高中数学直线方程公式电子教案
高中数学 必修二 3.2.3 直线的一般式方程教案 新人教A版必修2

3.2.3 直线的一般式方程(一)导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题.思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77y x +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式.(二)推进新课、新知探究、提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线? ③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化?④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化? ⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零.结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-BC ,这就是直线的斜截式方程,它表示斜率为-BA ,在y 轴上的截距为-BC 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-A C ,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下: 0轴上的截距 例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6).化成一般式,得4x+3y-12=0.变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线?(2)系数满足什么关系时,与坐标轴都相交?(3)系数满足什么条件时,只与x 轴相交?(4)系数满足什么条件时,是x 轴?(5)设P(x 0,y 0)为直线Ax+By+C=0上一点,证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0.答案:(1)C=0;(2)A≠0且B≠0;(3)B=0且C≠0;(4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上,∴Ax 0+By 0+C+0,C=-Ax 0-By 0.∴A(x -x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________.答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ①移项,去系数得斜截式y=2x +3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6.即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”.变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程.答案:x+3y-3=0或x+2y=0.(四)知能训练课本本节练习1、2、3.(五)拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系.解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点.(六)课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系;(2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式;(3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练.(七)作业习题3.2 A 组11.。
高中高二数学教案范文:直线的方程2篇

高中高二数学教案范文:直线的方程高中高二数学教案范文:直线的方程精选2篇(一)教案标题:直线的方程适用年级:高中高二教学目标:1.了解直线的定义和性质;2.学习如何确定直线的方程;3.掌握常见直线方程的求解方法;4.能应用直线方程解决实际问题。
教学重点:1.直线的斜率概念和计算方法;2.直线的截距概念和计算方法;3.应用直线的方程解决实际问题。
教学难点:1.理解和运用直线斜率的概念和计算方法;2.理解和运用直线截距的概念和计算方法。
教学准备:1.教学投影仪或白板;2.直线方程的相关练习册;3.实际问题的例题。
教学过程:Step 1:引入新知1.引导学生回顾中学阶段学过的直线相关知识,例如直线的特征和方向等。
2.通过图片展示和实际例子引导学生了解直线的斜率和截距的概念。
Step 2:直线斜率的计算1.引导学生回顾直线斜率的定义和计算方法。
2.通过具体的直线方程示例讲解斜率的计算步骤和方法。
3.提供一些练习题让学生独立计算直线斜率,并进行讲解和订正。
Step 3:直线截距的计算1.引导学生回顾直线截距的定义和计算方法。
2.通过具体的直线方程示例讲解截距的计算步骤和方法。
3.提供一些练习题让学生独立计算直线截距,并进行讲解和订正。
Step 4:确定直线方程1.综合斜率和截距的概念和计算方法,讲解如何确定直线方程。
2.通过具体例子展示直线方程的求解过程,并进行课堂讲解和操练。
Step 5:应用实例1.提供一些实际问题,例如几何问题、物理问题等,让学生运用所学知识解决问题。
2.引导学生分析问题、列出方程、计算并给出解答。
3.讲解实例中的解题思路和方法,并与学生进行讨论和分享。
Step 6:巩固练习1.提供一些练习题让学生巩固直线方程的求解方法。
2.鼓励学生独立完成练习并进行批改和订正。
3.针对学生常犯错误或难以理解的地方进行重点讲解和指导。
Step 7:课堂总结1.概括和总结本节课所学的直线方程的知识要点。
高中高二数学教案范文:直线的方程

高中高二数学教案范文:直线的方程一、教学目标1.知识与技能目标:使学生掌握直线方程的概念,理解直线的斜率与截距的意义,能够熟练地求出直线的方程。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的精神,树立学生勇于探究、积极进取的信念。
二、教学重点与难点1.教学重点:直线方程的概念,直线方程的求法。
2.教学难点:直线方程的斜截式、两点式、点斜式之间的转化。
三、教学过程1.导入新课(1)引导学生回顾直线的一般式方程:Ax+By+C=0(A、B不同时为0)。
(2)提问:在平面直角坐标系中,如何表示一条直线?2.探究直线方程的概念(1)引导学生通过观察,发现直线上的点都满足某个方程。
(2)讲解直线方程的定义:在平面直角坐标系中,一条直线上的所有点都满足的方程,叫做这条直线的方程。
(3)举例说明:如直线y=2x+1,直线上的点(1,3)、(2,5)都满足方程y=2x+1。
3.探究直线方程的求法(1)讲解直线方程的斜截式:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
(2)引导学生通过观察,发现斜率k是直线上任意两点的纵坐标之差与横坐标之差的比值,即k=(y2-y1)/(x2-x1)。
(3)讲解直线方程的两点式:y-y1=k(x-x1),其中(x1,y1)是直线上的一点,k是直线的斜率。
(4)讲解直线方程的点斜式:y-y1=k(x-x1),其中(x1,y1)是直线上的一点,k是直线的斜率。
(5)举例说明:如直线y=2x+1,斜率k=2,截距b=1。
4.练习巩固(1)让学生独立完成教材上的练习题,巩固直线方程的概念和求法。
(2)教师选取部分题目进行讲解,纠正学生的错误。
5.小结(2)强调直线方程的斜截式、两点式、点斜式之间的转化。
6.作业布置(1)教材上的练习题。
(2)补充练习题:已知直线上的两点A(1,2)和B(3,4),求直线的方程。
四、教学反思本节课通过引导学生观察、分析、归纳,使学生掌握了直线方程的概念和求法。
直线的方程教案

直线的方程教案第一篇:直线的方程教案《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线L过点P(0,3),斜率K=2,Q(X,Y)是直线L上不同于点P的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于P,Q都在这条直线上,我们就可以用这两点的坐标来表示直线L的斜率,可以得出公式:Y-3X-0=2 那我们就可以的出方程Y=2X+3 所以就有L上的任意一点坐标(X,Y)都满足方程Y=2X=3,满足方程Y=2X+3的每一个(X,Y)所对应的点都在直线L上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设 Q(X,Y)是直线L上不同于点P的任意一点,由于点P,Q都在L,求直线的方程。
设点P(X0,,Y0),先表示出这个直线的额斜率是Y-Y0X-X0=K,然后可以推得公式Y-Y0=K(X-X0)那如果当X=X0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(X不能等于X0)1)过点,斜率是K的直线L上的点,其坐标都满足方程(1)吗?P(X0,Y0)(X0,Y0),斜率为K的直线L上吗? 2)坐标满足方程(1)的点都在经过P那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
高中数学直线的方程教案

高中数学直线的方程教案高中数学直线的方程教案1教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的'抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计略高中数学直线的方程教案2一、教学目标【知识与技能】进一步掌握直线方程的各种形式,会根据条件求直线的方程。
人教版高一数学必修二第三章 直线与方程教案

教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
高中数学教案:直线方程

高中数学教案:直线方程一、教学目标1.了解直线方程的定义和基本性质;2.学会根据已知条件写出直线方程;3.掌握直线的斜率和截距的计算方法;4.学会根据直线方程确定直线的性质。
二、教学内容1.直线方程的定义及基本性质;2.直线的斜率和截距的计算方法;3.根据已知条件写出直线方程的方法;4.直线方程的应用。
三、教学过程1. 直线方程的定义及性质直线是平面上的一条无限延伸的线段,可以由直线方程来表示。
直线方程的标准形式为 y = mx + b,其中 m 为斜率,b 为截距。
直线方程的性质: - 斜率为 m 的直线与 x 轴的夹角为tan(m); - 斜率为 m 的直线与 y 轴的截距为 b; - 当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线水平。
2. 直线的斜率和截距的计算方法直线方程的斜率可以通过两点间的纵坐标差除以横坐标差来计算。
设直线上有两点A(x₁, y₁) 和B(x₂, y₂),则直线的斜率m = (y₂ - y₁) / (x₂ - x₁)。
直线方程的截距可以通过直线上的某一点坐标和斜率来计算。
设直线上有一点P(x, y),斜率为 m,则直线的截距 b = y - mx。
3. 根据已知条件写出直线方程的方法根据已知条件写出直线方程的方法有以下几种: - 已知两点坐标:设直线上有两点A(x₁, y₁) 和B(x₂, y₂),则直线的斜率m = (y₂ - y₁) / (x₂ - x₁),截距 b = y - mx。
- 已知斜率和一点坐标:设直线的斜率为 m,直线上有一点 P(x, y),则直线的截距b = y - mx。
- 已知截距和一点坐标:设直线的截距为 b,直线上有一点 P(x, y),则直线的斜率 m = (y - b) / x。
4. 直线方程的应用直线方程的应用主要包括以下几个方面: - 判断两条直线是否平行或垂直:若两条直线的斜率分别为m₁ 和m₂,若m₁ = m₂,则两条直线平行;若m₁ × m₂ = -1,则两条直线垂直。
高中数学直线系方程教案

高中数学直线系方程教案
教学目标:
1. 掌握直线的一般方程、截距式、斜截式等不同表示形式;
2. 理解直线的斜率和截距的概念;
3. 能够根据已知条件写出直线的方程;
4. 能够解决直线方程的应用问题。
教学重点:
1. 直线的一般方程、截距式、斜截式的转化;
2. 直线的斜率和截距的计算;
3. 直线方程的应用问题解答。
教学难点:
1. 直线方程的变换;
2. 直线方程的应用问题解答。
教学准备:
1. 教师准备直线方程示意图和实例题目;
2. 学生准备直尺、铅笔、橡皮。
教学过程:
一、导入(5分钟)
通过一个简单的例子引入直线方程的概念,让学生体会直线在平面上的特性。
二、讲解直线方程的不同表示形式(15分钟)
1. 直线的一般方程、截距式、斜截式的定义和转化;
2. 直线的斜率和截距的含义和计算方法。
三、练习与实践(20分钟)
1. 学生跟随教师练习直线方程的转化;
2. 学生在纸上练习给定直线的斜率和截距的计算。
四、应用问题解答(15分钟)
1. 让学生尝试解答一些直线方程应用问题;
2. 学生在小组合作讨论解题思路,并进行分享。
五、总结(5分钟)
教师总结本节课的重点难点,引导学生复习知识要点。
六、作业布置(5分钟)
布置作业,要求学生练习直线方程相关题目,巩固课堂所学知识。
教学反思:
在教学过程中,要注意引导学生理解直线方程的概念和应用,注重学生思维方式的培养,帮助他们建立数学解题的逻辑思维能力。
同时,在练习和实践环节要注重学生的操作技能和应用能力培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学直线方程公式直线方程公式1.斜率公式①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠)②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。
点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。
2.方向向量坐标 : ()()k y y x x x x p p x x ,1,111212122112=---=- 3.两条直线的平行和垂直【1】两直线平行的判断(1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。
(2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。
(3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。
(4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。
11112222||A B C l l A B C ⇔=≠。
【2】两直线垂直的判断(1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。
(2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。
(3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。
(4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。
【3】两直线相交的判断(1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。
(2)两直线斜率存在时,斜率不等是两直线相交的充要条件。
(3)两直线倾斜角不相等是两直线相交的充要条件。
(4)直线l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,则A 1B 2-A 2B 1≠0是两直线相交的充要条件。
【4】两直线重合的判断当两直线斜率与截距都相等时,它们必定重合;当A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0(或A 1C 2-A 2C 1=0)时,两直线重合。
4..直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5.“到角”及“夹角”公式 :(1)夹角公式(1l 与2l 的角) (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. (2)1l 到2l 的角公式(1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 6.对称问题【1】关于点对称问题(1)求已知点关于点的对称点P (x 1,y 1)关于点Q (x 0,y 0)的对称点为(2 x 0- x 1,2 y 0- y 1)。
(2)直线关于点的对称直线设l 的方程为:Ax+By+C=0(A 2+B 2≠0)和点P (x 0,y 0),求l 关于P 点的对称直线方程。
设P 1(x 1,y 1)是对称直线l 1任意一点,它关于P (x 0,y 0)的对称点(2 x 0- x 1,2 y 0- y 1)在直线l 上,代入得A (2 x 0- x 1)+B (2 y 0- y 1)+C=0,即Ax 1+By 1+C 1=0为所求对称直线的方程。
与已知方程平行。
常见和对称结论有:设直线l :Ax+By+C=0:※l 关于x 轴的对称直线是Ax+B (-y )+C=0※l 关于y 轴的对称直线是A (- x )x+By+C=0※l 关于原点的对称直线是A (- x )x+B (-y )+C=0※l 关于y=x 的对称直线是Bx+Ay+C=0※l 关于y=-x 的对称直线是A (-y )+B (- x )+C=0【2】关于直线对称问题(1)点关于直线的对称点※设P (x 0,y 0),l :Ax+By+C=0(A 2+B 2≠0),若P 关于l 的对称点的坐标Q 为(x ,y ),则l 是PQ 的垂直平分线,即PQ ⊥l ,PQ 的中点在l 上,解方程组⎪⎪⎩⎪⎪⎨⎧=++*++*-=⎪⎭⎫ ⎝⎛-*--02210000C y y B x x A B A x x y y 可得Q 点坐标。
※点A (x ,y )关于直线x+y+c=0的对称点A 1的坐标为(-y-c, -x-c ),关于直线x-y+c=0的对称点A 2的坐标为(y-c, x+c ),曲线f (x,y )=0关于直线x+y+c=0的对称曲线为f (-y-c, -x-c )=0,关于直线x-y+c=0的对称曲线为f (y-c, x+c )=0。
※一般地,点A (a,b )关于x 轴的对称点的坐标为A 1(a,-b ),关于y 轴的对称点的坐标为A 2(-a,b ),关于y=x 轴的对称点的坐标为A 3(b,a ),关于y=-x 轴的对称点的坐标为A 4(-b,a ),关于x=m 轴的对称点的坐标为A 5(2m-a,b ),关于y=n 轴的对称点的坐标为A 6(a,2n-b )。
(2)直线关于直线的对称直线若直线a 、b 关于直线l 对称,它们具有下列几何性质:※若a 、b 相交,则l 是a 、b 夹角的平分线;※若点A 在直线a 上,那么点A 关于直线l 的对称点B 一定在直线b 上,这时,AB ⊥l 且AB 中点D 在l 上;※a 以l 为轴旋转1800一定与b 重合。
7、两点间的距离公式若点()y x A 21, , ()y x B 22,则 ()y y x x AB 1212,--= 即 终点坐标-始点坐标()()y y x x 121222--+=若()y x y x a 22,+=⇒=8.点到直线间的距离公式点()y x p 00,到 l : Ax+By+C=0的距离为 B A y x C BA d 2200+++=点到几种特殊直线的距离:※点P (x 0,y 0)到x 轴的距离d=0y ,※点P (x 0,y 0)到y 轴的距离d=0x ,※点P (x 0,y 0)与x 轴平行的直线y=a 的距离d=a y -0,※点P (x 0,y 0)与y 轴平行的直线x=b 的距离d=b x -0。
9.平行线间的距离公式0:11=++C l By Ax 与 0:22=++C l By Ax()c c 21≠ 的距离为B A c c d 2221+-= 10.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.11、求最大值与最小值在直线l上求一点P使PBPA+取得最小值时,“同侧对称异侧连”,即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可。
在直线l上求一点P使PBPA-取得最大值时,“异侧对称同侧连”。