基于阈值的图像分割方法
基于阈值法的图像分割技术

基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。
图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。
这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。
现有的图像分割算法有:阈值分割、边缘检测和区域提取法。
本文着重研究基于阈值法的图像分割技术。
1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。
其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。
阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。
由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。
根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。
图像处理中的阈值分割算法

图像处理中的阈值分割算法图像处理是一种广泛应用的技术,涉及到计算机视觉、人工智能、医学影像处理等领域。
而阈值分割算法是图像处理中的基础算法之一,其应用广泛,包括图像二值化、图像增强、图像去噪等等。
阈值分割算法的原理阈值分割算法本质上是将图像分为两个部分,其中一部分是我们希望得到的目标图像,另一部分则是我们不需要的背景或者噪声。
阈值本身就是用于区分这两个部分的分类标准,当像素值高于阈值时,该像素点被分类为目标图像,而低于阈值时则被分类为背景或噪声。
通常情况下,我们需要调整阈值的大小来达到最佳的效果。
常见的阈值分割算法下面我们来介绍几种常用的阈值分割算法:1. 简单阈值法简单阈值法是最基本的阈值分割算法,其步骤非常简单:首先选择一个阈值,将图像分为两类,然后计算每类的像素平均值,再将两者的平均值求平均作为一个新的阈值,不断迭代,直到得到一个稳定的结果。
这种方法简单易行,但是对于噪声敏感,效果不稳定。
2. Otsu算法Otsu算法是一种自适应阈值分割算法,也是比较常见的一种算法。
它的基本思路是寻找一个最佳的阈值,使得目标图像和背景图像的类内方差最小,而类间方差最大。
3. 自适应阈值法自适应阈值法是一种基于局部图像特征的分割方法,其思路是将图像分成若干个子区域,然后在子区域内分别计算阈值,最后通过叠加的方式得到整张图像的最终阈值。
这种算法适用于逐渐变化的光照情况下的图像分割。
4. 谷底阈值法谷底阈值法是一种基于图像梯度的分割方法,其思路是通过找到图像梯度的最大值和最小值来确定阈值位置。
该算法适用于较大的、均匀亮度的图像分割。
总结阈值分割算法是一种广泛应用的图像处理方法,其优点是简单易行,但是缺点也很明显,对于噪声和不稳定的光照情况下准确性有限。
因此,在应用中需要根据具体情况选择对应的算法,以达到最佳的图像分割效果。
图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
简述 otsu 算法的原理和步骤。

简述 otsu 算法的原理和步骤。
OStsu 算法是一种基于阈值分割的图像去噪算法,其基本原理是在原始图像上选取一个阈值,将像素值低于该阈值的像素设置为噪声,将像素值高于该阈值的像素设置为清晰的图像。
具体步骤如下:
1. 选取一个阈值 T = 255/n,其中 n 是像素值的范围。
2. 计算像素值差 U = (P - Q) / n,其中 P 和 Q 分别是清晰的图像和噪声的图像的像素值,n 是像素值的范围。
3. 将像素值 U 小于等于阈值 T 的像素设为噪声,即 N(T, U) = {(U, V)},其中 V 表示该像素值下的样本集合,V 的索引从 1 到 n。
4. 将像素值 U 大于阈值 T 的像素设置为清晰的图像,即 C(T, U) = {(X, Y)},其中 X 和 Y 表示该像素值下的样本集合,X 的索引从 1 到 n,Y 的索引从 1 到 n。
5. 将像素值 U 介于阈值 T 和 255/n 之间的像素设置为噪声,即 N(T, U) = {(U, V)},其中 V 表示该像素值下的样本集合,V 的索引从 1 到 n。
6. 重复步骤 3 到步骤 5,直到所有像素都被划分为清晰和噪声两部分。
7. 返回清晰和噪声的图像集合 C(T, U) 和 N(T, U)。
OStsu 算法的优点在于简单易用,能够快速地去掉大量的噪声,
同时保持图像的基本特征。
但是其缺点在于对于低光照环境下的图像可能会失效,并且在处理高分辨率图像时需要更多的计算资源。
医学图像基于阈值的分割技术

福建电脑 Journal of Fujian Computer
Vol. 35 No.4 Apr. 2019
医学图像基于阈值的分割技术
范群贞 吴浩 林真
(福建农林大学金山学院 福州 350002)
摘 要 图像分割技术是图像识别的基础,分割效果的好坏直接影响到后续图像的进一步分析。医学图像分割一直是医学影 像分析领域的一个研究热点。本文首先阐述了图像分割技术的基础,其次介绍各种常见的阈值分割方法的原理,如灰度阈值 法,直方图阈值法,迭代阈值法,Otsu 阈值法,最后在 Matlab 平台实现对医学图像基于阈值的分割。 关键词 医学图像;图像分割;阈值;直方图;迭代;Otsu 中图法分类号 TP391 DOI:10.16707/ki.fjpc.2019.04.008
——————————————— 本文得到福建省教育厅科技项目(No.JA15640)资助。范群贞(通信作者),女,1985年生,硕士,讲师,主要研究领域为智能信息处理与多媒体通 信,图形图像处理。309428110@。吴浩,男,1986年生,硕士,讲师,主要研究领域为通信技术,无线通信,数字通信等。E-mai1:270324602@。 林真,女,1985年生,硕士,讲师,主要研究领域为信息处理技术,自动控制等。E-mai1: 252005501@。
Medical Image Segmentation Based on Threshold
FAN Qunzhen, WU Hao, LIN Zhen
(JinShan College, Fujian Agriculture and Forestry University, Fuzhou , China,350000)
halcon图像分割要点

Halcon 图像分割要点Halcon 是一种开放式的机器视觉软件库,具有强大的图像处理和机器视觉功能。
图像分割是 Halcon 中最基本的任务之一,这篇文章将重点介绍 Halcon 图像分割的要点。
图像分割的简介图像分割是计算机视觉中的基本步骤之一,目的是将图像划分为多个不同的区域,每个区域内的像素具有一定的相似性,这些区域被称为图像中的物体或背景。
常用的分割方法有基于阈值、基于边缘和基于区域的方法。
Halcon 图像分割的要点Halcon 中有多种图像分割算法可供选择,这里列举几个常用的图像分割要点。
1. 常见的基于阈值的图像分割方法基于阈值的分割方法是最基本的分割方法之一,其将给定的图像根据像素强度与阈值之间的关系,将图像分成两个或多个不同的区域。
在 Halcon 中,可以使用threshold()函数进行基于阈值的图像分割,具体使用方法如下:threshold(Image, Region, MinGray, MaxGray)其中,Image为输入图像,Region为输出分割后的区域,MinGray和MaxGray分别为最小和最大的阈值,通过调整阈值的大小可以实现不同阈值下的图像分割。
2. 基于边缘的图像分割方法基于边缘的图像分割方法是另一种常见的分割方法。
与基于阈值的方法不同,基于边缘的方法不是将图像分成几个区域,而是将图像中相邻的像素中的边缘信息提取出来,进而找到图像中的物体。
在 Halcon 中,可以使用edges_image()函数进行基于边缘的图像分割,具体使用方法如下:edges_image(Image, Edges)其中,Image为输入图像,Edges为输出的边缘信息。
3. 区域生长算法区域生长算法是基于区域的图像分割方法,其实现原理是从一组种子像素开始,然后向外扩展相似像素的区域,直到到达区域边界。
在 Halcon 中,可以使用regiongrowing()函数进行区域生长算法,具体使用方法如下:regiongrowing(Image, Seed, Region, Contrast, Delta, MaxSize)其中,Image为输入图像,Seed为种子像素,Region为输出的分割区域,Contrast为最小差异,Delta为生长率,MaxSize为区域最大大小。
基于阈值的图像分割

2.4 双阈值方法 在许多应用中,属于物体的某些灰度值是已知的。然而,可能还有一些灰度 值或者属于物体,或者属于背景。在这种情况下,人们可能使用一个保守一点的 阈值T1 来分离物体图像,称之为图像物体核。然后,使用有关算法来增长物体图 像。 增长物体图像的方法取决于特定的应用,通常使用另一个阈值来吸收哪些图 像核像素的邻接像素,或用图像强度特性(如直方图)来决定属于物体区域上的 那些点, 一种简单的方法是吸收低于第二个阈值T2 并且与原先物体图像点相连接 的所有点。下面是区域增长的双阈值算法。 (1) 选择两个阈值T1 和T2 ; (2) 把图像分割成三个区域:R1 ,包含所有灰度值低于阈值T1 的像素;R 2 ,包含 所有灰度值位于阈值T1 和T2 之间的像素;R 3 ,包含所有灰度值高于阈值T2 的 像素; (3) 查看分配给区域R 2 中的每一个像素。如果某一像素邻接区域R1 ,则把这一像 素重新分配给R1 。 (4) 重复步骤(3)直到没有像素被重新分配。 (5) 把区域R 2 剩下的所有像素重新分配给R 3 。
1 图像分割的定义 图像分割是指将图像中具有特殊含义的不同区域分开来, 这些区域是互不相 交的,每一个区域都满足区域的一致性。已知一幅图像像素集 I 表示成 n 个区域 R i 集合的一种划分: (1)
n i=1 R i
= I,即所有子区域组成了整幅图像。
(2) 对所有的 i 和 j,i≠j,有R i ∩ R i =Φ ,即分割结果中的子区域是互不重叠的。 (3) P(R i )=True,即同一区域内的点具有一定的相似性。 (4) P(R i ∪ R i )=False,即任何两个相邻区域不能合并成单一区域。 (5) 对 i=1,2,…,N,R i 是连通的区域,即同一个子区域中的像素应当是连通的。 一致性谓词 P(̇•)定义了在区域R i 上的所有点与区域模型的相似程度。
医疗图像处理中常用的图像分割算法及其优化方法

医疗图像处理中常用的图像分割算法及其优化方法在医疗图像处理中,图像分割是一个重要的步骤,它的目标是将医疗图像中的不同结构和组织分离开来,以便进行更进一步的分析和诊断。
在过去的几十年里,研究人员提出了许多不同的图像分割算法,这些算法涵盖了不同的数学和计算方法。
本文将介绍一些在医疗图像处理中常用的图像分割算法,并讨论它们的优化方法。
一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的一种方法。
它们基于图像中像素的灰度值,将像素分为不同的区域。
阈值可以是固定的,也可以是根据图像的特性自适应选择的。
阈值算法简单直接,计算效率高,适用于许多医学应用中。
然而,基于阈值的方法也存在一些问题。
例如,在存在背景噪声的情况下,会导致分割结果不准确。
另外,对于具有不均匀光照和强度变化的图像,简单的阈值方法可能无法得到满意的分割结果。
为了解决这些问题,研究人员提出了许多优化方法。
一种常见的优化方法是Otsu分割算法,它基于最大类间方差原则来选择最佳的阈值。
另外,自适应阈值方法可以根据局部像素的灰度值计算其相应的阈值,从而适应不同图像区域的特性。
二、基于区域的图像分割算法基于区域的图像分割算法将像素分为具有相似特性的区域。
这些算法通常采用从种子点开始的区域生长或者分裂算法。
区域生长算法以某个种子点为起点,不断将具有相似特性的像素添加到该区域中,直到不再满足添加条件为止。
而区域分裂算法则是从整个图像开始,将具有不同特性的像素分裂成不同的区域。
基于区域的分割方法在医学图像分割中有广泛的应用,特别是在分割复杂的组织结构时非常有效。
然而,这些方法对噪声和弱边缘的鲁棒性较低。
为了解决这个问题,研究人员提出了一些改进的方法。
例如,可以将基于区域的算法与基于边缘的算法相结合,以利用边缘信息来提高分割结果的准确性。
三、基于边缘的图像分割算法基于边缘的图像分割算法着重于提取图像中物体的边缘信息,并将边缘连接成闭合轮廓。
这些算法通常基于边缘检测算法,如Canny算法、Sobel算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程结业论文课题名称基于阈值的图像分割方法姓名湛宇峥学号1412202-24学院信息与电子工程学院专业电子信息工程指导教师崔治副教授2017年6月12日湖南城市学院课程结业论文诚信声明本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担目录摘要 (1)关键词 (1)ABSTRACT (2)KEY WORDS (2)引言 (3)1基于点的全局阈值选取方法 (4)1.1最大类间交叉熵法 (5)1.2迭代法 (6)2基于区域的全局阈值选取方法 (7)2.1简单统计法 (8)2.3 直方图变化法 (9)3局部阈值法和多阈值法 (10)3.1水线阈值算法 (11)3.2变化阈值法 (12)4仿真实验结论 (12)参考文献 (13)附录基于阈值的图像分割方法摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。
图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。
在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。
关键词:图像分割;阈值;matlabBased on thresholding for image segmentation methodsAbstract:Image segmentation is a indispensable part of image processing and analysis, have important practical significance.It is according to the needs of image processing and analysis of the image into each area and extract the characteristic of technology and process of interested target.Image segmentation methods and types have a lot of different categories, some segmentation operation can be directly applied to all images, while others can only apply to special image.The purpose of this paper is to through the collection of image segmentation method based on threshold related information, analysis the advantages and disadvantages of various segmentation algorithm, using the MATLAB tools to threshold segmentation algorithm is studied. Keywords:image segmentation; The threshold value; matlab引言在现代科学中,随着计算机科学技术的不断发展,人们在日常生活中对图像信息的需求急剧暴涨,人们对图像得要求也越来越高,p图软件,美颜相机等等也是越来越受大众喜爱,对此,数字图像处理技术在近年来也是得到了迅速的发展和改进,成为当下学科领域的热门焦点。
图像分割是图像识别和计算机视觉至关重要的预处理。
没有正确的分割就不可能有正确的识别。
但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。
例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。
因此图像分割是需要进一步研究的技术。
人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法。
图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。
图像分割的方法也是不胜枚举。
其中阈值法就是一种传统而又简单实用的图像分割方法,也是最基础和最广泛的分割方法。
这些方法都广泛应用于各个领域,比如,红外技术应用,医药技术应用,农业工程技术应用,工业产业等行业。
1:基于点的全局阈值选取方法1.1最大类间交叉熵法在取阈值分割中,一般要求月至的选取要使分割的目标与背景尽可能的差异,假设图像有目标1和背景2两类像素,可以用交叉熵来度量目标和背景间的差异,将这种类间差异性用原始图像p 中的个像素点S 判决到目标和背景两类区域的两个后验概率p(1/s),p(2/s)之间的交叉熵的平均值表示,通过最大化将像素点判决到不同的区域的后验概率来求最优的阈值。
在这里,我们设X 是一幅具有L 级灰度级的图像,其中第i 级像素为i N 个,其中i 的值在0~L-1之间,图像的总像素点个数为:第i 级出现的概率为:图像的总平均灰度级为:0C 类像素所占面积的比例为:1C 类像素所占面积的比例为:01-=ωω10C 类像素的平均灰度为:000=ωμμ/)()(k k 1C 类像素的平均灰度为: 111=ωμμ/)()(k k其中,∑-==10L i i iP μN N P i i =∑-==10L i i N N ∑-=0=10k i i P ω∑-=0=10)(k i i iP k μ则类间方差公式为:22)()()(01002-+-=μμωμμωδk1.2迭代法迭代法求阈值的原理: 基于逼近的思想,步骤如下: 1. 求出图象的最大灰度值和最小灰度值,分别记为ZMAX 和ZMIN ,令初始阈值T0=(ZMAX+ZMIN)/2;2. 根据阈值TK 将图象分割为前景和背景,分别求出两者的平均灰度值ZO 和ZB 3. 求出新阈值TK+1=(ZO+ZB)/2; 4. 若TK=TK+1,则所得即为阈值;否则转2,迭代计算。
2:基于区域的全局阈值选取方法2.1简单统计法简单统计法是一种基于简单的图像统计的基础阈值选取方法。
阈值通过简单统计法可以直接计算得到,从而避免了去分析灰度直方图。
该方法的计算公式为()()()∑∑∑∑=x y x yy x e y x f y x e T ,,, (8)其中, (){}y x e e y x e ,max ,=()()y x f y x f e x ,1,1+--=∑-=01-==1)(1)(L k i i k iP k μμ()()1,1,+--=y x f y x f e y2.2 直方图变化法实际的说,直方图的谷底是非常理想的分割阈值,现实很难操作,而且在实际应用中,图像也会受到噪声等其他环境等的影响从而使其直方图上原本分离的峰之间的谷底被填充,或者目标和背景的峰相距很近或者大小差不多。
直方图变化的基本思想是利用一些像素领域的局部性质对原来的直方图进行变换已得到一个新的直方图,对比原直方图,或者峰之间的谷更深了。
或者谷转变成峰从而更好检测了。
借助前面的梯度算子作用于领域可以得到该像素的梯度值。
3:局部阈值法和多阈值法3.1水线阈值算法分水岭图像分割算法是借助地形学的概念进行操作的,这种方法近年来得到了广泛的使用,该算法要操作需要掌握相关的数学形态学的理念和方法。
该算法是串行计算过程,得到的是目标的边界,这种方法是通过确定分水岭的位置而进行的图像分割,但由于各区域内部像素的灰度很相近,相邻区域的像素灰度差距比较大,可以先计算一幅图的梯度图,再找梯度图的分水岭。
3.2变化阈值法有时候图像中有如下一些情况:有阴影,照度不均匀,各处的对比度不同,突发噪声,背景灰度变化等,在这些情况下,如果只用一个固定的全局阈值对整幅图像进行分割,则由于不能兼顾图像各处的情况而使分割效果受到影响。
有一种解决办法就是用与象素位置相关的一组阈值来对图像各部分分别进行分割。
这种与坐标相关的阈值也叫动态阈值,此方法也叫变化阈值法。
例如,一幅照度不均(左边亮右边暗)的原始图像为:图4.原始图像图5.阈值低,对亮区效果好,则暗区差图6.阈值高,对暗区效果好,则亮区差图7.按两个区域取局部阈值的分割结果4:仿真实验结论阈值法是一种传统但有简单有效实用的基础图像分割方法。
图像的的变化是无穷无尽的,在实际应用中,通常将多种分割算法有效地结合在一起使用以获得更好的分割效果。
除了以上介绍的方法外,还存在着多种不同的其他有效方法,在此,就不多介绍,此外,本片论文也存在在一些描述不是很清楚的地方,希望有缘读者可以提供相关建议和意见,一定多加感谢。
参考文献:1 夏得深,傅德胜.现代图像处理技术与应用.东南大学出版,20012余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.3刘直芳,游胜志等.基于多尺度彩色形态矢量算子的边缘检测.中国图像图形学报 2002 (9) 888-8934周铭,周惠.基于遗传算法的自适应聚类图像阈值分割方法.计算机工程与应用[J],2005,5(6):231-245.5杨杰,黄朝兵. 数字图像处理及MATLAB实现.电子工业出版社,20106 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一).数据采集与处理[J],1993,9(3):193-201.7 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(二).数据采集与处理8 王茜蓓,彭中,刘莉.一种基于自适应阈值的图像分割算法.北京理工大学学报[J],2003,23(4):531-524.9 Sahoo P K et al. A survey of thresholding techniques. Computer Vision, Graphics and Image Processing[J],1988,41(3):233-260.10 Doyle W.Operations useful for similarity-invariant pattern recognition JACM[J],1962, 9(2):259-26711 Perez A, Gonzalez R C.An iterative thresholding algorithm for image segmentation. IEEE Trans[J],1987,9(6):742-751.附录:I=imread('tsaml.jpg');I=double(I);T=(min(I(:))+max(I(:)))/2;done=false;i=0;while ~doner1=find(I<=T);r2=find(I>T);Tnew=(mean(I(r1))+mean(I(r2)))/2;done=abs(Tnew-T)<1;T=Tnew;i=i+1;endI(r1)=0;I(r2)=1;figure;imshow(I)2:a=imread('img.bmp'); imshow(a)figure;imhist(a)。