java数据在内存中存储详解
java 存储 方案

Java 存储方案在开发Java应用程序时,存储数据是非常重要的一个环节。
Java提供了多种存储方案,包括文件存储、数据库存储和缓存存储等。
本文将介绍这些存储方案,并比较它们的优缺点。
文件存储文件存储是最基本的一种存储方式,它将数据保存在本地文件系统中。
Java的IO API提供了丰富的操作文件的类和方法,使得文件存储非常方便。
优点•简单:文件存储是最简单的存储方式之一。
只需要使用Java的IO API读写文件即可,不需要额外的复杂操作。
•适用于小规模数据:如果数据量较小,文件存储是一个不错的选择。
它可以很方便地存储和读取数据。
缺点•性能较差:文件存储的读写速度较慢,尤其是在大规模数据的场景下。
每次读写都需要IO操作,而且文件系统的性能也有限制。
•不支持并发访问:文件存储不适用于多个线程同时读写数据的情况。
如果需要并发访问数据,需要额外实现同步机制。
数据库存储数据库存储是一种常用的数据存储方式,Java提供了多种数据库连接和操作的API,如JDBC和JPA等。
优点•高性能:数据库存储通常采用了各种数据索引和优化技术,能够提供较高的读写性能。
特别是在处理大规模数据时,数据库存储明显优于文件存储。
•支持并发访问:数据库通常支持并发访问,可以实现多个线程同时读写数据,并提供了事务机制保证数据的一致性。
缺点•复杂:相比于文件存储,数据库存储更复杂。
需要设计数据库模式、连接数据库、编写SQL语句等操作,学习和使用成本较高。
•需要维护:数据库需要专门的人员进行维护和管理,包括备份、性能优化、故障恢复等方面的工作。
缓存存储缓存存储是一种将数据存储在内存中的方式,可以提供非常高的读写性能。
Java中有多个缓存框架可供选择,如Ehcache、Redis等。
优点•高性能:缓存存储将数据存储在内存中,读取速度非常快。
尤其是对于频繁读取的数据,缓存存储可以显著提高性能。
•支持并发访问:缓存通常支持并发访问,可以实现多个线程同时读写数据,并提供了缓存一致性的机制。
java内存结构

java内存结构Java的内存结构JVM的内存结构主要有三⼤块:堆、⽅法区和栈。
堆内存是JVM中最⼤的⼀块,由年轻代和⽼年代组成,⽽年轻代内存⼜被分为三部分,Eden空间、FromSurvivor空间和ToSurvivor空间,默认情况下年轻代是按照8:1:1的⽐例来分配。
⽅法区存储类信息、常量、静态变量等数据,是线程共享的区域,为与Java堆区分,⽅法区还有⼀个别名Non-Heap(⾮堆);栈⼜分为Java虚拟机栈和本地⽅法栈主要⽤于⽅法的执⾏。
JVM和系统调⽤之间的关系⽅法区和堆是所有线程共享的内存区域;⽽java虚拟机栈、本地⽅法栈和程序员计数器是线程私有的内存区域。
1. Java堆(Heap)对于⼤多数应⽤来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最⼤的⼀块,Java堆是被所有线程共享的⼀块内存区域,在虚拟机启动时创建。
此内存区域的唯⼀⽬的就是存放对象实例,⼏乎所有的对象实例都在这⾥分配内存。
Java堆是垃圾收集器管理的主要区域,因此很多时候也被成为“GC堆”。
如果从内存回收的⾓度看,由于现在收集器基本都是采⽤的分代收集算法,所以Java堆中还可以细分为:新⽣代和⽼年代,再细致⼀点的有Eden空间、From Survivor空间、ToSurvivor空间等。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的空间内存中,只要逻辑上是连续的即可,就像我们的磁盘空间⼀样。
在实现时,既可以实现成固定⼤⼩的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。
如果在堆中没有内存完成实例分配,并且堆也⽆法再扩展时,将会抛出OOM(OutOfMemoryError)异常。
2. ⽅法区(Method Area)⽅法区与Java堆⼀样,是各个线程共享的内存区域,它⽤于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,虽然Java虚拟机规范把⽅法区描述为堆的⼀个逻辑部分,但是它有⼀个别名Non-Heap(⾮堆),⽬的应该是与Java堆区分开。
java基本数据类型和引用数据类型的区别

java基本数据类型和引⽤数据类型的区别⼀、基本数据类型:byte:Java中最⼩的数据类型,在内存中占8位(bit),即1个字节,取值范围-128~127,默认值0short:短整型,在内存中占16位,即2个字节,取值范围-32768~32717,默认值0int:整型,⽤于存储整数,在内在中占32位,即4个字节,取值范围-2147483648~2147483647,默认值0long:长整型,在内存中占64位,即8个字节-2^63~2^63-1,默认值0Lfloat:浮点型,在内存中占32位,即4个字节,⽤于存储带⼩数点的数字(与double的区别在于float类型有效⼩数点只有6~7位),默认值0 double:双精度浮点型,⽤于存储带有⼩数点的数字,在内存中占64位,即8个字节,默认值0char:字符型,⽤于存储单个字符,占16位,即2个字节,取值范围0~65535,默认值为空boolean:布尔类型,占1个字节,⽤于判断真或假(仅有两个值,即true、false),默认值false⼆、Java数据类型基本概念:数据类型在计算机语⾔⾥⾯,是对内存位置的⼀个抽象表达⽅式,可以理解为针对内存的⼀种抽象的表达⽅式。
接触每种语⾔的时候,都会存在数据类型的认识,有复杂的、简单的,各种数据类型都需要在学习初期去了解,Java是强类型语⾔,所以Java对于数据类型的规范会相对严格。
数据类型是语⾔的抽象原⼦概念,可以说是语⾔中最基本的单元定义,在Java⾥⾯,本质上讲将数据类型分为两种:基本类型和引⽤数据类型。
基本类型:简单数据类型是不能简化的、内置的数据类型、由编程语⾔本⾝定义,它表⽰了真实的数字、字符和整数。
引⽤数据类型:Java语⾔本⾝不⽀持C++中的结构(struct)或联合(union)数据类型,它的复合数据类型⼀般都是通过类或接⼝进⾏构造,类提供了捆绑数据和⽅法的⽅式,同时可以针对程序外部进⾏信息隐藏。
java内存使用情况的命令

java内存使用情况的命令Java是一种面向对象的编程语言,它在开发应用程序时需要使用内存来存储数据和执行代码。
因此,了解Java的内存使用情况对于开发人员来说是非常重要的。
Java虚拟机(JVM)负责管理Java应用程序的内存,它使用垃圾回收机制来自动管理内存的分配和释放。
JVM的内存可以分为以下几个部分:1. 堆(Heap):堆是Java程序运行时动态分配的内存区域,用于存储对象实例。
堆的大小可以通过命令行参数-Xmx和-Xms来设置。
-Xms表示JVM启动时初始分配的堆内存大小,-Xmx表示堆能够达到的最大内存大小。
2. 方法区(Method Area):方法区用于存储已加载的类信息、常量、静态变量等数据。
方法区的大小可以通过命令行参数-XX:PermSize和-XX:MaxPermSize来设置。
-XX:PermSize表示JVM启动时初始分配的方法区大小,-XX:MaxPermSize表示方法区能够达到的最大大小。
3. 栈(Stack):栈用于存储Java方法中的局部变量以及方法调用时的状态信息。
每个Java线程都有一个独立的栈,栈的大小是固定的,并且在线程创建时被分配。
栈的大小可以通过命令行参数-Xss来设置。
除了上述部分,JVM还会使用一些额外的内存空间,如直接内存(DirectMemory)和本地方法栈(Native Method Stack),用于存储一些特殊的数据和执行本地方法。
了解Java的内存使用情况对于定位内存泄漏和优化程序性能非常有帮助。
下面是几个常用的命令,可以用于监控和调整Java程序的内存使用情况:1. jps:该命令用于列出当前运行的Java进程,以及对应的进程ID。
2. jstat:该命令用于监控Java虚拟机的各种运行状态,包括堆的使用情况、类加载数量、垃圾回收情况等。
常用的参数包括-jstat -gcutil <pid>和-jstat-gccapacity <pid>。
如何在Java中进行数据的持久化和读取操作

如何在Java中进行数据的持久化和读取操作数据的持久化是指将程序中的数据存储在持久存储介质中(如文件、数据库等)以便下次程序运行时能够重新读取和使用。
在Java中,数据的持久化和读取操作可以通过文件操作、数据库操作、序列化和反序列化等方式实现。
本文将重点介绍在Java中进行数据的持久化和读取操作的几种方法。
一、文件操作1.1文件写入在Java中进行文件数据的持久化操作可以使用FileOutputStream 或者BufferedWriter等类来实现。
通过FileOutputStream类,可以将数据以字节的形式写入文件,示例代码如下:```javatry {String data = "Hello, World!";FileOutputStream fos = new FileOutputStream("data.txt");fos.write(data.getBytes());fos.close();} catch (IOException e) {e.printStackTrace();}```上述代码中,首先定义了一个字符串数据并赋值给data变量,然后通过FileOutputStream类打开文件输出流,并将字符串数据以字节形式写入文件中,最后关闭文件输出流。
1.2文件读取使用FileInputStream或者BufferedReader类可以实现对文件数据的读取操作。
示例代码如下:```javatry {FileInputStream fis = new FileInputStream("data.txt");int content;while ((content = fis.read()) != -1) {System.out.print((char) content);}fis.close();} catch (IOException e) {e.printStackTrace();}```上述代码中,首先使用FileInputStream类打开文件输入流,并定义一个整型变量content用于存储读取的字节数据。
Java 各种类型对象占用内存情况分析

Java 技术专题- JVM 研究系列(39)Java 各种类型对象占用内存情况分析前言只有当你到了一定层次,需要了解JVM 内部运行机制,或者高并发多线程下,你写的代码对内存有影响,你想做性能优化。
当你想深入了解 java 对象在内存中,如何存储,或者每个对象占用多大空间时。
内存公式Java 对象的内存布局 = 对象头 (Header)+ 实例数据 (Instance Data)+ 补齐填充 (Padding)。
补齐填充Java 对象占用空间是 8 字节对齐的,即所有 Java 对象占用 bytes 数必须是 8 的倍数。
Shallow Size1.对象自身占用的内存大小,不包括它引用的对象。
2.针对非数组类型的对象,它的大小就是对象与它所有的成员变量大小的总和。
当然这里面还会包括一些 java 语言特性的数据存储单元。
3.针对数组类型的对象,它的大小是数组元素对象的大小总和。
Retained SizeRetained Size = 当前对象大小 + 当前对象可直接或间接引用到的对象的大小总和。
(间接引用的含义:A->B->C,C 就是间接引用)换句话说,Retained Size 就是当前对象被 GC 后,从 Heap 上总共能释放掉的内存。
不过,释放的时候还要排除被 GC Roots 直接或间接引用的对象。
他们暂时不会被被当做 Garbage。
接下来用 JProfiler 验证:1.新建一个空对象,观察空对象内存占用public class TestObject {}对象占用内存 16byte,如图:结论一般自建空对象占用内存 16Byte,16byte = 12Byte (Header) + 4Byte (Padding)2.在 TestObj 中新增一个 int 属性,观察对象内存占用public class TestObj {private int i;}对象占用内存 16byte,如图结论int 占用 4byte,16byte = 12byte(Header) + 4byte(int)+0byte(padding)3.在 TestObj 中新增一个 long 属性,观察对象内存占用public class TestObj {private long i;}对象占用内存 24b,如图结论long 占用 8byte, 24byte = 12 (Header) + 8 (long) + 4 (Padding)其余基本类型可以参照以上自行验证,原理一样包装类型占用•包装类(Boolean/Byte/Short/Character/Integer/Long/Double/Float)占用内存的大小 = 对象头大小 + 底层基础数据类型的大小。
Java大规模数据处理解析海量数据的技巧

Java大规模数据处理解析海量数据的技巧在处理大规模数据时,Java是一种常用的编程语言。
然而,由于海量数据的处理可能涉及到效率、内存管理以及算法优化等方面的挑战,开发人员需要掌握一些技巧来解析这些数据。
本文将介绍一些Java大规模数据处理的技巧,帮助开发人员更好地处理海量数据。
一、数据分块处理在处理大规模数据时,内存管理是一个重要的问题。
当数据量超过内存限制时,我们需要将数据分块处理,以避免内存溢出。
可以使用Java的流式处理机制,通过迭代的方式读取数据,每次处理一块数据,减少内存的消耗。
例如,可以使用BufferedReader的readLine()方法逐行读取文件,然后对每行数据进行处理。
二、并行处理并行处理是指同时处理多个数据块的技术,可以显著提高处理大规模数据的效率。
Java提供了多线程和线程池的机制,可以将数据分成多个部分,并行地处理每个部分。
通过合理设置线程池的大小,可以充分利用计算资源,提高程序的运行效率。
三、使用适当的数据结构在处理大规模数据时,选择适当的数据结构非常重要。
不同的数据结构对于不同的操作具有不同的时间复杂度,选择合适的数据结构可以提高程序的效率。
例如,如果需要频繁地插入和删除数据,可以选择链表或树等数据结构;如果需要随机访问数据,可以选择数组或哈希表等数据结构。
根据不同的需求,选择合适的数据结构可以提高程序的性能。
四、优化算法算法的选择也是解析海量数据的关键。
优化算法可以提高程序的效率,减少资源的消耗。
例如,对于排序操作,可以选择高效的排序算法,如快速排序或归并排序,而不是简单的冒泡排序。
另外,可以使用适当的数据结构和算法来进行数据过滤、去重等操作,减少不必要的计算。
五、使用缓存缓存是提高程序性能的有效方式之一。
当程序需要频繁地访问某些数据时,可以使用缓存将这些数据存储起来,避免重复计算和访问。
在Java中,可以使用HashMap等数据结构来实现缓存。
通过在内存中存储一部分数据,可以提高程序的响应速度和效率。
Java中的缓存技术

Java中的缓存技术缓存技术在软件开发中起着至关重要的作用。
它可以提高系统性能、降低对底层资源的访问频率,从而减轻服务器负载并改善用户体验。
在Java开发中,有许多可供选择的缓存技术。
本文将介绍几种常见的Java缓存技术,以及它们的应用场景和原理。
一、内存缓存内存缓存是最常见的缓存技术之一,它将数据保存在内存中,以提高读取速度。
在Java中,可以使用集合框架中的Map接口的实现类来实现内存缓存,如HashMap、ConcurrentHashMap等。
这些类提供了快速的Key-Value存储,通过Key快速查找对应的Value,以实现快速访问缓存数据。
内存缓存适用于数据读取频繁但不经常更新的场景,例如字典数据、配置信息等。
需要注意的是,内存缓存的容量是有限的,当缓存数据超过容量限制时,需要采取一些策略来处理,如LRU(最近最少使用)算法将最久未访问的数据移出缓存。
二、分布式缓存分布式缓存是一种将数据存储在多台服务器节点上的缓存技术。
Java中有多种分布式缓存框架可供选择,如Redis、Memcached等。
这些框架提供了高性能、可扩展的分布式缓存服务,可以在集群中存储大量的数据,并提供分布式缓存的管理和查询接口。
分布式缓存适用于需要同时服务大量客户端并具有高并发读写需求的场景,例如电商网站的商品信息、社交网络的用户数据等。
通过将数据存储在多台服务器上,可以提高系统的可用性和扩展性。
三、页面缓存页面缓存是将网页内容保存在缓存中,以减少对数据库或后端服务的访问频率,从而提高页面的加载速度。
在Java中,可以通过使用Web服务器或反向代理服务器的缓存功能,例如Nginx、Varnish等,来实现页面缓存。
页面缓存适用于内容相对静态或者不经常变化的场景,例如新闻网站的文章、博客网站的页面等。
通过将网页内容保存在缓存中,可以避免每次请求都重新生成页面,大大提高响应速度和系统的并发能力。
四、数据库缓存数据库缓存是将数据库查询结果保存在缓存中,以减少对数据库的频繁查询,提高系统的响应速度和并发能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博客分类:
JAVA
1.
有这样一种说法,如今争锋于IT战场的两大势力,MS一族偏重于底层实现,Java 一族偏重于系统架构。
说法根据无从考证,但从两大势力各自的社区力量和图书市场已有佳作不难看出,此说法不虚,但掌握Java的底层实现对Java程序员来说是至关重要的,本文介绍了Java中的数据在内存中的存储。
2内存中的堆(stack)与栈(heap)
Java程序运行时有6个地方可以存储数据,它们分别是寄存器、栈、堆、静态存储、常量存储和非RAM存储,主要是堆与栈的存储。
【随机存储器:Random Access Memory】
栈与堆都是Java用来在RAM中存放数据的地方。
与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。
栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。
另外,栈数据可以共享。
但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。
堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。
但缺点是,由于要在运行时动态分配内存,存取速度较慢。
【寄存器位于CPU中】
3Java中数据在内存中的存储
3.1基本数据类型的存储
Java的基本数据类型共有8种,即int,short,long,byte,float,double, boolean,char(注意,并没有string的基本类型)。
这种类型的定义是通过诸如int a=3;long b=255L;的形式来定义的,称为自动变量。
值得注意的是:自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。
如int a=3;这里的a是一个指向int类型的引用,指向3这个字面值。
这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出于追求速度的原因,就存在于栈中。
另外,栈有一个很重要的特殊性,就是存在栈中的数据可以共享。
假设我们同时定义:
int a=3;
int b=3;
编译器先处理int a=3;首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟一个存放3这个字面值的地址,然后将a指向3的地址。
接着处理int b=3;在创建完b这个引用变量后,由于在栈中已经有3这个字面值,便将b直接指向3的地址。
这样,就出现了a
与b同时均指向3的情况。
【上文提到了"引用+数值+内存地址"这三个名词,其中变量名就是引用,给变量赋的值就是数值,
而所提到的内存是抽象的内容,让引用指向的不是数值,而是存取数值的那块内存地址】
定义完a与b的值后,再令a=4;那么,b不会等于4,还是等于3。
在编译器内部,遇到时,它就会重新搜索栈中是否有4的字面值,如果没有,重新开辟地址存放4的值;如果已经有了,则直接将a指向这个地址。
因此a值的改变不会影响到b的值。
【定义变量,给变量赋值,然后在编译的过程中就可以将其保存在内存中了】
3.2对象的内存模型
在Java中,创建一个对象包括对象的声明和实例化两步,下面用一个例题来说明对象的内存模型。
假设有类Rectangle定义如下:
【Rectangle:矩形】
class Rectangle{
double width,height;
Rectangle(double w,double h){
width=w;height=h;}}
(1)声明对象时的内存模型
用Rectangle rect;声明一个对象rect时,将在栈内存为对象的引用变量rect分配内存空间,但Rectangle的值为空,称rect是一个空对象。
空对象不
能使用,因为它还没有引用任何“实体”。
(2)对象实例化时的内存模型
当执行rect=new Rectangle(3,5);时,会做两件事:
在堆内存中为类的成员变量width,height分配内存,并将其初始化为各数据类型的默认值;接着进行显式初始化(类定义时的初始化值);最后调用构造方法,为成员变量赋值。
返回堆内存中对象的引用(相当于首地址)给引用变量rect,以后就可以通过rect来引用堆内存中的对象了。
(他奶奶的,不是很理解这两句话!)
(3)创建多个不同的对象实例
一个类通过使用new运算符可以创建多个不同的对象实例,这些对象实例将在堆中被分配不同的内存空间,改变其中一个对象的状态不会影响其他对象的状态。
例如:
Rectangle r1=new Rectangle(3,5);
Rectangle r2=new Rectangle(4,6);
此时,将在堆内存中分别为两个对象的成员变量width、height分配内存空间,两个对象在堆内存中占据的空间是互不相同的。
如果有
Rectangle r1=new Rectangle(3,5);
Rectangle r2=r1;
则在堆内存中只创建了一个对象实例,在栈内存中创建了两个对象引用,两个对象引用同时指向一个对象实例。
3.3包装类数据的存储
基本型别都有对应的包装类:如int对应Integer类,double对应Double 类等,基本类型的定义都是直接在栈中,如果用包装类来创建对象,就和普通对象一样了。
例如:int i=0;i直接存储在栈中。
Integer i(i此时是对象)=new Integer(5);这样,i对象数据存储在堆中,i的引用存储在栈中,通过栈中的引用来操作对象。
【数据存储在堆中,引用存储在栈中】
3.4String类型数据的存储
String是一个特殊的包装类数据。
可以用String str=new String("abc");的形式来创建;
也可以用String str="abc";的形式来创建。
第一种创建方式,和普通对象的的创建过程一样;
第二种创建方式,Java内部将此语句转化为以下几个步骤:
(1)先定义一个名为str的对String类的对象引用变量:String str;
(2)在栈中查找有没有存放值为“abc”的地址,如果没有,则开辟一个存放字面值为“abc”的地址,接着创建一个新的String类的对象o,并将o的字符串值指向这个地址,而且在栈中这个地址旁边记下这个引用的对象o。
如果已经有了值为“abc”的地址,则查找对象o,并返回o的地址。
(3)将str指向对象o的地址。
值得注意的是,一般String类中字符串值都是直接存值的。
但像String str ="abc";这种场合下,其字符串值却是保存了一个指向存在栈中数据的引用。
为了更好地说明这个问题,我们可以通过以下的几个代码进行验证。
String str1=“abc”;
String str2=“abc”;
System.out.println(s1==s2);//true
注意,这里并不用str1.equals(str2);的方式,因为这将比较两个字符串的值是否相等。
==号,根据JDK的说明,只有在两个引用都指向了同一个对象时才返回真值。
而我们在这里要看的是,str1与str2是否都指向了同一个对象。
我们再接着看以下的代码。
Stringstr1=new String(“abc”);
Stringstr2=“abc”;
System.out.println(str1==str2);//false
创建了两个引用。
创建了两个对象。
两个引用分别指向不同的两个对象。
以上两段代码说明,只要是用new()来新建对象的,都会在堆中创建,而且其字符串是单独存值的,即使与栈中的数据相同,也不会与栈中的数据共享。
3.5数组的内存分配
当定义一个数组,int x[];或int[]x;时,在栈内存中创建一个数组引用,通过该引用(即数组名)来引用数组。
x=new int[3];将在堆内存中分配3个保存int型数据的空间,堆内存的首地址放到栈内存中,每个数组元素被初始化为0。
4内存空间的释放
栈上变量的生存时间受限于当前函数的生存时间,函数退出了,变量就不存在了。
在堆中分配的对象实例,当不再有任何一个引用变量指向它时,这个对象就可以被垃圾回收机制回收了。
5总结堆栈
再来看Java的内存,栈内存用来存放一些基本类型的变量和数组及对象的引用变量,而堆内存主要是来放置对象实例的。
明白这个就能很好的解释多态、继承、覆盖方面的问题了。