频率从直流到500kHz,静态电流约8mA。

⑧脚为输出端,静态时为高电平,是由内部的集电极开路的三极管构成,允许最大灌电流为100mA。

鉴于LM567的内部电路较复杂,这里仅介绍该电路的基本功能。

LM567的⑤、⑥脚外接的电阻(R3+RP)和电容C4,决定了内部压控振荡器的中心频率f01,f01=1/1.1RC,①、②脚接的电容C3、C4到地,形成滤波网络,其中②脚的电容C2,决定锁相环路的捕捉带宽,电容值越大,环路带宽越窄。

①脚接的电容C3为②脚的2倍以上为好。

弄清了LM567的基本组成后,再来分析图8电路的工作过程。

ICl是红外接收头,它接收图1发出的红外线信号,接收的调制载波频率仍为3 8kHz,接收信号经ICl解调后,在其输出端OUT输出频率为f1(见图2)的方波信号,只要将LM567的中心频率f01调到(用RP)与发射端f1(见图2)相同,即f0 1=fl,则当发射端发射时,LM567开始工作,⑧脚由高电平变为低电平,该低电平使三极管8550导通,在A点输出开关信号驱动D触发锁存器,再由它驱动各种开关电路工作。

这样,只要按一下图1电路的微动开关K,即发射红外线,接收电路图4即可输出开关信号开通控制电路,再按一下开关K,控制开关信号关闭,这就完成了完整的控制功能。

6. 小结
利用图5和图8的电路,可以实现多路遥控器,即在发射端,将ICl组成的低频振荡器,其电路模式不变,只改变电阻R2,即可构成若干种R组成的多个频率不同的低频振荡器(即编码),利用微动开关转接,38kHz的载波电路共用;在接收电路中,一体化红外接收头共用,再设置与接收端编码器相同个数的LM5 67锁相器和后级锁相驱动控制电路,各锁相环的振荡频率与各编码器的低频编码信号的频率对应相等。

这样发射端(图5)按压不同的按钮,载波信号接入不同频率编码的调制信号时,在接收端(图8),各对应的LM567的⑧脚的电平会发生变化,从而形成多路控制信号。

上述所述的工作方式,称为频分制的编码方式。

这种频分制工作方式,其优点是可实现多路控制,但缺点是电路复杂,对于路数不多的控制电路,因电路工作原理简单,对一般电子技术人员仍然是有用的。

系统分类: 接口电路 | 用户分类: 硬件电路与通讯接口 | 来源: 整
理 | 【推荐给朋友】 | 【添加到收藏夹】。

相关文档
最新文档