平面向量综合试题

合集下载

名校平面向量精选试题

名校平面向量精选试题

第五章 平面向量一、基础题1.若向量)6,12(),2,4(),6,3(--==-=,则下列结论中错误的是( ) A .v u ⊥ B .w v //C .v u w 3-=D .对任一向量AB ,存在实数b a ,,使v b u a AB +=2.已知a =(-3,2),b =(-1,0),向量a λ+b 与a -2b 垂直,则实数λ的值为( ) A .71-B .71C .61- D .613.己知平面向量满足,与的夹角为60°,则“1m =”是 “()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是( ) A .4πB .2πC .43πD .π5.已知(2,)a m =,(1,)b m =-,若(2)a b b -⊥,则||a =( )A .4B .3C .2D .16.若向量)2,1(),1,1(),1,1(--=-==c b a ,则=c ( )A .2321--B .2321+-C .2123-D .2123+- 7.已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A .5B .10C .5D .25 8.若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为3π,则|a +b |=________. 9.把点A (2,1)按向量a =(-2,3)平移到B ,若2OB BC =-,则C 点坐标为_____.10.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()//a b c λ+,则λ的值为 . 11.向量,满足()(2)4a b a b -+=-,且,,则,夹角的等于______.12.已知)2,(cos x a =,)3,sin 2(x b = ,b a //,则=-x x 2cos 22sin .二.能力题13.定义:||||||sin a b a b θ⨯=,其中θ为向量a 与b 的夹角,若||2a =,||5b =,6a b ⋅=-,则||a b ⨯等于( )A .8-B .8C .8-或8D .614.已知向量),sin ,(cos θθ=向量),1,3(-=则|2|-的最大值、最小值分别是( ) A .24 ,0 B .4,24 C .16,0D .4,015.已知向量,,a b c 中任意两个都不共线,且a b +与c 共线, b c +与a 共线,则向量a b c ++=( )A .aB .bC .cD .016.若是所在平面内的一点,且满足()()0BO OC OC OA +-=,则一定是( )A .等边三角形B .等腰直角三角形C .直角三角形D .斜三角形 17.设Q P 、为△ABC 内的两点,且5121,2534AP AB AC AQ AB AC =+=+,则△ABP 的面积与△ABQ 的面积之比为 ( )A .58 B .35 C .54D .4518.已知|OP ―→|=1,|OQ ―→|=3,OP ―→⊥OQ ―→,点R 在△POQ 内,且∠POR =30°,OR ―→=m OP ―→+n OQ ―→(m ,n ∈R ),则mn等于( )A .13B .3C .33D . 319.向量)0,2(=a,b =(x ,y )若b 与b -的夹角等于6π,则b 的最大值为( )A .2B .32C .4D .334 20.在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .19 B .31C. 1D. 3 21.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = .三.拔高题22.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰三角形但不是等边三角形.23.函数y =tan(π4x -π2)的部分图像如图所示,则(OB ―→-OA ―→)·OB ―→=( )A .-4B .2C .-2D .424.在平面内,点A 、B 、C 分别在直线l 1、l 2、l 3上,l 1∥l 2∥l 3(l 2在l 1与l 3之间),l 1与l 2之间距离为1,l 2与l 3之间距离为2,且2AB =AB ―→·AC ―→,则△ABC 的面积最小值为( )A .4B .433C .2D .23325.在四边形ABCD 中,()1 1A B DC ==,,113BA BC BD BABCBD+=,则四边形ABCD 的面积为 .26.平面上的向量与满足24MA MB +=,且0=⋅,若点C 满足3231+=,的最小值为________.27.已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.28.已知向量2(2sin ,2sin 1),(cos ,3)444x x xm n =-=-,函数()f x m n =⋅. (1)求函数()f x 的最大值,并写出相应x 的取值集合; (2)若()3f πα+=,且(0,)απ∈,求tan α的值.29.已知向量2(cos,1),(3sin ,cos )222x x xm n =-=,设函数()f x m n =∙+12(1)若[0,]2x π∈,)(x f 求cos x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足2cos 2b A c ≤,求)(B f 的取值范围.30.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , q=(a 2,1),p=(c b -2, C cos )且q p //.求:(1)求sin A 的值; (2)求三角函数式1tan 12cos 2++-CC的取值范围.CACAB DC 8.7 9.)2,0( 10.21 11.0120 12.258- BDDCD BCA 21.6π ADC 25.3 26.4727.(Ⅲ)==,=1++=.28.29.解:(1)依题意得()sin()6f x x π=-,………………………………2分由[0,]2x π∈得:663x πππ-≤-≤,sin()063x π-=>,从而可得cos()63x π-=,………………………………4分则cos cos[()]cos cos()sin sin()66666626x x x x ππππππ=-+=---=-……6分(2)由2cos 2b A c ≤得:cos 2B ≥,从而06B π<≤,……………………10分故f(B)=sin(6B π-)1(,0]2∈- ………………………………12分30.。

平面向量测试题及含

平面向量测试题及含

平面向量测试题及答案平面向量测试题一. 选择题1.以下说法错误的选项是()A.零向量与任一非零向量平行 B. 零向量与单位向量的模不相等C.平行向量方向同样D.平行向量一定是共线向量2.以下四式不可以化简为AD的是()A.(AB+CD)+BC;B.(AD+MB)+(BC+CM);C.MB+AD-BM;D.OC-OA+CD;3.已知a =(3,4),b =(5,12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知a、b均为单位向量 , 它们的夹角为 60°, 那么 | a+ 3b| = ()A.7B.10C.13D.45.已知 ABCDEF是正六边形,且AB=a,AE=b,则BC=()(B)12(ba) (C)a +12b(D)12(a b)(A)12(ab)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b , 则以下关系式中正确的选项是()2(A ) AD = BC(B ) AD =2 BC(C ) AD =- BC (D )AD=- 2 BC7.设 e 1与 e 2是不共线的非零向量,且k e 1+ e 2与 e 1+k e 2共线,则 k 的值是()(A ) 1(B ) -1(C ) 1(D ) 任意不为零的实数8.在四边形 ABCD 中, AB = DC ,且 AC · BD =0,则四边形 ABCD 是()(A ) 矩形 (B ) 菱形(C ) 直角梯形(D )等腰梯形9.已知 M (- 2,7)、N (10,- 2),点 P 是线段 MN 上的点,且 PN =-2PM ,则P 点的坐标为()(A )(- 14,16)( B ) (22,-11)(C ) (6,1)(D ) (2,4)10.已知a =(1,2),b =(-2,3),且 k a +b 与a -k b垂直,则 k =( )(A )1 2 (B )2 1(C )2 3 (D ) 32r r(2 x 3,x)相互平行,此中 x R . 则11、若平面向量 a (1, x) 和 br r)a b(A.2或 0; B.2 5;C. 2或 2 5 ; D.2或 10.312、下边给出的关系式中正确的个数是()①0 a 0 ② a b b a ③a2a 2④(a b)ca(b c) ⑤ a b a b(A) 0(B) 1(C) 2(D) 3二.填空题13.若AB (3,4),A点的坐标为(-2,-1),则B点的坐标为.14.已知a (3, 4), b (2,3),则2 | a | 3a b.15 、已知向量a 3, b (1,2),且a b,则 a 的坐标是_________________。

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案一、选择题1、下列哪一组向量是平行向量?A. (3,4)与(4,3)B. (3,4)与( - 4,- 3)C. (3,4)与( - 4,9)D. (3,4)与(7,8)2、下列哪一组向量是共线向量?A. (1,2)与(2,3)B. (1,1)与(2,2)C. (1,2)与( - 2,4)D. (1, - 1)与( - 2,2)3、下列哪一组向量是垂直向量?A. (1,2)与(2,1)B. (3,4)与(4,3)C. ( - 3,4)与(4, - 3)D.平面向量是数学中的一个重要概念,是解决许多实际问题的重要工具。

以下是一些经典的平面向量测试题,可以帮助大家了解和评估自己的平面向量水平。

给出平面向量的基本概念和性质,包括向量的表示、向量的模、向量的加法、减法和数乘等。

给出一个向量的坐标表示,包括在直角坐标系中的表示和在极坐标系中的表示。

给定两个向量 a和 b,求它们的数量积、夹角和模长。

给定一个向量 a,求它的单位向量、零向量和负向量。

给定一个平面向量场,求其中的平行向量、共线向量和线性无关向量。

给定一个三维平面向量场,求其中的法向量和切线向量。

给定一个向量的模长和夹角,求这个向量的坐标表示。

给定两个三维向量 a和 b,求它们在空间中的位置关系,如平行、共线和垂直等。

给定一个平面向量 a和一个非零向量 b,求 a和 b的垂直平分面和a和 b的中垂线。

给定一个向量的正交分解和极坐标表示,求这个向量的直角坐标表示和极坐标表示。

以上是平面向量经典测试题的一些例子,这些题目可以帮助大家巩固平面向量的基本概念和性质,提高解决实际问题的能力。

解释:平面向量是由两个数值和一个字母组成的,其中字母表示向量的方向,而数值表示向量的模长。

选项A符合这个要求,而其他选项都不符合。

解释:平面向量的基本运算包括加法、减法和数乘,而D选项中的“数乘和加法”实际上是包含了这三种运算,因此不是平面向量的运算。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)

2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)

必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。

平面向量测试题及详解

平面向量测试题及详解

平面向量一、选择题1.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .22.已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .23.如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17 D.174.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( ) A.25a -45b B.25a +45b C .-25a +45b D .-25a -45b5.已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( )A .-3B .-1C .1D .3 6.已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( )A .最大值为8B .是定值6C .最小值为2D .与P 的位置有关 7.设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°9.设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数10.a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=011.如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53D .1 12.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( ) A .等腰非等边三角形 B .等边三角形 C .三边均不相等的三角形D .直角三角形第Ⅱ卷(非选择题 共90分)二、填空题13.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.14.已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________. 15.已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________. 16.已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________. 三、解答题17.已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小.18.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.19.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B 2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.20.已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |; (2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值.21.已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB→+b ,b >a . (1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.22.已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.平面向量答案1.[解 a +b =(3,x +1),4b -2a =(6,4x -2),∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.[解AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.[解由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa +⎝⎛⎭⎫1-12λb ,∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b . 5.[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.[解析]设BC 边中点为D ,则AP →·(AB →+AC →)=AP →·(2AD →) =2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.13.[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12,∴|a +2b |=2 3.14.[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0,∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3),∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c ,∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522. 17.[解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12,∴α=π3.因此,两向量a 与b 的夹角为π3. 18.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ,∵过(4,-10)点,∴16-10=λ,即λ=6,∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ), ∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.[解析](1)∵m ⊥n ,∴m ·n =0,∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0,∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B ,∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =a sin A ,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π,若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1.综上c =2或c =1.20.[解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22=2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x 2=2+2cos2x =2|cos x |,∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x . (2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12]当a >0时,f (x )∈[-2a +b ,a +b ] ∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧ a =1b =4,当a <0时,f (x )∈[a +b ,-2a +b ] ∴⎩⎪⎨⎪⎧a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =422.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0. 因为N 在椭圆内,所以Δ>0.所以⎩⎪⎨⎪⎧x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1] =(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2,所以-187≤-9(1+k 2)3+4k2≤-125.解得1≤k 2≤3.所以-3≤k ≤-1或1≤k ≤ 3.。

平面向量及其应用全章综合测试卷(基础篇)(教师版)

平面向量及其应用全章综合测试卷(基础篇)(教师版)

D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2

C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =

平面向量综合试题(含答案)

平面向量综合试题(含答案)

BAC D平面向量一、选择题:1、在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面得结论:①②③其中正确..结论得个数就是()A.1个B.2个C.3个D.0个2.下列命题正确得就是()A.向量得长度与向量得长度相等B.两个有共同起点且相等得向量,其终点可能不同C.若非零向量与就是共线向量,则A、B、C、D四点共线D.若,则3、若向量= (1,1), = (1,-1), =(-1,2),则等于( )A、+B、C、D、+4.若,且与也互相垂直,则实数得值为( )A. B、6C、D、35.已知=(2,3), =(,7) ,则在上得正射影得数量为( )A、B、C、D、6.己知(2,-1)、(0,5) 且点P在得延长线上,,则P点坐标为()A、(-2,11)B、(C、(,3)D、(2,-7)7.设就是非零向量,若函数得图象就是一条直线,则必有( )A.ﻩ B. C.ﻩD.8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为( )A、(2,2) B、(4,6) C、(-6,0) D、(2,2)或(-6,0)或(4,6)9、在直角中,就是斜边上得高,则下列等式不成立得就是(A)(B)(C)(D)10. 设两个向量与其中为实数、若则得取值范围就是( )A、B、C、D、10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}就是两个向量集合,则P∩Q 等于( )A.{(1,1)} B.{(-1,1)} C.{(1,0)}D.{(0,1)}二、填空题:11.若向量得夹角为,,则.12.向量.若向量,则实数得值就是ﻩﻩ.13.向量、满足==1,=3,则=14. 如图,在中,就是边上一点,则、15.如图,在中,点就是得中点,过点得直线分别交直线,于不同得两点,若,,则得值为ﻩ. 三、解答题:16、设两个非零向量e1、e2不共线、如果=e1+e2,2e1+8e2,=3(e1-e2)⑴求证:A、B、D共线;⑵试确定实数k,使ke1+e2与e1+ke2共线、17、已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上得高为AD、⑴求证:AB⊥AC;⑵求点D与向量得坐标、17.(10分)已知sin(α+错误!)=-错误!,α∈(0,π).(1)求错误!得值;(2)求cos(2α-错误!)得值.18.已知矩形相邻得两个顶点就是A(-1,3),B(-2,4),若它得对角线交点在x轴上,求另两个顶点得坐标.19、已知△顶点得直角坐标分别为、(1)若,求sin∠得值;(2)若∠就是钝角,求得取值范围、20.已知向量.(1)若,求; (2)求得最大值.21、设向量,函数、(Ⅰ)求函数得最大值与最小正周期; (Ⅱ)求使不等式成立得得集合、 22.(12分)已知向量a =(cos α,sin α),b =(c os β,sin β),|a -b |=错误!.(1)求co s(α-β)得值; (2)若0<α<\f(π,2),-错误!<β<0,且si n β=-错误!,求sin α.平面向量参考答案一、选择题:1-5:BA BBC 6、A 7、 A 【解析】,若函数得图象就是一条直线,即其二次项系数为0, 0, 8、D 9、 C 、【分析】: ,A就是正确得,同理B 也正确,对于D 答案可变形为,通过等积变换判断为正确、 10、 A 【分析】由可得,设代入方程组可得消去化简得,再化简得再令代入上式得可得解不等式得因而解得、故选A 10、 A 二、填空题: 11、 【解析】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量》综合测试题
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 若A (2,-1),B (-1,3),则的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对
2.与a =(4,5)垂直的向量是 ( )
A.(-5k ,4k )
B. (-10,2)
C. (54
,k k
-) D.(5k , -4k )
3. △ABC 中,BC =a , =b ,则等于 ( )
+b (a+b )
4.化简
52(a -b )-3
1
(2a +4b )+152(2a +13b)的结果是 ( ) 5
1±51 B.0 C. 51a +51b D. 51a -5
1b
5.已知|p |=22,|q |=3, p 与q 的夹角为
4
π
,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( ) B.15 C. 16
6.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥,则k 的值为 ( ) A.109-
B.109
C.1019-
D.10
19 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( ) A. P 在△ABC 的内部 B. P 在△ABC 的外部 C. P 是AB 边上的一个三等分点 D. P 是AC 边上的一个三等分点
8.已知△ABC 的三个顶点,A (1,5),B (-2,4),C (-6,-4),M 是BC 边上一点,且△ABM 的面积是△ABC 面积的
4
1
,则线段AM 的长度是 ( )
259.设e 1,e 2是夹角为450
的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+
10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( ) .450
C
11.把一个函数的图象按向量a =(
3
π
,-2)平移后,得到的图象对应的函数解析式为y =sin(x +
6
π
)-2,则原函数的解析式为 ( ) =sin x =cos x =sin x +2 = -cos x
12.在△ABC 中,=c , BC = a , CA =b ,则下列推导中错误的是 ( ) A.若a ·b <0,则△ABC 为钝角三角形 B. 若a ·b =0,则△ABC 为直角三角形 C. 若a ·b =b ·c ,则△ABC 为等腰三角形 D. 若c ·( a +b +c )=0,则△ABC 为等腰三角形
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.在△ABC
,4=且,8=⋅AC AB 则这个三角形的形状是 . 14.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .
15. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c ,则c= . 16.给出下列命题:①若a 2
+b 2
=0,则a =b =0; ②已知A ),,(11y x B ),(22y x ,则
);2
,2(21
2121y y x x ++= ③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |
④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 . 三、解答题(本大题共6小题,17-21题每小题12分,22题14分,共74分,解答应写出文字说明、证明过程或演算步骤)
17.如图,ABCD 是一个梯形
,//=, M 、N 分别是,的中点,已知=AB a ,=AD b ,试用a 、b 表示,DC BC 和.MN
A
B
N
M
D
C
18.设两个非零向量e 1、e 2不共线.如果=e 1+e 2,=2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线;
⑵试确定实数k,使ke 1+e 2和e 1+ke 2共线.
19.已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量的坐标.
20.已知△ABC 的三个顶点为A (1,2),B (4,1),C (3,4).⑴求AB 边上的中线CM 的长;⑵在AB 上取一点P ,使过P 且平行与BC 的直线PQ 把ABC ∆的面积分成4:5两部分,求P 点的坐标.
21.已知a 、b 是两个非零向量,证明:当b 与a +λb (λ∈R)垂直时,a +λb 的模取得最小值.
22.已知二次函数f (x ) 对任意x ∈R,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2),
b =(2sin x ,2
1
),c =(cos2x ,1),d =(1,2)。

(1)分别求a ·b 和c ·d 的取值范围;
(2)当x ∈[0,π]时,求不等式f (a ·b )>f (c ·d )的解集。

参考答案
一、1-5BCDBA ;6-10DDADB ;11-12BD
二、13.等边三角形;14.大小是4km/h ,方向与水流方向的夹角为600
; -2b ; 16.①③④ 三、17.∵||=2||∴2=∴21
21==
a ,=
b -21a , MN =4
1a -b 18.⑴∵BD BC CD =+=5e 1+5e 2=AB 5 , ∴BD AB //又有公共点B,∴A、B 、D 共线 ⑵设存在实数λ使ke 1+e 2=λ(e 1+ke 2) ∴ k=λ且k λ=1 ∴k =1± 19.⑴由0=⋅可知⊥即AB ⊥AC
⑵设D (x,y ),∴)2,1(),5,5(),4,2(++==--=y x y x ∵⊥ ∴5(x -2)+5(y -4)=0
∵// ∴5(x +1)-5(y +2)=0 ∴⎪⎪⎩

⎪⎨

==2
527
y x ∴D(25,
27))2
3
,23(-= 20.⑴2
26
||),25,21()23,25(=--=∴CM CM M
⑵设P (x,y )
44||22
,59||33
APQ APQ BPQC ABC S S AP AP AB S S AB ∆∆∆=∴=∴=∴= )1,3(32)2,1(-=
--∴y x )3
4,3(P ∴ 21. 当b 与a +λb (λ∈R)垂直时,b ·(a
+λb )=0,∴λ= -2
a b
b | a +λb 22
2)()+-a b a b a 当λ= -
2
a b
b 时,| a +λb |取得最小值. ∴当b 与a +λb (λ∈R)垂直时,a +λb 的模取得最小值. 22. (1)3≥a ·b =2sin 2
x +1≥1 3≥c ·d =2cos 2
x +1≥1
(2)∵f (1-x )=f (1+x ) ∴f (x )图象关于x =1对称 当二次项系数m >0时, f (x )在(1,+∞)内单调递增, 由f (a ·b )>f (c ·d )⇒ a ·b > c ·d , 即2sin 2
x +1>2cos 2
x +1
又∵x ∈[0,π] ∴x ∈3(,)4
4
ππ
当二次项系数m <0时,f (x )在(1,+∞)内单调递减,
由f(a·b)>f(c·d)⇒ a·b > c·d, 即2sin2x+1<2cos2x+1
又∵x∈[0,π] ∴x∈
3 [0,)(,]
44
ππ
π、
故当m>0时不等式的解集为
3
(,)
44
ππ
;当m<0时不等式的解集为
3
[0,)(,]
44
ππ
π。

相关文档
最新文档