江苏省苏州市姑苏区2018-2019学年八年级下学期期末考试数学试题及参考答案

合集下载

(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)

(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)

★绝密★启用前2018-2019学年下学期期末考试八年级 数学(苏科版)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C . 3个D . 4个 2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是(▲)A .52B .53C .51D .314.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C . 213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分 别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S , OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲ )A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲) A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为( ▲ ) A .6 B .8 C . 10 D .12第7题 第7题第6题xyFEDAO BC 第8题yxBCOA二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ .10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a , ,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ .13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是 ▲ 2cm . 14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”的长等于 ▲ .16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ .17.如图,一次函数11y k x b =+的图像与反比例函数22k y x=的图像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ . 18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,C'P CABDE第16题第17题yxBAO菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm . 三、解答题(本大题共有10道题,共96分) 19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯ (2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分) 解方程:22216224x x x x x -+-=+--21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;yxD CBEAO(2)计算扇形统计图中m =__▲__; (3)计算扇形统计图中A 区的圆心角的度数.(4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分) 如图,在四边形ABCD 中,AB CD //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由.24. (本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D .(1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集;(3)判断CD 与AB 的位置关系,并说明理由.25. (本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度.(1)根据题意填空:BACDEF①若小慧设 ▲ 为x 公里/小时,列出尚不完整的 方程:xx 5.1120120=+( ▲ ); ②若小聪设 ▲ 为y 小时,列出尚不完整的 方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:(1).在实数范围内分解因式: =+-3322x x ▲ ; (2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕yxH DEBAFCO点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标; (3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 为直线BC 上一动点(点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF . (1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CDCF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.图①图②图③答案一、选择题(3×8=24分)题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9. 21-≥x 10. 52 11. 32 12.9322m m <≠且 13. 12 14.1或2- 15. 1或23316.︒75 17. 02x <<或6x > 18.5,26,8 三、解答题19.(每题4分,共8分)(1) 22- (2) 22x x --+ 20.(本题8分)2x =- 经检验2x =-是原方程的增根,∴原方程无解21.(本题8分) 原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45 (2)12 (3)︒=︒⨯14436020080 (4)567020046809000=+⨯23.(本题10分) (1)证明:AB CD //∴BAC DCA ∠=∠ AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS ) …………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。

苏教版2018-2019学年八年级下学期期末考试数学试卷(含答案详解)

苏教版2018-2019学年八年级下学期期末考试数学试卷(含答案详解)

2018-2019学年江苏省苏州八年级(下)期末数学模拟试卷一、选择题:(每题2分)1.(2分)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)2.(2分)下列计算中,正确的是()A.B.C.D.3.(2分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.324.(2分)下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似5.(2分)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.6.(2分)最简二次根式与是同类二次根式,则a为()A.a=6 B.a=2 C.a=3或a=2 D.a=17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.88.(2分)已知y=+﹣3,则xy=()A.﹣15 B.﹣9 C.9 D.159.(2分)如图,已知点A是一次函数y=2x的图象与反比例函数y=的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△OAB的面积为4,则点C的坐标为()A.(﹣8,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)10.(2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.6.则正确结论的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣4x=0的解是.12.(2分)点(3,a)在反比例函数y=图象上,则a=.13.(2分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=4,则∠C等于.14.(2分)已知关于x的方程的解是正数,则m的取值范围是.15.(2分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.16.(2分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=cm.17.(2分)如图,将一宽为1dm的矩形纸条沿BC折叠,若∠CAB=30°,则折叠后重叠部分的面积为dm2.18.(2分)如图,正方形CDEF内接于Rt△ABC,AE=1,BE=2,则正方形的面积是.三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推算步骤或文字说明)19.(4分)计算:(﹣)2+﹣2.20.(8分)解方程:(1)2x 2﹣5x ﹣3=0; (2)+=.21.(5分)先化简,再求值:÷(a ﹣1+),其中a 是方程x 2﹣x =6的根.22.(6分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数为度.(2)请把条形统计图补充完整.(3)若该校有学生1200人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?23.(6分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.24.(6分)如图,在平面直角坐标系xOy中,一次函数y1=kx的图象与反比例函数y2=图象交于A、B两点.(1)根据图象,求一次函数和反比例函数解析式;(2)根据图象直接写出kx>的解集为;(3)若点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试直接写出点P所有可能的坐标为.25.(6分)如图,在△ABC中,AB=12cm,BC=8cm,BD平分∠ABC交AC于点D,DE∥BC 交AB于点E.(1)求证:BE=ED;(2)求AE的长.26.(7分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.27.(8分)如图,在平面直角坐标系中,点A的坐标为(1,1),OA=OC,∠OAC=90°,点D为x轴上一动点,以AD为边在AD的右侧作正方形ADEF.(1)如图(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为;位置关系为.(2)如图(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例.28.(8分)如图,在平面直角坐标系中,直线y=﹣4与x轴交于点A,与y轴交于点B,点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从A出发沿AB以每秒1个单位长的速度向点B匀速运动,当点P、Q运动时,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q 同时出发,当点Q到达点B时停止运动,点P也随之停止,设点P、Q运动的时间为t秒(t>0).(1)点Q的坐标是(,)(用含t的代数式表示);(2)当点E在BO上时,四边形QBED能否为直角梯形?若能,求出t的值;若不能,请说明理由;(3)当t为何值时,直线DE经过点O.参考答案与试题解析一、选择题:(每题2分)1.(2分)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)【解答】解:∵M(﹣2,3)在双曲线y=上,∴k=﹣2×3=﹣6,A、3×(﹣2)=﹣6,故此点一定在该双曲线上;B、﹣2×(﹣3)=6≠﹣6,故此点一定不在该双曲线上;C、2×3=6≠﹣6,故此点一定不在该双曲线上;D、3×2=6≠﹣6,故此点一定不在该双曲线上;故选:A.2.(2分)下列计算中,正确的是()A.B. C. D.【解答】解:A、二次根式的加法,实质上是合并同类二次根式,不是同类二次根式,不能合并,故A错误;B、二次根式相除,等于被开方数相除,故B正确;C、根号外的也要相乘,等于9,故C错误;D、根据=|a|,等于3,故D错误.故选:B.3.(2分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选:D.4.(2分)下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似【解答】解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选:C.5.(2分)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【解答】解:∵五张形状、质地、大小完全相同的卡片上,正面分别画有:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆,卡片的正面图形既是中心对称图形,又是轴对称图形的有:线段、圆,∴从中任意抽取一张,那么抽出卡片的正面图形既是中心对称图形,又是轴对称图形的概率是:.故选:B.6.(2分)最简二次根式与是同类二次根式,则a为()A.a=6 B.a=2 C.a=3或a=2 D.a=1【解答】解:由题意可得a2+3=5a﹣3解得a=2或a=3;当a=3时,a2+3=5a﹣3=12,不是最简根式,因此a=3不合题意,舍去.因此a=2.故选:B.7.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.8【解答】解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.8.(2分)已知y=+﹣3,则xy=()A.﹣15 B.﹣9 C.9 D.15【解答】解:由题意得,x﹣5≥0且10﹣2x≥0,解得x≥5且x≤5,所以,x=5,y=﹣3,xy=5×(﹣3)=﹣15.故选:A.9.(2分)如图,已知点A是一次函数y=2x的图象与反比例函数y=的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△OAB的面积为4,则点C的坐标为()A.(﹣8,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【解答】解:∵A在直线y=2x上,∴设AB=2x,OB=x,∵△OAB的面积为4,∴•x•2x=4,解得:x=2,∴AB=4,OB=2,∵AB⊥OB,∴∠ABO=∠ABO=90°,∵∠ACB=∠OAB,∴△AOB∽△CAB,∴=,∴=,∴OC=6,即C的坐标是(﹣6,0),故选:B.10.(2分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.6.则正确结论的个数有()A.2 B.3 C.4 D.5【解答】解:∵正方形ABCD中,AB=6,∴AD=CD=BC=6,∵CD=3DE,∴CD=2,DE=4,∵△ADE沿AE对折至△AFE,∴AF=AD=6,ED=EF=2,∠AFE=∠D=90°,∴∠AFG=90°,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),所以①正确;∴BG=FG,设BG=x,则GF=x,CG=6﹣x,在Rt△CGE中,GE=GF+EF=x+2,CE=4,CG=x,∵CG2+CE2=GE2,∴x2+42=(x+2)2,解得x=3,∴BG=3,∴CG=BC﹣BG=3,∴BG=CG,所以②正确;∵GF=CG=3,∴∠GFC=∠GCF,而∠BGF=∠GFC+∠GCF,∴∠BGF=2∠GCF,∵Rt△ABG≌Rt△AFG,∴∠BGA=∠FGA,∴∠BGF=2∠BGA,∴∠BGA=∠GCF,∴AG∥CF,所以③正确;∵△ADE沿AE对折至△AFE,∴∠DAE=∠F AE,∵Rt△ABG≌Rt△AFG,∴∠BAG=∠F AG,∴∠EAF+∠GAF=(∠DAF+∠BAF)=×90°=45°,即∠GAE=45°,所以④正确;作FH⊥GC于H,如图,∴FH∥EC,∴△GFH∽△GEC,∴=,即=,解得FH=,∴S△GCF=×3×=3.6,所以⑤正确.故选:D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣4x=0的解是x1=0,x2=4.【解答】解:由原方程,得x(x﹣4)=0,解得x1=0,x2=4.故答案是:x1=0,x2=4.12.(2分)点(3,a)在反比例函数y=图象上,则a=2.【解答】解:∵点(3,a)在反比例函数y=图象上,∴a==2.故答案为:2.13.(2分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=4,则∠C等于45°.【解答】解:连接BD,∵E、F分别是AB、AD的中点,∴BD=2EF,∵CD=2EF=4,∴DB=4,∵42+42=(4)2,∴∠CDB=90°,∴∠C=45°.14.(2分)已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.15.(2分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为(3,6).【解答】解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数y=(x>0)的图象上,∴y=6,x=3,∴点C的坐标为(3,6).故答案为:(3,6).16.(2分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=20cm.【解答】解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF=A C.又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.故答案为:20.17.(2分)如图,将一宽为1dm的矩形纸条沿BC折叠,若∠CAB=30°,则折叠后重叠部分的面积为1dm2.【解答】解:作CD⊥AB,∵CG∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BC A.∴AB=A C.又∵∠CAB=30°,∴在Rt△ADC中,AC=2CD=2dm,∴AB=2dm,S△ABC=AB×CD=1dm2.故答案为:1.18.(2分)如图,正方形CDEF内接于Rt△ABC,AE=1,BE=2,则正方形的面积是.【解答】解:∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,解得:DE=EF=,故正方形的面积是()2=,故答案为:.三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推算步骤或文字说明)19.(4分)计算:(﹣)2+﹣2.【解答】解:原式=3+4﹣3=3+.20.(8分)解方程:(1)2x2﹣5x﹣3=0;(2)+=.【解答】解:(1)由原方程,得(x﹣3)(2x+1)=0,解得x1=3,x2=﹣;(2)去分母并整理,得3(x﹣1)+(x+1)=6解得x=2.经检验,x=2是原方程的根.所以原方程的解为x=2.21.(5分)先化简,再求值:÷(a﹣1+),其中a是方程x2﹣x=6的根.【解答】解:解方程x2﹣x=6得到:x1=3,x2=﹣2,因为a是方程x2﹣x=6的根,所以a=3或a=﹣2.÷(a﹣1+),=÷,=×,=.当a=3时,原式==.当a=﹣2时,原式==﹣.22.(6分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为40%,其所在扇形统计图中对应的圆心角度数为144度.(2)请把条形统计图补充完整.(3)若该校有学生1200人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【解答】解:(1)本次抽查的学生人数是:15÷30%=50(人);喜欢A:篮球的人数是:50﹣15﹣5﹣10=20(人),则最喜欢A项目的人数所占的百分比为×100%=40%,在扇形统计图中A项目对应的圆心角度数是360°×=144°;故答案为:40%、144;(2)补图如下:(3)根据题意得:1200×=120(人).答:全校最喜欢踢毽子的学生人数约是120人.23.(6分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.24.(6分)如图,在平面直角坐标系xOy中,一次函数y1=kx的图象与反比例函数y2=图象交于A、B两点.(1)根据图象,求一次函数和反比例函数解析式;(2)根据图象直接写出kx>的解集为x<﹣2或0<x<2;(3)若点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试直接写出点P所有可能的坐标为(0,4)、(0,﹣4)、(0,2)、(0,﹣2).【解答】解:(1)把B(2,﹣2)代入y1=kx得k=﹣1,∴一次函数解析式为y1=﹣x;把B(2,﹣2)代入y2=得m=2×(﹣2)=﹣4,∴反比例函数解析式为y2=﹣;(2)把x=﹣2代入y2=﹣得y=2,∴A点坐标为(﹣2,2),∴当x<﹣2或0<x<2时,kx>;(3)设P点坐标为(0,t),而A(﹣2,2),B(2,﹣2),∴P A2=22+(t﹣2)2,PB2=22+(t+2)2,AB2=42+42=32,当∠APB=90°时,则P A2+PB2=AB2,即22+(t﹣2)2+22+(t+2)2=32,解得t=±2,此时P点坐标为(0,2)或(0,﹣2);当∠P AB=90°时,则P A2+AB2=PB2,即22+(t﹣2)2+32=22+(t+2)2,解得t=4,此时P点坐标为(0,4);当∠PBA=90°时,则PB2+AB2=P A2,即22+(t+2)2+32=22+(t﹣2)2,解得t=﹣4,此时P 点坐标为(0,﹣4);综上所述,P点坐标为(0,4)、(0,﹣4)、(0,2)、(0,﹣2).故答案为x<﹣2或0<x<2;(0,4)、(0,﹣4)、(0,2)、(0,﹣2).25.(6分)如图,在△ABC中,AB=12cm,BC=8cm,BD平分∠ABC交AC于点D,DE∥BC 交AB于点E.(1)求证:BE=ED;(2)求AE的长.【解答】证明:(1)∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=ED;(2)∵DE∥BC,∴△AED∽△ABC,∴,设DE=xcm,则AE=12﹣x(cm),∴解得:x=4.8,∴AE=12﹣x=7.2.故AE的长是7.2cm.26.(7分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=D C.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.27.(8分)如图,在平面直角坐标系中,点A的坐标为(1,1),OA=OC,∠OAC=90°,点D为x轴上一动点,以AD为边在AD的右侧作正方形ADEF.(1)如图(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为相等;位置关系为垂直.(2)如图(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例.【解答】解:(1)∵∠OAC=90°,∠DAF=90°∴∠OAC=∠DAF∴∠OAD=∠OAC﹣∠CAD=∠DAF﹣∠CAD=∠CAF在△OAD和△CAF中∴△OAD≌△CAF∴OD=CF,∠AOD=∠ACF∴∠OCF=∠OCA+∠ACF=∠OCA+∠AOC在Rt△OAC中∵∠OCA+∠AOC=90°∴∠OCF=90°∴OD⊥CF故答案:相等;垂直.(2)(1)中结论依然成立,即OD=CF,OD⊥CF∵∠OAC=90°,∠DAF=90°∴∠OAC=∠DAF∴∠OAD=∠OAC+∠CAD=∠DAF+∠CAD=∠CAF在△OAD和△CAF中∴△OAD≌△CAF∴OD=CF,∠AOD=∠ACF∴∠OCF=∠OCA+∠ACF=∠OCA+∠AOC在Rt△OAC中∵∠OCA+∠AOC=90°∴∠OCF=90°∴OD⊥CF28.(8分)如图,在平面直角坐标系中,直线y=﹣4与x轴交于点A,与y轴交于点B,点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从A出发沿AB以每秒1个单位长的速度向点B匀速运动,当点P、Q运动时,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q 同时出发,当点Q到达点B时停止运动,点P也随之停止,设点P、Q运动的时间为t秒(t>0).(1)点Q的坐标是(3﹣t,t)(用含t的代数式表示);(2)当点E在BO上时,四边形QBED能否为直角梯形?若能,求出t的值;若不能,请说明理由;(3)当t为何值时,直线DE经过点O.【解答】解:(1)过点Q作QF⊥OA于点F,∵直线y=﹣4与x轴交于点A,与y轴交于点B,∴点A(3,0),B(0,4),∴在Rt△AOB中,AB==5,∵OA⊥OB,∴QF∥OB,∴△AQF∽△ABO,∴,∵AQ=t,即,∴AF=t,QF=t,∴OF=OA﹣AF=3﹣t,∴点Q的坐标为:(3﹣t,t);故答案为:3﹣t,t;(2)四边形QBED能成为直角梯形.①当0<t<3时,∴AQ=OP=t,∴AP=3﹣t.如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即.解得t=;②当3<t<5时,AQ=t,AP=t﹣3,如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=﹣(舍去);如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即.解得t=>5(舍去);综上所述:t=或;(3)当t=或时,DE经过点O.理由:①如图4,当DE经过点O时,∵DE垂直平分PQ,由于P与Q运动的时间和速度相同,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB∴t=,②如图5,当P从A向O运动时,过点Q作QF⊥OB于F,∵EP=6﹣t,∴EQ=EP=6﹣t,∵AQ=t,BQ=5﹣t,sin∠ABO==,cos∠ABO==,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.第31 页共31 页。

(苏科版)2018-2019学年八年级下数学期末考试试卷(有答案)

(苏科版)2018-2019学年八年级下数学期末考试试卷(有答案)

2018-2019学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两 弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C 在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。

最新江苏省2018-2019年八年级下期末数学试卷

最新江苏省2018-2019年八年级下期末数学试卷

八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

苏科版江苏省苏州市姑苏区2018-2019学年八年级(下)期末数学试卷(含答案)

苏科版江苏省苏州市姑苏区2018-2019学年八年级(下)期末数学试卷(含答案)

苏州市区学校2018-2019学年第二学期期末考试试卷八年级数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 一、选择题(本大题共10小题,每小题2分,共20分.) 1.若二次根式1x -有意义,则x 的取值范围是A .1x >B .1x …C .1x …D .1x < 2.剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是A .B .C .D .3.下列二次根式中,可与3合并的二次根式是A .0.03B .0.3C .6D .18 4.完成以下任务,适合用抽样调查的是A .调查你班同学的年龄情况B .为订购校服,了解学生衣服的尺寸C .对北斗导航卫星上的零部件进行检查D .考察一批炮弹的杀伤半径.5.下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”A .只有①正确B .只有②正确C .①②都正确D .①②都错误 6.若11(P x ,1)y ,22(P x ,2)y 是函数5y x=图象上的两点,当120x x >>时,下列结论正确的是A .120y y <<B .210y y <<C .120y y <<D .210y y << 7.如图,在平行四边形ABCD 中,点E 在边DC 上,连结AE 并延长交BC 的延长线于点F ,若3AD CF =,那么下列结论中正确的是A .:1:3FC FB = B .:1:3CE CD =C .:1:4CE AB =D .:1:2AE AF =.第7题图 第8题图 第9题图 第10题图8.如图,A 是射线5(0)4y x x ==…上一点,过A 作AB x ⊥轴于点B ,以AB 为边在其右侧作正方形ABCD ,过A 的双曲线k y x =交CD 边于点E ,则DE EC的值为 A .54 B .95 C .2536D .1 9.如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数ky x=在第一象限的图象经过点E ,若两正方形的面积差为12,则k 的值为A .12B .6C .12-D .810.如图,正方形纸片ABCD 的边长为4cm ,点M 、N 分别在边AB 、CD 上.将该纸片沿MN 折叠,使点D 落在边BC 上,落点为E ,MN 与DE 相交于点Q .随着点M 的移动,点Q 移动路线长度的最大值是A .2cmB .4cmC .2cmD .1cm二.填空题(本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.) 11.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是 .12.一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲤鱼 尾. 13.已知2334b a b =-,则ab= . 14.当13x =-时,222028x x -+= .15.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3)OB OC =,然后张开两脚,使A 、B 两个尖端分别在线段的两端上,若2CD =,则AB 的长是 .第15题图 第16题图 第17题图 第18题图16.如图,已知在ABC ∆中,BC 边上的高AD 与AC 边上的高BE 交于点F ,且45BAC ∠=︒,6BD =,4CD =,则ABC ∆的面积为 .17.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则PBD ∆与PAC ∆的面积比为 .18.如图,正方形ABCD 中,30AB =,点E 在边CD 上,且3CD DE =.将ADE ∆沿AE 对折至AFE ∆,延长EF 交边BC 于点G .连结AG 、CF .下列结论:①ABG AFG ∆≅∆;②15BG =;③CFG ∆是正三角形;④FGC ∆的面积为90.其中正确的是 (填所有正确答案的序号).三、解答题(11题,64分)19.(4分)计算:011()3-+20.(4分)解分式方程:21133x xx x -=--.21.(4分)先化简,再求值:(1+a -3a +3)÷4a a 2-9.,其中3a =.22.(6分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类的人数有人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.23.(6分)如图,在平面直角坐标系中,以原点O为位似中心,将OAB∆放大到原来的2倍后得到△OA B'',其中A、B在图中格点上,点A、B的对应点分别为A'、B'.(1)在第一象限内画出△OA B'';(2)若OAB∆的面积为3.5,求△OA B''的面积.24.(6分)反比例函数1(0)ky x x=>的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中(1,2)A(1)求这两个函数解析式;(2)在y 轴上求作一点P ,使PA PB +的值最小,并直接写出此时点P 的坐标.25.(6分)如图,在Rt △ABC 中,∠C =90°,△ACD 沿AD 折叠,使得点C 落在斜边AB 上的点E 处.(1)求证:△BDE ∽△BAC ;(2)已知AC =6,BC =8,求线段AD 的长度.26.(6分)如图,ABC ∆为锐角三角形,AD 是BC 边上的高,正方形EFMN 的一边MN 在边BC 上,顶点E 、F 分别在AB 、AC 上,其中24BC cm =,高12AD cm =. (1)求证:AEF ABC ∆∆∽; (2)求正方形EFMN 的边长.27.(7分)如图,在矩形ABCD 中,AC 为对角线,点P 为BC 边上一动点,连结AP ,过点B 作BQ AP ⊥,垂足为Q ,连结CQ .(1)证明:ABP BQP ∆∆∽;(2)当点P 为BC 的中点时,若37BAC ∠=︒,求CQP ∠的度数;(3)当点P 运动到与点C 重合时,延长BQ 交CD 于点F ,若AQ AD =,则DFCF= .28.(7分) (1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABCAO=,∠=︒,33OAC∆中,点O在线段BC上,30BAO∠=︒,75BO CO=,求AB的长.:1:3经过社团成员讨论发现,过点B作//∆就BD AC,交AO的延长线于点D,通过构造ABD可以解决问题(如图2).请回答:ADB∠=,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC ADAO=,⊥,33BO OD=,求DC的长.75∠=∠=︒,:1:3ABC ACB29.(8分)如图1,点O是正方形ABCD的中心,点E是AB边上一动点,在BC上截取=,连结OE,OF.初步探究:在点E的运动过程中:CF BE(1)猜想线段OE与OF的关系,并说明理由.深入探究:(2)如图2,连结EF,过点O作EF的垂线交BC于点G.交AB的延长线于点I.延长OE 交CB的延长线于点H.①直接写出EOG∠的度数.②若2AB=,请探究BH BIg的值是否为定值,若是,请求出其值;反之,请说明理由。

2018-2019年苏州市八年级下学期期末考试数学试卷及参考答案

2018-2019年苏州市八年级下学期期末考试数学试卷及参考答案

OF E D CB A 八年级下学期期末考试 数学试卷及参考答案一、选择题(每题3分,共30分)1.下列二次根式中,与3是同类二次根式的是( ) A .8 B .12 C 18. D .6 2.下列各数中,无理数是 ( )A .—3.14B .3125C .︳—6︳D .—29 3.已知点P (a,b ),点P 关于x 轴对称的点的坐标为 ( ) A .(a,—b ) B .(—a,b ) C .(—a, —b ) D .(a,b ) 4.一次函数y = —x + 1的图象一定经过 ( )A .一、二、三象限.B 。

一、三、四象限.C .二、三、四象限.D .一、二、四象限. 5.以下图形哪一种图形永远是相似的 ( )A .矩形B .菱形C .等腰三角形D .正方形6.如图,CD 是Rt ⊿ABC 斜边AB 上的高,AD=4cm ,BD=9 cm ,则CD=( ) A .6cm B .36cm C .213cm D .5cm7.小明有四双样式相同、大小相同的袜子,其中两双为蓝色, 问至多取几次就能保证取得同样颜色的一双袜子。

( )A .2次B .3次C .4次D .5次 8.正比例函数y=kx 与反比例函数y=xk在同一坐标系中的大致图象只可能是( )9.已知一直角三角形两条边的长分别为3 cm 和4 cm ,则第三边的长为( )cm A .5 B .5 和7 C .7 D .不能确定10.梯形ABCD 中,对角线AC 、BD 相交与点O ,过O 点的直线分别交上、下底于E 、F ,则在图中与OE :OF 的比值相等的线段比有( )A .4个B .5个C .7个D .8个二、填空题(每题2分,共16分)。

11.251的平方根是 。

X 55100150T S R QP12.直线y= — x + 3向下平移5个单位,得到的直线是 。

13.如图,QS//RT ,则x= 米。

14.已知点A (a+2 , a –3)在y 轴上,则a= 。

苏州市2018~2019学年第二学期初二数学期末复习综合试卷(4)

苏州市2018~2019学年第二学期初二数学期末复习综合试卷(4)

苏州市2018~2019学年第二学期初二数学期末复习综合试卷(4)注意事项:1.1班需要全部做完试卷2.2,3班选择题11,12,填空题21,简答题29,30,31适当练习。

一.选择题(共12小题)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 2.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±13.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2 4.下列计算中正确的是()A.B.C.=1 D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)7.一元二次方程(x﹣5)2=x﹣5的解是()A.x=5 B.x=6 C.x=0 D.x1=5,x2=6 8.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根9.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为()A.1 B.2 C.3 D.410.如图,在正方形ABCD中,点E,F,G分别是AB,BC,CD上的点,EB=3,GC=4,∠FEG=60°,∠EGF=45°,则BC的长为()A.3+B.C.4+D.3+411.如图,将边长为10的等边三角形OAB位于平面直角坐标系第一象限中,OA落在x 轴正半轴上,C是AB边上的动点(不与端点A、B重合),作CD⊥OB于点D,若点C、D都在双曲线y=(k>0,x>0)上,则k的值为()A.9B.18 C.25D.912.如图,反比例函数的图象经过▱OABC的顶点C和对角线的交点E,顶点A在x轴上,若▱OABC的面积为18,则k的值为()A.8 B.6 C.4 D.2二.填空题(共9小题)13.若a,b都是实数,b=+﹣2,则a b的值为.14.小明和小红一起做作业,在解一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为﹣9和﹣1,那么原来方程的一次项是,常数项是,其正确解是.15.若,则=.16.如果两个相似三角形的周长比为4:9,那么它们的面积比是.17.计算:(+3)2(﹣3)=.18.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.19.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是.20.已知,点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,则﹣的值等于.21.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.三.解答题(共10小题)22.计算:2+3﹣﹣23.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.24.先化简,再求值:(x﹣2+)÷,其中x=﹣.25.如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.26.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).27.某校甲、乙两同学对关于x的方程:﹣3(x﹣1)2+m=0进行探究,其结果:甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时都不能使方程的两根之和为零.(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;(2)乙同学发现的结论是否正确?试证明之.28.如图,在平面直角坐标系xOy内,点A在直线y=3x上(点A在第一象限),OA=2.(1)求点A的坐标;(2)过点A作AB⊥x轴,垂足为点B,如果点E和点A都在反比例函数y=(k≠0)图象上(点E在第一象限),过点E作EF⊥y轴,垂足为点F,如果S△AEF=S△AOB,求点E的坐标.29.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.30.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.31.如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB=cm,AD=cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.参考答案与试题解析一.选择题(共12小题)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.2.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±1【解答】解:∵分式的值为零,∴,解得x=﹣1.故选:B.3.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴,,,∵﹣2<3<6,∴y3<y2<y1,故选:B.4.下列计算中正确的是()A.B.C.=1D.【解答】解:A、=13,错误;B 、===2,错误;C、2﹣=,错误;D 、=|2﹣|=﹣2,正确;故选:D.5.下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.6.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)【解答】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(﹣2,﹣4)故选:A.7.一元二次方程(x﹣5)2=x﹣5的解是()A.x=5 B.x=6 C.x=0 D.x1=5,x2=6 【解答】解:(x﹣5)2﹣(x﹣5)=0,(x﹣5)(x﹣5﹣1)=0,x﹣5=0或x﹣5﹣1=0,所以x1=5,x2=6.故选:D.8.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根【解答】解:方程整理得2x2﹣3x﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.9.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为()A.1 B.2 C.3 D.4【解答】解:∵△ACD∽△ADB,∴AB==1,故选:A.10.如图,在正方形ABCD中,点E,F,G分别是AB,BC,CD上的点,EB=3,GC=4,∠FEG=60°,∠EGF=45°,则BC的长为()A.3+B.C.4+D.3+4【解答】解:过点F作FH⊥EG于O,交AD于点H,∴∠EOH=∠GOF=90°,∵∠OGF=45°,∴∠OFG=∠OGF=45°,∴OG=OF.在正方形ABCD中,EG⊥HF,∴EG=HF∴OE=OH∴EH∥FG∴△EHO~FGO,∴,在Rt△EOF中,∠OEF=60°,设OE=x,∴OF=OE•tan∠OEF=x,在Rt△GOF中,∠OGF=45°∴OG=OF=x,FG==x,在Rt△EOH中,OH=OE=x,∴EH=x,∴△EOH与△GOF的相似比为==,由Rt△AEH~Rt△CFG,GC=4,∴=,∴AE==,又∵EB=3∴AB=AE+EB=3+故选:A.11.如图,将边长为10的等边三角形OAB位于平面直角坐标系第一象限中,OA落在x 轴正半轴上,C是AB边上的动点(不与端点A、B重合),作CD⊥OB于点D,若点C、D都在双曲线y=(k>0,x>0)上,则k的值为()A.9B.18 C.25D.9【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=(k>0,x>0)上,∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:A.12.如图,反比例函数的图象经过▱OABC的顶点C和对角线的交点E,顶点A在x轴上,若▱OABC的面积为18,则k的值为()A.8 B.6 C.4 D.2【解答】解:如图,分别过C、E两点作x轴的垂线,交x轴于点D、F,∵反比例函数的图象经过▱OABC的顶点C和对角线的交点E,设C(m,),∴OD=m,CD=,∵四边形OABC为平行四边形,∴E为AC中点,且EF∥CD,∴EF=CD=,且DF=AF,∵E点在反比例函数图象上,∴E点横坐标为2m,∴DF=OF﹣OD=m,∴OA=3m,∴S△OAE=OA•EF=×3m×=k,∵四边形OABC为平行四边形,∴S四边形OABC=4S△OAE,∴4×k=18,解得k=6,故选:B.二.填空题(共9小题)13.若a,b都是实数,b=+﹣2,则a b的值为 4 .【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.14.小明和小红一起做作业,在解一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为﹣9和﹣1,那么原来方程的一次项是﹣10x,常数项是9 ,其正确解是9和1 .【解答】解:由小明的答案可知:(x﹣8)(x﹣2)=0,∴x2﹣10x+16=0,由小红额答案可知:(x+9)(x+1)=0,x2+10x+9=0,由于小明因看错常数项,小红因看错了一次项系数,∴该方程为:x2﹣10x+9=0,故答案为:﹣10x,9,9和115.若,则=.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.16.如果两个相似三角形的周长比为4:9,那么它们的面积比是16:81 .【解答】解:∵两个相似三角形的周长比为4:9,∴两个相似三角形的相似比为4:9,∴两个相似三角形的面积比为16:81,故答案为:16:81.17.计算:(+3)2(﹣3)=+3 .【解答】解:(+3)2(﹣3)=(+3)(﹣3)(+3)=+3故答案为:+3.18.若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是﹣3 .【解答】解:由题意,得m(m+2)﹣1=2且m﹣1≠0,解得m=﹣3,故答案为:﹣3.19.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是2019 .【解答】解:把x=1代入ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2014﹣a﹣b=2014﹣(a+b)=2014﹣(﹣5)=2019.故答案为2019.20.已知,点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,则﹣的值等于﹣.【解答】解:∵点P(a,b)为直线y=x﹣3与双曲线y=﹣的交点,∴b=a﹣3,b=﹣,∴a﹣b=3,ab=﹣2.∴﹣===﹣.故答案是:﹣.21.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF 的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.【解答】解:设正方形的中心为O,可证EF经过O点.连结OB,取OB中点M,连结MA,MG,则MA,MG为定长,可计算得MA=,MG=OB=,AG≥AM﹣MG=,当A,M,G三点共线时,AG最小=cm,故答案为:三.解答题(共10小题)22.计算:2+3﹣﹣【解答】解:原式=2×2+3×﹣﹣×4=4+2﹣﹣=2.23.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.【解答】解:(1)5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;(2)△=(﹣3)2﹣4×(﹣1)=13,x=,所以x1=,x2=.24.先化简,再求值:(x﹣2+)÷,其中x=﹣.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.25.如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.26.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).【解答】解:连接AB,由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有=.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有=,解得AB=1.4 m.答:窗口的高度为1.4 m.27.某校甲、乙两同学对关于x的方程:﹣3(x﹣1)2+m=0进行探究,其结果:甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时都不能使方程的两根之和为零.(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;(2)乙同学发现的结论是否正确?试证明之.【解答】解:(1)﹣3(x﹣1)2=﹣m,即,如取m=27,=9,代入解得x1=4,x2=﹣2.(答案不唯一,m为任意完全平方数的3倍);(2)乙同学的结论正确.∵当m>0,,∴,∵,(用根与系数的关系做也可)即:当m为任何正数时都两根和为2,∴乙同学结论正确.28.如图,在平面直角坐标系xOy内,点A在直线y=3x上(点A在第一象限),OA=2.(1)求点A的坐标;(2)过点A作AB⊥x轴,垂足为点B,如果点E和点A都在反比例函数y=(k≠0)图象上(点E在第一象限),过点E作EF⊥y轴,垂足为点F,如果S△AEF=S△AOB,求点E的坐标.【解答】解:(1)∵点A在直线y=3x上(点A在第一象限),∴设A(x,3x),其中x>0,∵OA=2,∴x2+9x2=(2)2,解得:x=2,点A的坐标为(2,6);(2)∵点A在反比例函数y=(k≠0)的图象上,∴k=12,可得反比例函数解析式为y=,由题意得点B的坐标为(2,0),∴S△ACB=6,∵S△AEF=S△AOB,设点E(n,),可得F(0,);①点E在点A的上方,由S△AEF=n•(﹣6)=6,得n=0(舍去),∴点E的坐标不存在;②点E在点A的下方,由S△AEF=n•(6﹣)=6,得n=4,∴点E的坐标为(4,3),综上所述:满足条件的点E(4,3).29.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=•AH•AG=AC2=×(4)2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.30.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).31.如图①,在矩形ABCD中,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s),连接PC,以PC为一边作正方形PCEF,连接DE、DF,设△PCD的面积为y(cm2),y与t之间的函数关系如图②所示.(1)AB= 2 cm,AD= 5 cm;(2)当t为何值时,△DEF的面积最小?请求出这个最小值;(3)当t为何值时,△DEF为等腰三角形?请简要说明理由.【解答】解:(1)由图②知:AD=5,当t=0时,P与A重合,y==5,=5,CD=2cm,∵四边形ABCD是矩形,∴AB=CD=2cm,故答案为:2,5;(2)由题意得:AP=t,PD=5﹣t,∴y=CD•PD==5﹣t,∵四边形EFPC是正方形,∴S△DEF+S△PDC=S正方形EFPC,∵PC2=PD2+CD2,∴PC2=22+(5﹣t)2=t2﹣10t+29,∴S△DEF=(t2﹣10t+29)﹣(5﹣t)=﹣4t+=(t﹣4)2+,当t为4时,△DEF的面积最小,且最小值为;(3)当△DEF为等腰三角形时,分三种情况:①当FD=FE时,如下图所示,过F作FG⊥AD于G,∵四边形EFPC是正方形,∴PF=EF=PC,∠FPC=90°,∴PF=FD,∵FG⊥PD,∴PG=DG=PD,∵∠FPG+∠CPD=∠CPD+∠DCP=90°,∴∠FPG=∠DCP,∵∠FGP=∠PDC=90°,∴△FPG≌△PDC(AAS),∴PG=DC=2,∴PD=4,∴AP=5﹣4=1,即t=1;②当DE=DF时,如下图所示,E在AD的延长线上,此时正方形EFPC是正方形,PD =CD=2∴AP=t=5﹣2=3③当DE=EF时,如下图所示,过E作EG⊥CD于G,∵FE=DE=EC,∴CG=DG=CD=1,同理得:△PDC≌△CGE(AAS),∴PD=CG=1,∴AP=t=5﹣1=4,综上,当t=1s或3s或4s时,△DEF为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市姑苏区2018-2019学年第二学期期末考试
八年级数学试卷
本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟.
一、选择题(本大题共10小题,每小题2分,共20分)
1.若二次根式1x -有意义,则x 的取值范围是( ) A .1x > B .x ≥1 C .x ≤1 D .1x <
2.剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是
A .
B .
C .
D . 3.下列二次根式中,可与3合并的二次根式是( )
A .0.03
B .0.3
C .6
D .18 4.完成以下任务,适合用抽样调查的是
A .调查你班同学的年龄情况
B .为订购校服,了解学生衣服的尺寸
C .对北斗导航卫星上的零部件进行检查
D .考察一批炮弹的杀伤半径.
5.下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3” ( )
A .只有①正确
B .只有②正确
C .①②都正确
D .①②都错误
6.若11(P x ,1)y ,22(P x ,2)y 是函数5
y x
=
图象上的两点,当120x x >>时,下列结论正确的是( )
A .120y y <<
B .210y y <<
C .120y y <<
D .210y y << 7.如图,在平行四边形ABCD 中,点
E 在边DC 上,连结AE 并延长交BC 的延长线于点
F ,若3AD CF =,那么下列结论中正确的是( )
A .:1:3FC F
B = B .:1:3CE CD =
C .:1:4CE AB =
D .:1:2A
E A
F =.
第7题图 第8题图 第9题图 第10题图
8.如图,A 是射线5
(0)4
y x x ==…上一点,过A 作AB x ⊥轴于点B ,以AB 为边在其右侧作
正方形ABCD ,过A 的双曲线k y x =交CD 边于点E ,则DE
EC
的值为( )
A .54
B .95
C .25
36
D .1
9.如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数k
y x
=在第一象限的图象
经过点E ,若两正方形的面积差为12,则k 的值为( )
A .12
B .6
C .12-
D .8
10.如图,正方形纸片ABCD 的边长为4cm ,点M 、N 分别在边AB 、CD 上.将该纸片沿MN 折叠,使点D 落在边BC 上,落点为E ,MN 与DE 相交于点Q .随着点M 的移动,
点Q 移动路线长度的最大值是( )
A .2cm
B .4cm
C .2cm
D .1cm
二.填空题(本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.) 11.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是 .
12.一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲤鱼 尾.
13.已知2334b a b =-,则a
b = .
14.当13x =-时,222028x x -+= .
15.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3)OB OC =,然后张开两脚,使A 、B 两个尖端分别在线段的两端上,若2CD =,则AB 的长是 .
第15题图 第16题图 第17题图 第18题图 16.如图,已知在ABC ∆中,BC 边上的高AD 与AC 边上的高BE 交于点F ,且45BAC ∠=︒,6BD =,4CD =,则ABC ∆的面积为 .
17.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则PBD ∆与PAC ∆的面积比为 .
18.如图,正方形ABCD 中,30AB =,点E 在边CD 上,且3CD DE =.将ADE ∆沿AE 对折至AFE ∆,延长EF 交边BC 于点G .连结AG 、CF .下列结论:①ABG AFG ∆≅∆;②15BG =;③CFG ∆是正三角形;④FGC ∆的面积为90.其中正确的是 (填所有正确答案的序号).
三、解答题(11题,64分)
19.(4分)计算:01
1312()3
--+
20.(4分)解分式方程:21133
x x
x x -=
--.
21.(4分)先化简,再求值:(1+a -3a +3)÷4a a 2-9.,其中4
35
a =.
22.(6分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种种类 A B C D E F 上学方式
电动车
私家车
公共交通
自行车
步行
其他
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有 人,其中选择B 类的人数有 人.
(2)在扇形统计图中,求E 类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A 、C 、D 、E 这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
23.(6分)如图,在平面直角坐标系中,以原点O 为位似中心,将OAB ∆放大到原来的2倍后得到△OA B '',其中A 、B 在图中格点上,点A 、B 的对应点分别为A '、B '. (1)在第一象限内画出△OA B '';(2)若OAB ∆的面积为3.5,求△OA B ''的面积.
24.(6分)反比例函数1(0)k
y x x
=
>的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中(1,2)A
(1)求这两个函数解析式;
(2)在y 轴上求作一点P ,使PA PB +的值最小,并直接写出此时点P 的坐标.
25.(6分)如图,在Rt △ABC 中,∠C =90°,△ACD 沿AD 折叠,使得点C 落在斜边AB 上的点E 处.
(1)求证:△BDE ∽△BAC ;(2)已知AC =6,BC =8,求线段AD 的长度.
26.(6分)如图,ABC ∆为锐角三角形,AD 是BC 边上的高,正方形EFMN 的一边MN 在边BC 上,顶点E 、F 分别在AB 、AC 上,其中24BC cm =,高12AD cm =. (1)求证:AEF ABC ∆∆∽; (2)求正方形EFMN 的边长.
27.(7分)如图,在矩形ABCD中,AC为对角线,点P为BC边上一动点,连结AP,过点B作BQ AP
⊥,垂足为Q,连结CQ.
(1)证明:ABP BQP
∆∆
∽;
(2)当点P为BC的中点时,若37
BAC
∠=︒,求CQP
∠的度数;
(3)当点P运动到与点C重合时,延长BQ交CD于点F,若AQ AD
=,则DF
CF
=.
28.(7分) (1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在ABC
∆中,点O在线段BC上,30
BAO
∠=︒,75
OAC
∠=︒,33
AO=,:1:3
BO CO=,求AB的长.
经过社团成员讨论发现,过点B作//
BD AC,交AO的延长线于点D,通过构造ABD
∆就可以解决问题(如图2).
请回答:ADB
∠=,AB=.
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC AD
⊥,33
AO=,75
ABC ACB
∠=∠=︒,:1:3
BO OD=,求DC的长.
29.(8分)如图1,点O是正方形ABCD的中心,点E是AB边上一动点,在BC上截取=,连结OE,OF.初步探究:在点E的运动过程中:
CF BE
(1)猜想线段OE与OF的关系,并说明理由.
深入探究:
(2)如图2,连结EF,过点O作EF的垂线交BC于点G.交AB的延长线于点I.延长OE交CB的延长线于点H.
①直接写出EOG
∠的度数;
②若2
AB=,请探究BH BI
g的值是否为定值,若是,请求出其值;反之,请说明理由。

相关文档
最新文档