江西省九江市九年级上学期期中数学试卷
江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。
2020-2021学年江西省九江市九年级(上)期中数学试卷(附答案详解)

2020-2021学年江西省九江市九年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.一元二次方程x2−9=0的根是()A. x=9B. x=±9C. x=3D. x=±32.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是()个.A. 12B. 24C. 36D. 483.下列几何图形中,即是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 菱形D. 对角线相等的四边形4.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A. 3cmB. 2.5cmC. 2.3cmD. 2.1cm5.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米B. 1.38米C. 1.42米D. 1.62米6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 125二、填空题(本大题共6小题,共18.0分)7.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是______形.8.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.9.已知一元二次方程x2−x+k=0的一根为1,则另一根为______.10.在Rt△ABC中,∠C=90°,∠A=30°,点P为AC中点,经过点P的直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有______条.11.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是______.12.如图,在平行四边形ABCD中,AB=8,BC=12,∠B=120°,E是BC的中点,点P在平行四边形ABCD的边上,若△PBE为等腰三角形,则EP的长为______.三、计算题(本大题共1小题,共6.0分)13.(1)用配方法解方程x2+4x−5=0;(2)用因式分解法解方程(x−3)2+4x(x−3)=0.四、解答题(本大题共10小题,共78.0分)14.在图1、2中,点E是矩形ABCD边AD上的中点,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法](1)在图1中,以BC为一边画△PBC,使△PBC面积=矩形ABCD面积;(2)在图2中,以BE、ED为邻边作▱BEDK.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.已知关于x的方程x2−(m+1)x+2(m−1)=0(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.17.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)18.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC;(2)若BC=12,AFFC =12,求线段BE的长.19.某商店将进价为30元的商品按每件40元出售,每月可出售600件,现在采用提高商品售价减少销售量的办法增加利润,这种商品每件的销售价每提高1元,其销售量就减少10件,商店想在月销售成本不超过1万元的情况下,使每月总利润为10000元,那么此时每件商品售价应为多少元?20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.已知x1,x2是一元二次方程x2−2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k−2成立?如果存在,请求出k的值;如果不存在,请说明理由.23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD,EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AE=2,求AB的长;(3)如图2,连接AG,请探究线段EG、AG、DG之间的数量美系,并说明理由.答案和解析1.【答案】D【解析】解:x2−9=0,移项得:x2=9,两边直接开平方得:x=±3,故选:D.首先把−9移到方程的右边,然后两边直接开平方即可.此题主要考查了直接开方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【答案】B【解析】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,∴估计摸到红色、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1−0.15−0.45=0.4,∴口袋中白色球的个数为60×0.4=24,即口袋中白色球的个数很可能24个.故选B.根据频率估计概率得到摸到红色、黑色球的概率分别为0.15和0.45,则摸到白球的概率为0.4,然后利用概率公式计算即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.【答案】C【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;C、菱形即是轴对称图形,也是中心对称图形,故此选项符合题意;D、对角线相等的四边形不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:由题意得:CD//AB,∴CDAB =DEBE,∵AB=3.5cm,BE=5m,DE=3m,∴CD3.5=35,∴CD=2.1cm,故选:D.直接利用平行线分线段成比例定理列比例式,代入可得结论.本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.5.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴ab=0.618,∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.【答案】C【解析】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC=√62+82=10∴AO=DO=12AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为矩形ABCD面积的14,∴△AOD的面积=12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=12AO×EO+12DO×EF,∴12=12×5×EO+12×5×EF,∴5(EO+EF)=24,∴EO+EF=245,故选:C.依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.本题主要考查了矩形的性质、三角形的面积、勾股定理,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.7.【答案】矩【解析】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.8.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.9.【答案】0【解析】解:设方程的另一个根是x2,则:1+x2=1,解得x2=0.所以另一根为0,故答案为0.根据根与系数的关系由两根之和可以求出另一个根.本题考查了根与系数的关系,熟练掌握两根之和等于−b是解题的关键.a10.【答案】3【解析】解:过点P作PE//AB交AB于点E,△CPE∽△CAB.过点P作PF//BC交AB于点F,△APF∽△ACB.过点P作PG⊥AB交AB于点G,△PGA∽△BCA.故满足条件的直线有3条,故答案为:3.根据相似三角形的判定方法,画出图形判断即可.本题考查相似三角形的判定,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.【答案】8√5【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA−AE=OC−CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,=2,∵AC=BD=8,OE=OF=8−42由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.12.【答案】6或6√3或√57【解析】解:当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,则PH=EH,∵∠B=120°,∴∠BPE=∠BEP=30°,在Rt△BEH中,BH=1BE=3,EH=√3BH=23√3,∴PE=2EH=6√3;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,则BF=EF=3,∵四边形ABCD为平行四边形,∴AD//BC,∵∠ABC=120°,∴∠A=60°,AB=4,BG=√3AG=4√3,在Rt△ABG中,AG=12∴PF=4√3,在Rt△PEF中,PE=√32+(4√3)2=√57;当点P在CD上,如图3,EB=EP=6,综上所述,PE的长为6或6√3或√57.故答案为6或6√3或√57.当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,根据等腰三角形的性质得PH=EH,再计算出∠BPE=∠BEP=30°,然后利用含30度的直角三角形三边的关系计算出EH,从而得到此时的PE的长;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,所以BF=EF=3,先求出BG=4√3,从而得到PF=4√3,然后利用勾股定理计算出此时PE的长;当点P在CD上,如图3,EB=EP=6.本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.平行线间的距离处处相等.也考查了等腰三角形的性质.13.【答案】解:(1)x2+4x=5.∴x2+4x+4=9,∴(x+2)2=9,∴x+2=±3,∴x1=−5,x2=1;(2)原方程因式分解得:(x−3)(5x−3)=0,∴x−3=0或5x−3=0,∴x1=3,x2=3.5【解析】(1)利用配方法求解即可.(2)利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【答案】解:(1)如图所示,△PBC即为所求;(2)如图所示,平行四边形BEDK即为所求.【解析】(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到▱BEDK.本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形.15.【答案】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.【解析】本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.16.【答案】解:(1)证明:∵Δ=[−(m+1)]2−4×2(m−1)=m2−6m+9=(m−3)2≥0,∴无论m取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16−4(m+1)+2(m−1)=0,解得:m=5,∴原方程为x2−6x+8=0,解得:x1=2,x2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∴Δ=0,即m=3,此时方程为x2−4x+4=0,解得:x1=x2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【解析】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)代入x=4求出m值.(1)根据方程的系数结合根的判别式,即可得出Δ=(m−3)2≥0,由此即可证出:无论m取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.17.【答案】13【解析】解:(1)共有3种可能出现的结果,被分到“B组”的有1中,因此被分到“B组”的概率为13;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)=39=13.(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.18.【答案】证明:(1)∵DE//AC,∴∠DEB=∠FCE,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4.【解析】(1)由平行线的性质可得∠DEB=∠FCE,∠DBE=∠FEC,可得结论;(2)由平行线分线段成比例可得BEEC =AFFC=12,即可求解.本题考查了相似三角形的判定和性质,平行线分线段成比例,掌握相似三角形的判定是本题的关键.19.【答案】解:设每件商品售价应为x元,每月的销量为[600−10(x−40)]件,由题意,得[600−10(x−40)](x−30)=10000,解得:x1=50,x2=80.当x=50时,600−10(50−40)=500件,销售成本为:500×30=15000>10000舍去,当x=80时,600−10(80−40)=200件,销售成本为:200×30=6000<10000舍去,答:此时每件商品售价应为80元.【解析】设每件商品售价应为x元,根据利润=售价−进价建立方程求出其解并检验即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,利润率问题的数量关系的运用,解答时根据利润=售价−进价建立方程是关键.20.【答案】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF//AB,DE//AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF//AB,DE//AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.21.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.【解析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12AD,推出OE//FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)∵一元二次方程x2−2x+k+2=0有两个实数根,∴△=(−2)2−4×1×(k+2)≥0,解得:k≤−1.(2)∵x1,x2是一元二次方程x2−2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵1x1+1x2=k−2,∴x1+x2x1x2=2k+2=k−2,∴k2−6=0,解得:k1=−√6,k2=√6.又∵k≤−1,∴k=−√6.∴存在这样的k值,使得等式1x1+1x2=k−2成立,k值为−√6.【解析】本题考查了根与系数的关系以及根的判别式,(1)根据方程的系数结合△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合1x1+1x2=k−2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.23.【答案】解:(1)∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC;(2)∵四边形ABCD是矩形,∴AE//CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AECD =AFDF,即AE⋅DF=AF⋅DC,设AE=AD=a(a>0),则有a⋅(a−1)=1,化简得a2−a−1=0,解得a=√5−1或a=−√5−1(舍去),∴AB=√5−1;(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG−DG=EG−EP=PG=√2AG.【解析】(1)证明△AEF≌△ADB(SAS),则∠AEF=∠ADB,∠GEB+∠GBE=∠ADB+∠ABD=90°,即可求解;(2)证明△AEF∽△DCF,则AECD =AFDF,设AB=a(a>0),则有22−2a=a2,即可求解;(3)证明△AEP≌△ADG(SAS),则△PAG为等腰直角三角形,故EG−DG=EG−EP= PG=√2AG.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.第21页,共21页。
江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列方程是一元二次方程的是()A . y2+x=1B .C . x2+1=0D . 2x+1=02. (2分)下列函数中,反比例函数是()A . y=x﹣1B . y=C . y=+3x+1D . y=3. (2分)反比例函数的图象经过点,则当时,函数值的取值范围是()A .B .C .D .4. (2分)下列各组图形中不一定相似的有()①两个矩形;②两个正方形;③两个等腰三角形;④两个等边三角形;⑤两个直角三角形;⑥两个等腰直角三角形.A . 2个B . 3个C . 4个D . 5个5. (2分)(2017·北仑模拟) 如图,等腰三角形ABC的底边BC在x轴正半轴上,点A在第一象限,延长AB 交y轴负半轴于点D,延长CA到点E,使AE=AC,双曲线y= (x>0)的图象过点E.若△BCD的面积为2 ,则k的值为()A . 4B . 4C . 2D . 26. (2分) (2017八下·宁波期中) 已知一元二次方程x2﹣8x+12=0的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()A . 14B . 10C . 11D . 14或107. (2分)(2020·合肥模拟) 如图,已知直线y=mx与双曲线的一个交点坐标为(3,4),则它们的另一个交点坐标是()A . (﹣3,4)B . (﹣4,﹣3)C . (﹣3,﹣4)D . (4,3)8. (2分) (2019九下·保山期中) 一元二次方程x2-4x+4=0的根的情况是()A . 有两个不相等的实数根B . 无实数根C . 有两个相等的实数根D . 无法确定9. (2分) (2018九上·和平期末) 已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为()A . 1∶2B . 1∶4C . 2∶1D . 4∶110. (2分)(2017·南开模拟) 反比例函数的大致图象为()A .B .C .D .11. (2分)如图,矩形ABCD中,点P从点B出发沿BC向点C运动,E、F分别是AP、PC的中点,则EF的长度()A . 逐渐增大B . 逐渐减小C . 不变D . 无法确定12. (2分) (2019八下·瑞安期中) 一个长30cm,宽20cm的长方形纸板,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为200cm2的无盖长方体盒子,根据题意可列方程()A . (30﹣x)(20﹣x)=200B . (30﹣2x)(20﹣2x)=200C . 30×20﹣4x2=200D . 30×20﹣4x2﹣(30+20)x=200二、填空题 (共6题;共7分)13. (1分) (2019八下·南关期中) 如图,已知反比例函数=(为常数,≠0)的图象经过点,过点作⊥ 轴,垂足为,点为轴上的一点,若△ 的面积为,在的值为________;14. (1分)在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=________;当m=2,n=﹣3时代数式的值是________.15. (1分) (2019八下·盐田期末) 如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则________. ________.16. (1分)已知,点C线段AB的黄金分割点,且AC>BC,那么AB:AC=________.17. (1分) (2016九上·龙海期中) 设一元二次方程x2﹣3x﹣1=0的两根分别是x1 , x2 ,则x1+x2(x22﹣3x2)=________.18. (2分) (2017八下·临泽开学考) 已知O(0,0),A(﹣3,0),B(﹣1,﹣2),则△AOB的面积为________.三、解答题 (共8题;共64分)19. (10分) (2020八下·高新期末) 用指定的方法解方程:(1) 2x2-5x+3=0(用公式法解方程)(2)3x²-5=6x(用配方法解方程)20. (2分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC∽△ADC.21. (2分) (2020八上·张店期末) 某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是________分钟,清洗时洗衣机中的水量是________升.(2)进水时y与x之间的关系式是________.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是________升.22. (10分)(2017·安陆模拟) 已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)求证:此方程有两个不相等的实数根;(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是________.23. (5分) (2019九上·随县期中) 某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克。
江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·涪陵期中) 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A . ﹣1B . 1C . 1或﹣1D . 0.52. (2分)用配方法解方程x2-6x-7=0,下列配方正确的是()A . (x-3)2=16B . (x+3)2=16C . (x-3)2=7D . (x-3)2=23. (2分) (2018八下·长沙期中) 若关于x的一元二次方程2x2-2x+3m-1=0的两个实数根x1 , x2 ,且x1·x2>x1+x2-4,则实数m的取值范围是()A . m>B . m≤C . m<D . <m≤4. (2分)如图,在菱形中,是边上的一点,分别是的中点,则线段的长为()A . 8B .C . 4D .5. (2分) (2017八下·洪湖期中) 下列说法正确的是()A . 对角线互相垂直的四边形是菱形B . 矩形的对角线互相垂直C . 四边相等的四边形是菱形D . 一组对边平行的四边形是平行四边形6. (2分) (2018九上·安定期末) 某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C . 抛一个质地均匀的正六面体骰子,向上的面点数是5D . 抛一枚硬币,出现反面的概率7. (2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A .B .C .D .8. (2分) (2018八上·孟州期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A .B .C .D .9. (2分)(2018·邯郸模拟) 已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A . x是有理数B . x不能在数轴上表示C . x是方程4x=8的解D . x是8的算术平方根10. (2分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A . 4 cmB . 5 cmC . 6 cmD . 10 cm二、填空题 (共5题;共5分)11. (1分) (2017九上·河东开学考) 方程3(x﹣5)2=2(x﹣5)的根是________.12. (1分) (2019九上·重庆开学考) 如图,在△ABC中,∠C=90°,E,F分别是AC,BC上两点,AE=16,BF=12,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为________.13. (1分)李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.14. (1分)(2018·南山模拟) 方程(m+1)x2+2x-1=0有两个不相等的实数根,则m的范围为________.15. (1分)如图,正方形ABCD,点E是DC上一点,点F是AD上一点,且AF>DF,EF=EC,FG⊥EF交AB于点G,连接CF、CG,若△CFG的面积为15,BC=6,则AF的长度是________.三、解答题 (共7题;共52分)16. (10分) (2017九上·临颍期中) 用适当的方法解下列方程:(1) x2+4x﹣2=0;(2)(x﹣1)(x+2)=2(x+2).17. (5分)已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.18. (2分)(2017·蜀山模拟) 每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.19. (5分) (2018九上·茂名期中) 某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,求每次降价的百分率.20. (10分) (2019八下·铜仁期中) 如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.21. (10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售.根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:月份九月十月清仓销售单价(元)100________50销售量(件)200________________(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?22. (10分) (2019九上·农安期中) 如图,在△ABC中,已知AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共52分)16-1、16-2、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。
2020-2021学年江西省九江市九年级(上)期中数学试卷-解析版

2020-2021学年江西省九江市九年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.一元二次方程x2−9=0的根是()A. x=9B. x=±9C. x=3D. x=±32.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是()个.A. 12B. 24C. 36D. 483.下列几何图形中,即是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 菱形D. 对角线相等的四边形4.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A. 3cmB. 2.5cmC. 2.3cmD. 2.1cm5.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米B. 1.38米C. 1.42米D. 1.62米6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 125二、填空题(本大题共6小题,共18.0分)7.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是______形.8.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.9.已知一元二次方程x2−x+k=0的一根为1,则另一根为______.10.在Rt△ABC中,∠C=90°,∠A=30°,点P为AC中点,经过点P的直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有______条.11.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是______.12.如图,在平行四边形ABCD中,AB=8,BC=12,∠B=120°,E是BC的中点,点P在平行四边形ABCD的边上,若△PBE为等腰三角形,则EP的长为______.三、计算题(本大题共1小题,共6.0分)13.(1)用配方法解方程x2+4x−5=0;(2)用因式分解法解方程(x−3)2+4x(x−3)=0.四、解答题(本大题共10小题,共78.0分)14.在图1、2中,点E是矩形ABCD边AD上的中点,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法](1)在图1中,以BC为一边画△PBC,使△PBC面积=矩形ABCD面积;(2)在图2中,以BE、ED为邻边作▱BEDK.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.已知关于x的方程x2−(m+1)x+2(m−1)=0(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.17.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)18.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC;(2)若BC=12,AFFC =12,求线段BE的长.19.某商店将进价为30元的商品按每件40元出售,每月可出售600件,现在采用提高商品售价减少销售量的办法增加利润,这种商品每件的销售价每提高1元,其销售量就减少10件,商店想在月销售成本不超过1万元的情况下,使每月总利润为10000元,那么此时每件商品售价应为多少元?20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.已知x1,x2是一元二次方程x2−2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k−2成立?如果存在,请求出k的值;如果不存在,请说明理由.23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD,EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AE=2,求AB的长;(3)如图2,连接AG,请探究线段EG、AG、DG之间的数量美系,并说明理由.答案和解析1.【答案】D【解析】解:x2−9=0,移项得:x2=9,两边直接开平方得:x=±3,故选:D.首先把−9移到方程的右边,然后两边直接开平方即可.此题主要考查了直接开方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【答案】B【解析】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,∴估计摸到红色、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1−0.15−0.45=0.4,∴口袋中白色球的个数为60×0.4=24,即口袋中白色球的个数很可能24个.故选B.根据频率估计概率得到摸到红色、黑色球的概率分别为0.15和0.45,则摸到白球的概率为0.4,然后利用概率公式计算即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.【答案】C【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;C、菱形即是轴对称图形,也是中心对称图形,故此选项符合题意;D、对角线相等的四边形不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:由题意得:CD//AB,∴CDAB =DEBE,∵AB=3.5cm,BE=5m,DE=3m,∴CD3.5=35,∴CD=2.1cm,故选:D.直接利用平行线分线段成比例定理列比例式,代入可得结论.本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.5.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴ab=0.618,∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.【答案】C【解析】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=12AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=12AO×EO+12DO×EF,∴12=12×5×EO+12×5×EF,∴5(EO+EF)=24,∴EO+EF=245,故选:C.依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.7.【答案】矩【解析】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.8.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.9.【答案】0【解析】解:设方程的另一个根是x2,则:1+x2=1,解得x2=0.所以另一根为0,故答案为0.根据根与系数的关系由两根之和可以求出另一个根.是解题的关键.本题考查了根与系数的关系,熟练掌握两根之和等于−ba10.【答案】3【解析】解:过点P作PE//AB交AB于点E,△CPE∽△CAB.过点P作PF//BC交AB于点F,△APF∽△ACB.过点P作PG⊥AB交AB于点G,△PGA∽△BCA.故满足条件的直线有3条,故答案为:3.根据相似三角形的判定方法,画出图形判断即可.本题考查相似三角形的判定,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.【答案】8√5【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA−AE=OC−CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,=2,∵AC=BD=8,OE=OF=8−42由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.12.【答案】6或6√3或√57【解析】解:当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,则PH=EH,∵∠B=120°,∴∠BPE=∠BEP=30°,在Rt△BEH中,BH=1BE=3,EH=√3BH=23√3,∴PE=2EH=6√3;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,则BF=EF=3,∵四边形ABCD为平行四边形,∴AD//BC,∵∠ABC=120°,∴∠A=60°,AB=4,BG=√3AG=4√3,在Rt△ABG中,AG=12∴PF=4√3,在Rt△PEF中,PE=√32+(4√3)2=√57;当点P在CD上,如图3,EB=EP=6,综上所述,PE的长为6或6√3或√57.故答案为6或6√3或√57.当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,根据等腰三角形的性质得PH=EH,再计算出∠BPE=∠BEP=30°,然后利用含30度的直角三角形三边的关系计算出EH,从而得到此时的PE的长;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,所以BF=EF=3,先求出BG=4√3,从而得到PF=4√3,然后利用勾股定理计算出此时PE的长;当点P在CD上,如图3,EB=EP=6.本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.平行线间的距离处处相等.也考查了等腰三角形的性质.13.【答案】解:(1)x2+4x=5.∴x2+4x+4=9,∴(x+2)2=9,∴x+2=±3,∴x1=−5,x2=1;(2)原方程因式分解得:(x−3)(5x−3)=0,∴x−3=0或5x−3=0,∴x1=3,x2=3.5【解析】(1)利用配方法求解即可.(2)利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【答案】解:(1)如图所示,△PBC即为所求;(2)如图所示,平行四边形BEDK即为所求.【解析】(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到▱BEDK.本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形.15.【答案】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.【解析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.16.【答案】解:(1)证明:∵Δ=[−(m+1)]2−4×2(m−1)=m2−6m+9=(m−3)2≥0,∴无论m取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16−4(m+1)+2(m−1)=0,解得:m=5,∴原方程为x2−6x+8=0,解得:x1=2,x2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∴Δ=0,即m=3,此时方程为x2−4x+4=0,解得:x1=x2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【解析】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)代入x=4求出m值.(1)根据方程的系数结合根的判别式,即可得出Δ=(m−3)2≥0,由此即可证出:无论m取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.17.【答案】13【解析】解:(1)共有3种可能出现的结果,被分到“B组”的有1中,因此被分到“B ;组”的概率为13(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)=39=13.(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.18.【答案】证明:(1)∵DE//AC,∴∠DEB=∠FCE,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4.【解析】(1)由平行线的性质可得∠DEB=∠FCE,∠DBE=∠FEC,可得结论;(2)由平行线分线段成比例可得BEEC =AFFC=12,即可求解.本题考查了相似三角形的判定和性质,平行线分线段成比例,掌握相似三角形的判定是本题的关键.19.【答案】解:设每件商品售价应为x元,每月的销量为[600−10(x−40)]件,由题意,得[600−10(x−40)](x−30)=10000,解得:x1=50,x2=80.当x=50时,600−10(50−40)=500件,销售成本为:500×30=15000>10000舍去,当x=80时,600−10(80−40)=200件,销售成本为:200×30=6000<10000舍去,答:此时每件商品售价应为80元.【解析】设每件商品售价应为x元,根据利润=售价−进价建立方程求出其解并检验即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,利润率问题的数量关系的运用,解答时根据利润=售价−进价建立方程是关键.20.【答案】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF//AB,DE//AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF//AB,DE//AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.21.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,AD=5;∴OE=AE=12由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.AD,推【解析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12出OE//FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;AD=5;由(1)知,(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)∵一元二次方程x2−2x+k+2=0有两个实数根,∴△=(−2)2−4×1×(k+2)≥0,解得:k≤−1.(2)∵x1,x2是一元二次方程x2−2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵1x1+1x2=k−2,∴x1+x2x1x2=2k+2=k−2,∴k2−6=0,解得:k1=−√6,k2=√6.又∵k≤−1,∴k=−√6.∴存在这样的k值,使得等式1x1+1x2=k−2成立,k值为−√6.【解析】本题考查了根与系数的关系以及根的判别式,(1)根据方程的系数结合△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合1x1+1x2=k−2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.23.【答案】解:(1)∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC;(2)∵四边形ABCD是矩形,∴AE//CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AECD =AFDF,即AE⋅DF=AF⋅DC,设AE=AD=a(a>0),则有a⋅(a−1)=1,化简得a2−a−1=0,解得a=√5−1或a=−√5−1(舍去),∴AB=√5−1;(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG−DG=EG−EP=PG=√2AG.【解析】(1)证明△AEF≌△ADB(SAS),则∠AEF=∠ADB,∠GEB+∠GBE=∠ADB+∠ABD=90°,即可求解;(2)证明△AEF∽△DCF,则AECD =AFDF,设AB=a(a>0),则有22−2a=a2,即可求解;(3)证明△AEP≌△ADG(SAS),则△PAG为等腰直角三角形,故EG−DG=EG−EP= PG=√2AG.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。
江西省九江市九年级上学期数学期中试卷

江西省九江市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020九上·交城期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【考点】2. (2分) (2020八上·常州期中) 下列各数中,无理数是()A . 0.121221222B .C .D .【考点】3. (2分)反比例函数y=的图象如图所示,则k的值可能是()A . -1B .C . 1D . 2【考点】4. (2分) (2017九上·下城期中) 如图,圆为的外接圆,其中点在上,且,已知,,则的度数为().A .B .C .D .【考点】5. (2分)如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A . 30°B . 35°C . 40°D . 50°【考点】6. (2分) (2017七下·黔南期末) 已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A . a>0B . 0≤a<1C . 0<a≤1D . a≤1【考点】7. (2分)(2017·河北模拟) 绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC 为5m,则水面宽AB为()A . 4mB . 5mC . 6mD . 8m【考点】8. (2分)(2019·井研模拟) 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y 轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k 的值为()A .B .C . 3【考点】9. (2分) (2019九上·东河月考) 下列结论正确的个数是()⑴一个多边形的内角和是外角和的3倍,则这个多边形是六边形;(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5;(3)若△ABC∽△DEF,相似比为1:4,则S△ABC:S△DEF=1:4;(4)若等腰三角形一个角为80°,则底角为80°或50°.A . 1B . 2C . 3D . 4【考点】10. (2分) (2018九上·临沭期末) 如图,在△ABC中,将△ABC在平面内绕点A逆时针旋转50º角后得到△AB′C′的位置,若此时恰有CC′∥AB,则∠CAB′的度数为()A . 15°B . 40°C . 50°D . 65°【考点】11. (2分)如图,正方形ABCD满足∠AEB=90°,AE=12,BE=16,则阴影部分的面积是()A . 400C . 208D . 304【考点】12. (2分) (2020·高新模拟) 在同一平面直角坐标系中,二次函数y1=ax²+bx与一次函数y2=ax+b的大致图象可能是()A .B .C .D .【考点】二、填空题 (共6题;共6分)13. (1分)(2019·宣城模拟) 分解因式:a2-5a =________.【考点】14. (1分)计算: ________.【考点】15. (1分)(2016·贵阳) 现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.【考点】16. (1分) (2020八下·重庆期末) 如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为________.【考点】17. (1分)(2018·舟山) 如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。
江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016九上·岳池期末) 下列成语故事中所描述的事件为必然发生事件的是()A . 水中捞月B . 瓮中捉鳖C . 拔苗助长D . 守株待兔2. (2分) (2019九上·马山月考) 把抛物线y=﹣ x2向右平移2个单位,则平移后所得抛物线的解析式为()A . y=﹣ x2+2B . y=﹣(x+2)2C . y=﹣ x2﹣2D . y=﹣(x﹣2)23. (2分)已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A . =B . >C . <D . 不能确定4. (2分)(2018·丹棱模拟) 有一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约是()A . 12B . 15C . 18D . 215. (2分)抛物线y=ax2+4ax﹣5的对称轴为()A . x=﹣2aB . x=4C . x=2aD . x=﹣26. (2分) (2018七上·故城期末) 如图,阴影部分的面积是()A . ab﹣π() 2B . ab﹣C . ab﹣ 2D . ab﹣() 27. (2分) (2015八上·广州开学考) 掷一枚骰子,掷出向上的点数为奇数与偶数的可能性是()A .B .C .D . 无法确定8. (2分)(2017·蜀山模拟) 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A . 2B . 4C . 4D . 89. (2分)若二次函数(a≠0)的图象与x轴有两个交点,坐标分别为(x1 , 0),(x2 , 0),且x1<x2 ,图象上有一点M (x0 , y0)在x轴下方,则下列判断正确的是A . a>0B . b2-4ac≥0C . x1<x0<x2D . a(x0-x1)( x0-x2)<010. (2分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A . 8B . 4C . 10D . 511. (2分)如图示是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象经过A(3,0) ,二次函数图象对称轴为x=l,给出四个结论:①b2>4ac ②bc<0 ③2a+b=0 ④a+b+c=0.其中正确的是()A . ②④B . ①③C . ②③D . ①④12. (2分)一元二次方程x²=x的解是()A . x=0B . x=1C . x1=0,x2=1D . x=±1二、填空题 (共7题;共12分)13. (1分)(2019·嘉善模拟) 在矩形ABCD中,∠ABC的平分线交边AD于点E,∠BED的平分线交直线CD 于点F.若AB=3,CF=1,则BC=________.14. (1分) (2017九上·莘县期末) 如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P 为⊙O上任意一点(不与E、F重合),则∠EPF=________.15. (1分)(2017·红桥模拟) 一个盒子中装有2个白球,5个红球,从这个盒子中随机摸出一个球,是红球的概率为________.16. (1分) (2017九上·哈尔滨期中) 如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=________.17. (1分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.18. (1分)(2017·浦东模拟) 如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=________.19. (6分) (2017八上·云南期中) 为进一步普及足球知识,传播足球文化,某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.三、解答题 (共7题;共81分)20. (11分)二次函数与直线交于点P(1,b).(1)求a、b的值;(2)写出二次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小.21. (10分)(2015·金华) 如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.22. (10分)(2019·遵义) 如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3) M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.23. (10分) (2018九上·宁城期末) 如图,两个以点O为圆心的同心圆,图1 图2(1)如图1,大圆的弦AB交小圆于C,D两点,试判断AC与BD的数量关系,并说明理由.(2)如图2,将大圆的弦AB向下平移使其为小圆的切线,切点为C,证明:AC=BC.(3)在(2)的基础上,已知AB=20cm,直接写出圆环的面积.24. (10分)(2017·惠阳模拟) 已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA= ,求BH的长.25. (15分) (2019八下·桂林期末) 蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x (分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.26. (15分) (2016九上·庆云期中) 探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共12分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、19-2、三、解答题 (共7题;共81分)20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-2、。
江西省九江市九年级上学期期中数学试卷

江西省九江市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一元二次方程2x2-3x=4的二次项系数是A . 2B . -3C . 4D . -42. (2分)用配方法解方程x2+4x=﹣2下列配方正确的是()A . (x+4)2=14B . (x+2)2=6C . (x+2)2=2D . (x﹣2)2=23. (2分)下列说法正确的是()A . 平行四边形是轴对称图形B . 平行四边形的对角线互相垂直平分C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 两组对角分别相等的四边形是平行四边形4. (2分)一元二次方程x2+5x=6的一次项系数、常数项分别是()A . 1,5B . 1,﹣6C . 5,﹣6D . 5,65. (2分)在平面直角坐标系中,将点(﹣2,3)关于原点的对称点向右平移2个单位长度得到的点的坐标是()A . (4,﹣3)B . (﹣4,3)C . (0,﹣3)D . (0,3)6. (2分) (2020九下·北碚月考) 二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123…y=ax2+bx+c…p t n t0…有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m(am+b)≤﹣4a﹣c (m为任意实数).其中正确结论的个数是()A . 1B . 2C . 3D . 47. (2分) (2020八上·江汉期末) 如图,,,则下列结论不一定成立的是()A . ⊥B .C .D .8. (2分)把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=-(x-1)2-3B . y=-(x+1)2-3C . y=-(x-1)2+3D . y=-(x+1)2+39. (2分) (2017九下·建湖期中) 如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A .B .C .D .10. (2分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A .B .C .D .二、填空题 (共6题;共10分)11. (1分)(2017·仪征模拟) 关于的一元二次方程kx2﹣x+1=0有两个实数根,则k的取值范围是________.12. (1分)抛物线的部分图象如图所示,若,则X的取值范围是________ .13. (1分) (2019九上·费县月考) 抛物线的对称轴是________.14. (1分)如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为________米.15. (1分)(2016·常德) 如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.16. (5分) (2019七上·汽开区期中) 用同样大小的黑色棋子按如图所示的规律摆放,则第n个图共有__枚棋子,(用含n的代数式表示).三、解答题 (共8题;共80分)17. (10分)解方程(1) = +1(2) x2﹣3x﹣1=0.18. (10分)(2019·河北模拟) 如图,将直角三角板ACB的直角边AC放在半圆O的直径DE上,直角顶点C 与直径端点D重合,已知∠BAC=30°且△ACB的直角边C与半圆O的半径OD长均为2.现将直角三角板ACB沿直径D呢的方向向右平移,将三角板ACB平移后的三角形记为△A’B’C’.(1)如图,当△ACB平移到斜边与半圆相切时,试求弧的长度(结果保留π):(2)设平移距离为a,在直角三角板ABC平移过程中,折线CBA(包括端点)与半圆弧共有3个交点时,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省九江市九年级上学期期中数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2020·晋中模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()
A .
B .
C .
D .
2. (2分) (2020九上·宁波月考) 如图,在⊙O中,如果,那么()
A . AB=AC
B . AB=2AC
C . AB<2AC
D . AB>2AC
3. (2分) (2018九上·宁江期末) 二次函数y=-2x2+1的图象如图所示,将其绕坐标原点O旋转180°,则旋转后的抛物线的解析式为()
B . y=2x2+1
C . y=2x2
D . y=2x2-1
4. (2分)抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是()
A . 开口向上
B . 对称轴是y轴
C . 当x>0时,y随x的增大而增大
D . 都有最低点
5. (2分) (2019九上·德惠月考) 已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()
A . m≥
B . m≥2
C . m≥1
D . m≥0
6. (2分)若A(﹣2,y1),B(﹣1,y2),C(﹣3,y3)为二次函数y=ax2(a<0)的图象上的三点,则y1 ,y2 , y3的大小关系是()
A . y1<y2<y3
B . y2<y1<y3
C . y3<y1<y2
D . y1<y3<y2
7. (2分)(2020·南充模拟) 将抛物线向左平移1个单位后的解析式为()
A .
B .
C .
D .
8. (2分)已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点(-,y1)、(-,y2)、(,y3),y1、y2、y3的大小关系是()
A . y1<y2<y3
C . y3<y1<y2
D . y1<y3<y2
9. (2分) (2017九上·重庆开学考) 在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2﹣m的图象可能是()
A .
B .
C .
D .
10. (2分) (2020九上·萍乡期末) 如图所示,在矩形中,,点在边上,
平分,,垂足为,则等于()
A .
B . 1
C .
D . 2
11. (2分) (2017八下·嘉兴期中) 如图,在平行四边形ABCD中,∠B=60度,AB=5cm,则下面结论正确的是()
A . BC=5cm,∠D=60度
B . ∠C=120度,CD=5cm
C . AD=5cm,∠A=60度
D . ∠A=120度,AD=5cm
12. (2分)如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的是()
A . ∠BAD=∠CAE
B . △ABD≌△ACE
C . AB=BC
D . BD=CE
二、填空题 (共8题;共9分)
13. (1分) (2019九上·虹口期末) 如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E ,如果AC=2,BC=4,那么cot∠CAE=________.
14. (1分) (2019九上·湖里期中) 一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出________个小分支.
15. (1分) (2020九上·醴陵期末) 如图,AB//CD,,E为BC上一点,且.若,
,,则DE的长为________.
16. (1分)(2017·安徽模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,
17. (1分)如图,正六边形ABCDEF内接于⊙O,向⊙O内任意投点,则所投的点落在正六边形ABCDEF内的概率是________ .
18. (1分) (2020九上·椒江月考) 用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为________.
19. (2分) (2019七下·景县期中) 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角、当小球第1次碰到矩形的边时的点为P1 ,第2次碰到长方形的边时的点为P2……第n次碰到矩形的边时的点为Pn.则点P4的坐标是________,点P2019的坐标是________.
20. (1分) (2020九上·丹东月考) 甲乙两人在玩转盘游戏时,把转盘A.B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针必须指到某一数字,否则重转.甲、乙二人分别转动A.B转盘一次,则指针所指的两个数字都是方程x2−4x+3=0的解的概率是________.
三、解答题 (共6题;共56分)
21. (6分) (2018九上·前郭期末) 如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图:
①以坐标原点O为旋转中心,将△ABC逆时针旋转90°得到△A1B1C1;
②作出△A1B1C1关于原点成中心对称的中心对称图形△A2B2C2 .
(2)△A2B2C2中顶点B2坐标为________.
22. (5分)如图,在平面直角坐标系xoy中,的外接圆与y轴交于点,
,求OC的长.
23. (15分) (2019九上·鄞州月考) 如图,抛物线交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求抛物线的函数关系式;
(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;
24. (10分) (2019九上·枣庄月考) 如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC , N与边AD交于点E .
(1)求证;AM=AN;
(2)如果∠CAD=2∠NAD ,求证:AM2=AC•AE .
25. (10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量x的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
26. (10分)(2017·平谷模拟) 如图,⊙O为等腰三角形ABC的外接圆,AB=AC.AD是⊙O的直径,切线DE 与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2a,写出求CE长的思路.
参考答案一、选择题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共8题;共9分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、
考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、考点:
解析:
三、解答题 (共6题;共56分)
答案:21-1、
答案:21-2、
考点:
解析:
答案:22-1、考点:
解析:
答案:23-1、
答案:23-2、答案:23-3、考点:
解析:
答案:24-1、
答案:24-2、考点:
解析:
答案:25-1、
答案:25-2、考点:
解析:
答案:26-1、答案:26-2、
考点:解析:。