仿生机器人之机器蛇解读
仿生机器人之机器蛇解读

第二种是直线运动,即履带式运动。由于蛇没有胸 骨,它的肋骨可以前后自由移动,肋骨与腹鳞之间有 肋皮肌相连。当肋皮肌收缩时,肋骨便向前移动,这 就带动宽大的腹鳞依次竖立,即稍稍翘起,翘起的腹 鳞就像踩着地面那样,但这时只是腹鳞动而蛇身没有 动,接着肋皮肌放松,腹鳞的后缘就施力于粗糙的地 面,靠反作用把蛇体推向前方,这种运动方式产生的 效果是使蛇身直线向前爬行,就像坦克那样。
6
1)美国宇航局(NASA)的SnakeBot
NASA于1999年开始研究多关节的蛇形机器人,计划在 其太空计划中用于行星地表探测以及空间站维护工作。其第 一代蛇形机器人如图所示。它采用相邻正交的串联机构,由 中央计算机集中控制。该机器人能完成蠕动前进,游动前进, 翻越简单障碍物等功能。
7
2)德国Gavin.H S1-S5
9
4)国防科大RoboSnake
国防科大RoboSnake是国内最早报道的蛇形机器人,最初为 二维结构,依靠从动轮前进,长约1.5米,重约3Kg。共分十七节。 它能在地上或草丛中自主地蜿蜒运动,前进、后退、转弯和加速等 都活动自如,最大运动速度可达每分钟二十米。最有趣的是,披上 “蛇皮”后,它还能像蛇一样在水中游泳,摆动着的“身躯”激起 层层涟漪。 10
5)中科院沈阳自动化所蛇形机器人
同样采用正交串联结构,可以完成蠕动前进、游 动前进、滚转等运动。并给予可重构的思想提出一种新 型结构。
11
二、蛇形机器人的运动模式分析
第一种是侧摆和起伏,所有的蛇都能以这种方式 向前爬行。爬行时,蛇体在地面上作水平波状弯曲, 使弯曲处的后边施力于粗糙的地面上,由地面的反作 用力推动蛇体前进,如果把蛇放在平滑的玻璃板上, 那它就寸步难行,无法以这种方式爬行了,当然,在 自然界是不会有像玻璃那样光滑的地面的。
蛇形机器人论文

上海电力学院本科毕业设计(论文)题目:仿生机器蛇的设计与仿真院系:电力与自动化工程学院专业年级:测控技术与仪器学生姓名:学号:指导教师:【摘要】在仿生机械学中,模仿生物蛇而衍生的机器蛇将逐渐具备灵活的变形特征。
具有多于确定机器人空间位置和姿态所需的自由度,使得它可摹仿生物蛇的运动状态,在许多的领域具有广泛的应用前景。
本文提出了一种类似正弦波形的7关节三动杆蛇形机器人结构,并对该机器人的步态进行了分析,对其前进的方式进行了数学建模设计,最后使用软件ADAMS2007进行运动的计算机建模和模拟仿真,通过仿真,验证了模型的步态过程与端点的轨迹曲线。
为该蛇形机器人在具体设计制造前提供了理论和仿真。
关键词:蛇形机器人;运动模拟;ADAMS建模仿真【Abstract】In simulation mechanics, snake-machine which derives from simulating biological snakes becomes more and more flexible. Snake-machine is a highly redundant robot which has more freedoms which is needed in space location and gestures than definite robot, thus it can simulate the movement of snake and has a better prospect: for example it can execute investigation missions、mine sweeping and searching. The variation of movement makes it has a better ability of adaption, every joint derived separately, it has a strong load capacity and easy maintenance. This article provides a structure of sinusoidal seven joints snake-machine, and gives a conclusion by using the software ADAMS2007 to execute the modeling of motion and simulation. This snake-machine gives theory and simulation before specific design and manufacturing.Key Words:Snake-like robot;Motion simulation;ADAMS Modeling and Simulation目录1 绪论.......................................................... - 1 -1.1课题研究的背景及意义 (1)1.2仿生机器蛇的研究现状及发展 (1)1.2.1 国外研究现状......................................... - 1 -1.2.2 国内研究现状......................................... - 5 -1.3蛇的运动方式. (6)1.4本文的研究内容 (7)2 仿生机器蛇的运动分析及步态研究................................ - 9 -2.1引言 (9)2.2仿生机器蛇运动模型 (9)2.2.1 仿生机器蛇的侧向运动模型.............................. - 9 -2.2.2 仿生机器蛇的蠕动运动模型............................. - 10 -2.3仿生机器蛇的步态研究. (11)2.3.1 仿生机器蛇的模型结构设计............................. - 11 -2.3.2 仿生机器蛇的步态研究................................. - 11 -2.3.2 仿生机器蛇的步态与位移分析........................... - 12 -2.3.3 仿生机器蛇各连杆间的相对角位移....................... - 14 -2.3.4 仿生机器蛇设计....................................... - 14 -2.4本章小结. (16)3 仿生机器蛇的ADAMS仿真....................................... - 17 -3.1ADAMS软件介绍 (17)3.2仿生机器蛇的ADAMS仿真流程 (18)3.3仿生机器蛇的ADAMS仿真模型参数 (19)3.4仿生机器蛇的ADAMS仿真结果分析与验证 (21)3.5本章小结 (27)4 总结......................................................... - 28 -4.1结论 (28)4.2展望 (28)致谢........................................................... - 29 -参考文献....................................................... - 30 -附录........................................................... - 31 -附录1:ADAMS中的STEP和IF函数及方形波函数 (31)附录2:ADAMS中的约束关系 (33)附录3:万向节 (34)1 绪论1.1 课题研究的背景及意义蛇的生存环境是非常多样化的:森林、沙漠、山地、石堆、草丛、沼泽甚至湖泊。
蛇形机器人驱动原理

蛇形机器人驱动原理
蛇形机器人驱动原理可以分为以下几种方法:
1. 基于绳索驱动:蛇形机器人通过多个绳索和驱动轮组成的机构来实现驱动。
每个绳索连接到机器人的不同部位,并通过电动机或者气动机构驱动来控制绳索的收放,从而使机器人进行蠕动运动。
2. 基于电动马达驱动:蛇形机器人的每个关节都安装有电动马达,通过控制电动马达的旋转来驱动机器人的运动。
不同关节之间的运动通过分别控制各个电动马达的转速和方向来实现。
3. 基于形变材料驱动:蛇形机器人的身体由形变材料(如人工肌肉)构成,形变材料会在外界刺激下发生形变,从而驱动机器人运动。
可以通过电流、温度或化学反应等方式,控制形变材料的形状变化,进而实现机器人的蛇行运动。
4. 基于液压驱动:蛇形机器人使用液压系统来驱动机器人的运动。
液压驱动系统通过液体的流动来驱动机械部件的运动,液压系统中的液压泵提供液体的动力,并通过液压缸或液压马达将液体的动力转化为机械运动。
以上是一些常见的蛇形机器人驱动原理,不同的蛇形机器人可能采用不同的驱动方式。
此外,还可以使用其他驱动原理,如气动驱动、电磁驱动等,来实现蛇形机器人的运动。
蛇形机器人的机构设计及运动分析

机
电
工
程
Vol. 29 No.5 May 2012
蛇形机器人的机构设计及运动分析
(中国船舶重工集团公司 第七一三研究所,河南 郑州 450015)
摘要:蛇形机器人以其独特的身体结构和运动形式能够适应各种复杂环境。为了验证蛇形机器人的运动能力, 设计了一种前进中 可做周期性运动的蛇形机器人, 重点讨论了其关节机构的设计和运动原理; 通过建立蛇形机器人运动的数学模型, 并结合其运动的 周期性, 详细分析了三连杆模型的运动步态特性。研究结果表明, 三连杆运动步态提高了蛇形机器人的运动能力。 关键词:蛇形机器人; 周期性运动; 关节设计; 三连杆; 运动步态 中图分类号:TH122; TH112; TP242 文献标志码: A 文章编号: 1001-4551 (2012) 05-0512-04
不同的运动方式, 本研究设计的模块单元的连接方式 如图 3 所示, 是主动驱动的连接方式, 电机固定在电机
· 514 ·
机
电
工
程
第 29 卷
蛇形机器人三连杆组合的运动步态和多连杆组合的运 动步态 2.1
[6-12]
2.2
。
把机器人简化为 6 段固定长度的连杆系统。假设蛇形 角度范围是±60°。由蛇尾向蛇头方向运动, 三连杆的 程, 运动波的传递过程如图 4 所示。
ZHANG Ling-ling, QU Ze-chao
பைடு நூலகம்
0
引
言
本研究所述的蛇形机器人。该蛇形机器人可以在复杂 环境中起伏前进, 并能够实现侧移、 翻转、 平面蜿蜒等 多种运动形式。通过对蛇形机器人模型的运动分析, 笔者研究出了一种蛇形机器人的运动方式, 并在其实 体上得到了有效的验证。
仿生蛇形机器人设计与应用

声纳与红外感应
仿生蛇形机器人还具备声纳和红外感应功能,能够感知周 围生物和电子设备的存在,为侦察提供更多信息。
目标跟踪与打击
灵活跟踪
凭借其仿生的蛇形结构 ,机器人能够在复杂环 境中实现对移动目标的 跟踪,如车辆、人员等 。
狭小空间救援
仿生蛇形机器人的灵活性和适应性使其能够在狭小的空间中进行 救援,为受灾人员提供及时的援助。
灾害模拟演练
模拟灾害环境
仿生蛇形机器人可以模拟地震、洪水等灾害现场,为救援团队提供 模拟演练的环境。
评估救援能力
通过模拟演练,救援团队可以评估自身的搜救能力和响应速度,为 实际救援提供参考。
培训与教育
超声波传感器
用于测量机器人与周围环境之间的距离,实现机 器人的导航功能。
IMU传感器
用于检测机器人的姿态,帮助机器人保持稳定的 运动状态。
驱动器系统
电机驱动器
用于驱动电机转动,实现机器人的运动。
舵机驱动器
用于驱动舵机转动,控制机器人的姿态和运动方向。
电源系统
电池
为机器人提供电力,一般采用可充电电ቤተ መጻሕፍቲ ባይዱ。
感知系统架构
01
设计感知系统的整体架构,包括传感器数据的采集、处理和传
输。
触觉传感器
02
设计能够模拟蛇的触觉感知的触觉传感器,并开发相应的数据
处理算法。
视觉传感器
03
设计能够模拟蛇的视觉感知的视觉传感器,并开发相应的数据
处理算法。
导航软件设计
1 2
SLAM算法
使用SLAM(同时定位与地图构建)算法实现机 器人的自主导航。
机器蛇说明书

机器蛇说明书作者:徐亮,邹庆东,吴珂科,徐欢欢机器蛇,是一种新型的仿生机器人,具有低重心、多关节、多自由度、多冗余度等特点。
它与传统的轮式或两足步行机器人不同的是,它实现了像蛇一样的“无肢运动”。
我们设计的机器蛇具有前进、后退、拐弯、抬头、侧向翻滚等多种运动方式,并具有较强的环境适应能力。
◆机器蛇的主要特点1、适应各种路面这种“无肢运动”最大的优点在于它能够在各种不同的路况下前进。
轮式和两足步行机器人一般都只能在地面上行走,而且对路况的要求比较高。
机器蛇的超多自由度使其身体具有柔软的特性,能够适应各种不同的工作地面,有较强的环境适应能力。
2、抗干扰能力强机器蛇还具有很强的抗干扰能力。
首先,在运动过程中,机器蛇细长而柔软的身体始终接触地面而保持最低的身体重心,使其具有高度的稳定性。
其次,由于我们的机器蛇四个侧面都是对称的,即使在运动时受到外界一些不确定因素的干扰,比如从斜坡上翻滚下来,或者外界推力使其翻身,机器蛇都可以自动判断当前应该将哪个侧面作为底面,并执行相应的运动程序,保持了机器蛇的运动能在复杂工况下连续进行。
3、模块化设计机器蛇的各个关节在结构上是相同的,便于设计和维护,即机器蛇的执行单元具有机构上的可重构性。
机器蛇系统的硬件和软件系统均易于采用模块化设计,这些相同的模块在设计、制造、装配过程上是统一的,大大缩小了设计周期,降低制造成本,同时便于机器人的维护和零件的替换。
4、可在狭小空间工作机器蛇身体比较小,更适合于在一些管道等窄小的地方行走,这也是普通机器人难以达到的。
◆机器蛇的机械结构机器蛇在机械结构上采用了一种串联杆系结构,通过关节的相对转动角度达到相应的运动姿态以实现规定的运动。
同时各个关节在结构上采用了模块化设计,以便于结构设计和维护。
机器蛇的每个关节均装有伺服舵机,各个关节模块以转轴为轴心,在电动机的驱动下,在平面内作ο90-到ο90+的旋转。
相邻关节正交连接,一个关节在偏转方向旋转,另一个关节在俯仰方向上旋转,结合起来就可以实现三维空间内的运动。
对机器蛇实验的一些感触与收获

对机器蛇实验的一些感触与收获在对于机器人这个词还处于茫然阶段的时候,我选择了机器人实验(二)这门课程,王伟老师将我从零基础的状态带入了机器人这个领域,开始了对机器蛇的学习与探究。
对于蛇形机器人,开始也是被很多人都感兴趣的仿生学所吸引,想看看到底用硬邦邦的东西是怎么实现蛇的运动。
本以为枯燥的学科在老师风趣幽默的语言和丰富生动的肢体动作下显得有意思多了!一、下面是我在这段时间学习中关于机器蛇的一些简单的认识:(一)、对于蛇形机器人的系统我们有了初步的认识开始几周的课,我们讲述的是理论课,我们通过对生物蛇的想象和观察发现,生物蛇的运动多种多样,蜿蜒运动、直线式蠕动、螺旋式滑动、蠕动、横波运动等等,但是无论是哪一种运动都可以看做是一列行波的传递。
(二)、蛇形机器人宏观运动的实现---模块化设构建我们将蛇身分成若干个关节,solidsnake利用垂直和水平方向的正交的关节来拟合蛇类生物的柔软身体,每两个正交的关节组成一个单元体。
每个关节实现相同的运动,只是时间上有所差异,也就是相位不同。
这样我们的工作就简单多了,只需编译出想要的运动的一个程序就可以了,其他关节只要改动一个时间参数就可以了。
那么这个程序的编写就是后面提到的软件部分的重要任务了,也是我们这次实验的重点内容。
蛇的每个关节不同方向的运动是通过舵机控制来实现的,从机采用了ATmega8处理器,每个从机模块控制两个正交方向的舵机工作。
舵机是一种可以根据给定信号转动一定角度的伺服电机,信号不同,其转角也不同,转角需控制在最大范围内。
(三)、关于机器蛇的软件部分这是我们这次实验的重点内容,老师给我们布置了六个实验,来帮助我们学习机器蛇单关节运动的实现,其中包括:控制芯片ATMega8的I/O输出、内部定时器、IO与定时器、单舵机控制、蛇体关节双舵机控制、单元关节通讯。
主要学习了几个软件的应用:ICCAVR、PonyProg2000、Protel99SE。
蛇形机器人的运动控制及定位方法研究

通过比对实际场景与预先采集的图像特征点,计算出机器人的位置和姿态,适用于静态和动态环境。
单GPS定位
利用全球定位系统(GPS)卫星信号测量位置信息,适用于室外环境。
差分GPS定位
通过比较基准站接收机和移动站接收机之间的GPS信号差异,消除公共误差,提高定位精度,适用于室外环境。
基于GPS的定位方法
03
蛇形机器人的运动控制方法
模型预测控制(MPC):利用机器人的动力学模型进行预测和控制,考虑未来的行为影响,实现更精确的控制。
滑模控制(Sliding Mode Control, SMC):在蛇形机器人中利用滑模表面的特性,实现快速、稳定的控制。
反馈线性化控制(Feedback Linearization Control):通过反馈线性化技术将非线性系统转化为线性系统,简化控制过程,提高控制精度。
实验设计
实验结果
实验结果分析
结果分析
运动控制算法的有效性
定位方法的准确性
06
研究结论与展望
运动控制方面
经过实验验证,所设计的蛇形机器人运动控制器在模拟环境中能够实现预期的运动效果,包括直线行走、曲线行走以及避障等。同时,通过优化算法,实现论
定位方法方面
针对蛇形机器人的特点,研究并实现了基于视觉和超声波传感器的定位方法。实验结果表明,这两种方法能够在不同环境中实现对蛇形机器人的准确定位。
2023-10-26
《蛇形机器人的运动控制及定位方法研究》
CATALOGUE
目录
研究背景和意义蛇形机器人概述蛇形机器人的运动控制方法蛇形机器人的定位方法研究实验设计与结果分析研究结论与展望
01
研究背景和意义
1
研究背景
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
4)国防科大RoboSnake
国防科大RoboSnake是国内最早报道的蛇形机器人,最初为 二维结构,依靠从动轮前进,长约1.5米,重约3Kg。共分十七节。 它能在地上或草丛中自主地蜿蜒运动,前进、后退、转弯和加速等 都活动自如,最大运动速度可达每分钟二十米。最有趣的是,披上 “蛇皮”后,它还能像蛇一样在水中游泳,摆动着的“身躯”激起 层层涟漪。 10
德国人Gavin.H从约1997年开始从事蛇形机器人的研究 工作,到目前为止共设计并制作了S1,S2,S3,S4,S5五代蛇形机 器人,图3为S5。其研究已经达到相当高的水平,特点是:各 个关节形状尺寸不同,高度模拟生物蛇;为二维结构,无法 完成三维空间运动;依靠从动轮而不是摩擦运动,运动速度 很高,主要运动方式为游动。
14
第四种方式是侧向移动,从头部开始,身体部分 顺次接地、抬起,完成前进运动,借助腹部与地面之 间的摩擦力移动。这种运动形式常见于沙地环境中的 蛇类运动。 另外,蛇的其他运动形式有:跳跃、绕身体脊椎 的回转、利用障碍物推动身体运动、蠕虫运动、滑行 冲击等。
15
三、蛇形机器人结构形式
蛇体结构一
每组传动装置包括:1台直流伺服电机,1组一级齿轮减速,1组 丝杠螺母传动,以及1个球形连接关节。底部有1个滑动轴承作为轮 子以减少摩擦。在各单元节之间的附加球型关节使得仿蛇机器人在 地表的明显不规则运动得到一定补偿。在大多数运动模式下,每个 铰链的运动或每个单元节的垂直方向自由度,并非由机器人控制器 控制,而是由地表的几何形态进行被动的控制。仿蛇机器人的所有 单元节以同样地方式进行设计。 16
6
1)美国宇航局(NASA)的SnakeBot
NASA于1999年开始研究多关节的蛇形机器人,计划在 其太空计划中用于行星地表探测以及空间站维护工作。其第 一代蛇形机器人如图所示。它采用相邻正交的串联机构,由 中央计算机集中控制。该机器人能完成蠕动前进,游动前进, 翻越简单障碍物等功能。
7
2)德国Gavin.H S1-S5
蛇体结构二
该结构是X-Y轴对称的,因此SolidSnake可以随时在X-Y 正交串联结构(三维结构)和X/Y单方向串联结构(二维结构) 之间转换,以适应不同的环境。三维结构更适用于复杂地形, 上楼梯,越障等任务,二维结构可以在平坦地形达到更高的运 动效率。
17
四、蛇形机器人运动形式
蠕动前进示意图
12
第二种是直线运动,即履带式运动。由于蛇没有胸 骨,它的肋骨可以前后自由移动,肋骨与腹鳞之间有 肋皮肌相连。当肋皮肌收缩时,肋骨便向前移动,这 就带动宽大的腹鳞依次竖立,即稍稍翘起,翘起的腹 鳞就像踩着地面那样,但这时只是腹鳞动而蛇身没有 动,接着肋皮肌放松,腹鳞的后缘就施力于粗糙的地 面,靠反作用把蛇体推向前方,这种运动方式产生的 效果是使蛇身直线向前爬行,就像坦克那样。
5)中科院沈阳自动化所蛇形机器人
同样采用正交串联结构,可以完成蠕动前进、游 动前进、滚转等运动。并给予可重构的思想提出一种新 型结构。
11
二、蛇形机器人的运动模式分析
第一种是侧摆和起伏,所有的蛇都能以这种方式 向前爬行。爬行时,蛇体在地面上作水平波状力推动蛇体前进,如果把蛇放在平滑的玻璃板上, 那它就寸步难行,无法以这种方式爬行了,当然,在 自然界是不会有像玻璃那样光滑的地面的。
18
上楼梯运动示意图
19
结合国家反恐防暴的需求
车底探查实验
谢谢!
仿生机器人之机器蛇
1
•概 述 • 蛇形机器人的运动模式分析 • 蛇形机器人结构形式 • 蛇形机器人运动形式
2
一、概
述
一、概
述
蛇是无四肢动物中最庞大得一类,它在自然界中有 几千年的进化历史,种类繁多,分布广泛,它能进行多 种运动以适应不同得生活环境(沙漠、水池、陆地、树 林等),仿蛇形机器人就在这种背景下诞生了。 近几年来,仿生机器人学正在机器人领域占有越来 越重要的位置。对于障碍物众多、凸凹不平、以及狭窄 地形等环境,类似蛇形的机器人有较大的运动优势,可 以满足多种用途。
8
3)德国GMD国家实验室的AiS
德国GMD国家实验室也开发 出了基于模块式结构和CAN总线 的蛇形机器人,其结构为三维关 节,每关节有三个电机及六个力 矩传感器,六个红外传感器,因 此结构相当复杂,直径达20cm左 右。其控制方式为上位机 总 线 下位机。目前该机器人具 有速度及位置闭环,能翻越简单 障碍,具有一定的自主反应能力。
13
第三种方式是伸缩运动,蛇身前部抬起,尽力前 伸,接触到支持的物体时,蛇身后部即跟着缩向前去 ,然后再抬起身体前部向前伸,得到支持物,后部再 缩向前去,这样交替伸缩,蛇就能不断地向前爬行。 在地面爬行比较缓慢的蛇,如铅色水蛇等,在受到惊 动时,蛇身会很快地连续伸缩,加快爬行的速度,给 人以跳跃的感觉。